
-
Previous Article
Modulation approximation for the quantum Euler-Poisson equation
- DCDS-B Home
- This Issue
-
Next Article
Flocking and line-shaped spatial configuration to delayed Cucker-Smale models
A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations
School of Mathematics and Statistics, Southwest University, Chongqing 400715, China |
A postprocessed mixed finite element method based on a subgrid model is presented for the simulation of time-dependent incompressible Navier-Stokes equations. This method consists of two steps: the first step is to solve a subgrid stabilized nonlinear Navier-Stokes system on a coarse grid to obtain an approximate solution $ u_{H}(x,T) $ at the final time $ T $, and the second step is to postprocess $ u_{H}(x,T) $ by solving a stabilized Stokes problem on a finer grid or by higher-order finite element elements defined on the same coarse grid. Stability of the method and error estimates of the processing solution are analyzed. Numerical results on an example with known analytic solution and the flow around a circular cylinder are given to verify the theoretical predictions and demonstrate the effectiveness of the proposed method.
References:
[1] |
H. Abboud, V. Girault and T. Sayah,
A second order accuracy for a full discretized time-dependent Navier-Stokes equations by a two-grid scheme, Numer. Math., 114 (2009), 189-231.
doi: 10.1007/s00211-009-0251-5. |
[2] |
R. A. Adams, Sobolev Spaces., Academic Press Inc., New York, 1975. |
[3] |
B. Ayuso, B. García-Archilla and J. Novo,
The postprocessed mixed finite-element method for the Navier-Stokes equations, SIAM J. Numer. Anal., 43 (2005), 1091-1111.
doi: 10.1137/040602821. |
[4] |
B. Ayuso, J. de Frutos and J. Novo,
Improving the accuracy of the mini-element approximation to Navier-Stokes equations, IMA J. Numer. Anal., 27 (2007), 198-218.
doi: 10.1093/imanum/drl010. |
[5] |
P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. |
[6] |
J. de Frutos, B. García-Archilla, V. John and J. Novo,
Analysis of the grad-div stabilization for the time-dependent Navier-Stokes equations with inf-sup stable finite elements, Adv. Comput. Math., 44 (2018), 195-225.
doi: 10.1007/s10444-017-9540-1. |
[7] |
J. de Frutos, B. García-Archilla and J. Novo,
Static two-grid mixed finite-element approximations to the Navier-Stokes equations, J. Sci. Comput., 52 (2012), 619-637.
doi: 10.1007/s10915-011-9562-7. |
[8] |
F. Durango and J. Novo,
Two-grid mixed finite-element approximations to the Navier-Stokes equations based on a Newton-type step, J. Sci. Comput., 74 (2018), 456-473.
doi: 10.1007/s10915-017-0447-2. |
[9] |
H. C. Elman, D. J. Silvester and A. J. Wathen, Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics, Oxford University Press, New York, 2005.
![]() |
[10] |
B. García-Archilla, J. Novo and E. S. Titi,
Postprocessing the Galerkin method: A novel approach to approximate iunertial manifolds, SIAM J. Numer. Anal., 35 (1998), 941-972.
doi: 10.1137/S0036142995296096. |
[11] |
B. García-Archilla, J. Novo and E. S. Titi,
An approximate inertial manifold approach to postprocessing Galerkin methods for the Navier-Stokes equations, Math. Comp., 68 (1999), 893-911.
doi: 10.1090/S0025-5718-99-01057-1. |
[12] |
B. García-Archilla and E. S. Titi,
Postprocessing the Galerkin method: the finite-element case, SIAM J. Numer. Anal., 37 (2000), 470-499.
doi: 10.1137/S0036142998335893. |
[13] |
V. Girault and J.-L. Lions,
Two-grid finite element scheme for the transient Navier-Stokes problem, M2AN Math. Model. Numer. Anal., 35 (2001), 945-980.
doi: 10.1051/m2an:2001145. |
[14] |
V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, Springer-Verlag, Berlin Heidelberg, 1986.
doi: 10.1007/978-3-642-61623-5. |
[15] |
R. Glowinski, Finite Element Methods for Incompressible Viscous Flow, Handbook of numerical analysis, Vol. IX, 3–1176, Handb. Numer. Anal., IX, North-Holland, Amsterdam, 2003. |
[16] |
J.-L. Guermond,
Stabilization of Galerkin approximations of transport equations by subgrid modeling, M2AN Math. Model. Numer. Anal., 33 (1999), 1293-1316.
doi: 10.1051/m2an:1999145. |
[17] |
J.-L. Guermond, Subgrid stabilization of Galerkin approximations of linear contraction semi-groups of class $C^0$ in Hilbert spaces, Numer. Meth. PDEs., 17 (2001), 1-25. Google Scholar |
[18] |
J.-L. Guermond, A. Marra and L. Quartapelle, Subgrid stabilized projection method for 2D unsteady flows at high Reynolds numbers, Comput. Meth. Appl. Mech. Engrg., 195)(2006), 5857–5876.
doi: 10.1016/j.cma.2005.08.016. |
[19] |
Y. N. He,
Two-level method based on finite element and Crank-Nicolson extrapolation for the time-dependent Navier-Stokes equations, SIAM J. Numer. Anal., 41 (2003), 1263-1285.
doi: 10.1137/S0036142901385659. |
[20] |
Y. N. He,
A two-level finite element Galerkin method for the nonstationary Navier-Stokes equations, I: Spatial discretization, J. Comput. Math., 22 (2004), 21-32.
|
[21] |
Y. N. He and K. M. Liu, A multi-level finite element method in space-time for the Navier-Stokes equations, Numer. Meth. PDEs., 21 (2005), 1052-1078. Google Scholar |
[22] |
Y. N. He, H. L. Miao and C. F. Ren, A two-level finite element Galerkin method for the nonstationary Navier-Stokes equations, Ⅱ: Time discretization, J. Comput. Math., 22 (2004), 33-54. Google Scholar |
[23] |
Y. N. He and W. W. Sun,
Stability and convergence of the Crank-Nicolson/Adams-Bashforth scheme for the time-dependent Navier-Stokes equations, SIAM J. Numer. Anal., 45 (2007), 837-869.
doi: 10.1137/050639910. |
[24] |
F. Hecht,
New development in Freefem++, J. Numer. Math., 20 (2012), 251-266.
doi: 10.1515/jnum-2012-0013. |
[25] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin-New York, 1981. |
[26] |
T. J. R. Hughes,
Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid-scale models, bubbles and the origins of stabilized methods, Comput. Methods Appl. Mech. Engrg., 127 (1995), 387-401.
doi: 10.1016/0045-7825(95)00844-9. |
[27] |
T. J. R. Hughes, L. Mazzei and K. E. Jansen,
Large eddy simulation and the variational multiscale method, Comput. Vis. Sci., 3 (2000), 47-59.
doi: 10.1007/s007910050051. |
[28] |
V. John, Finite Element Methods for Incompressible Flow Problems, Springer Series in Computational Mathematics, 51. Springer, Cham, 2016.
doi: 10.1007/978-3-319-45750-5. |
[29] |
A. Labovschii,
A defect correction method for the time-dependent Navier-Stokes equations, Numer. Meth. PDEs., 25 (2009), 1-25.
doi: 10.1002/num.20329. |
[30] |
W. Layton,
A connection between subgrid scale eddy viscosity and mixed methods, Appl. Math. Comput., 133 (2002), 147-157.
doi: 10.1016/S0096-3003(01)00228-4. |
[31] |
W. Layton, H. K. Lee and J. Peterson,
A defect-correction method for the incompressible Navier-Stokes equations, Appl. Math. Comput., 129 (2002), 1-19.
doi: 10.1016/S0096-3003(01)00026-1. |
[32] |
M. A. Olshanskii,
Two-level method and some a priori estimates in unsteady Navier-Stokes calculations, J. Comput. Appl. Math., 104 (1999), 173-191.
doi: 10.1016/S0377-0427(99)00056-4. |
[33] |
Y. Q. Shang,
A two-level subgrid stabilized Oseen iterative method for the steady Navier-Stokes equations, J. Comput. Phys., 233 (2013), 210-226.
doi: 10.1016/j.jcp.2012.08.024. |
[34] |
J. Smagorinsky,
General circulation experiments with the primitive equations, I: The basic experiments, Mon. Wea. Rev., 91 (1963), 99-164.
doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2. |
[35] |
R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, North-Holland Publishing Co., Amsterdam 1984. |
[36] |
K. Wang,
A new defect correction method for the Navier-Stokes equations at high Reynolds numbers, Appl. Math. Comput., 216 (2010), 3252-3264.
doi: 10.1016/j.amc.2010.04.050. |
[37] |
Y. Zhang and Y. N. He,
Assessment of subgrid-scale models for the incompressible Navier-Stokes equations, J. Comput. Appl. Math., 234 (2010), 593-604.
doi: 10.1016/j.cam.2009.12.051. |
show all references
References:
[1] |
H. Abboud, V. Girault and T. Sayah,
A second order accuracy for a full discretized time-dependent Navier-Stokes equations by a two-grid scheme, Numer. Math., 114 (2009), 189-231.
doi: 10.1007/s00211-009-0251-5. |
[2] |
R. A. Adams, Sobolev Spaces., Academic Press Inc., New York, 1975. |
[3] |
B. Ayuso, B. García-Archilla and J. Novo,
The postprocessed mixed finite-element method for the Navier-Stokes equations, SIAM J. Numer. Anal., 43 (2005), 1091-1111.
doi: 10.1137/040602821. |
[4] |
B. Ayuso, J. de Frutos and J. Novo,
Improving the accuracy of the mini-element approximation to Navier-Stokes equations, IMA J. Numer. Anal., 27 (2007), 198-218.
doi: 10.1093/imanum/drl010. |
[5] |
P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. |
[6] |
J. de Frutos, B. García-Archilla, V. John and J. Novo,
Analysis of the grad-div stabilization for the time-dependent Navier-Stokes equations with inf-sup stable finite elements, Adv. Comput. Math., 44 (2018), 195-225.
doi: 10.1007/s10444-017-9540-1. |
[7] |
J. de Frutos, B. García-Archilla and J. Novo,
Static two-grid mixed finite-element approximations to the Navier-Stokes equations, J. Sci. Comput., 52 (2012), 619-637.
doi: 10.1007/s10915-011-9562-7. |
[8] |
F. Durango and J. Novo,
Two-grid mixed finite-element approximations to the Navier-Stokes equations based on a Newton-type step, J. Sci. Comput., 74 (2018), 456-473.
doi: 10.1007/s10915-017-0447-2. |
[9] |
H. C. Elman, D. J. Silvester and A. J. Wathen, Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics, Oxford University Press, New York, 2005.
![]() |
[10] |
B. García-Archilla, J. Novo and E. S. Titi,
Postprocessing the Galerkin method: A novel approach to approximate iunertial manifolds, SIAM J. Numer. Anal., 35 (1998), 941-972.
doi: 10.1137/S0036142995296096. |
[11] |
B. García-Archilla, J. Novo and E. S. Titi,
An approximate inertial manifold approach to postprocessing Galerkin methods for the Navier-Stokes equations, Math. Comp., 68 (1999), 893-911.
doi: 10.1090/S0025-5718-99-01057-1. |
[12] |
B. García-Archilla and E. S. Titi,
Postprocessing the Galerkin method: the finite-element case, SIAM J. Numer. Anal., 37 (2000), 470-499.
doi: 10.1137/S0036142998335893. |
[13] |
V. Girault and J.-L. Lions,
Two-grid finite element scheme for the transient Navier-Stokes problem, M2AN Math. Model. Numer. Anal., 35 (2001), 945-980.
doi: 10.1051/m2an:2001145. |
[14] |
V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, Springer-Verlag, Berlin Heidelberg, 1986.
doi: 10.1007/978-3-642-61623-5. |
[15] |
R. Glowinski, Finite Element Methods for Incompressible Viscous Flow, Handbook of numerical analysis, Vol. IX, 3–1176, Handb. Numer. Anal., IX, North-Holland, Amsterdam, 2003. |
[16] |
J.-L. Guermond,
Stabilization of Galerkin approximations of transport equations by subgrid modeling, M2AN Math. Model. Numer. Anal., 33 (1999), 1293-1316.
doi: 10.1051/m2an:1999145. |
[17] |
J.-L. Guermond, Subgrid stabilization of Galerkin approximations of linear contraction semi-groups of class $C^0$ in Hilbert spaces, Numer. Meth. PDEs., 17 (2001), 1-25. Google Scholar |
[18] |
J.-L. Guermond, A. Marra and L. Quartapelle, Subgrid stabilized projection method for 2D unsteady flows at high Reynolds numbers, Comput. Meth. Appl. Mech. Engrg., 195)(2006), 5857–5876.
doi: 10.1016/j.cma.2005.08.016. |
[19] |
Y. N. He,
Two-level method based on finite element and Crank-Nicolson extrapolation for the time-dependent Navier-Stokes equations, SIAM J. Numer. Anal., 41 (2003), 1263-1285.
doi: 10.1137/S0036142901385659. |
[20] |
Y. N. He,
A two-level finite element Galerkin method for the nonstationary Navier-Stokes equations, I: Spatial discretization, J. Comput. Math., 22 (2004), 21-32.
|
[21] |
Y. N. He and K. M. Liu, A multi-level finite element method in space-time for the Navier-Stokes equations, Numer. Meth. PDEs., 21 (2005), 1052-1078. Google Scholar |
[22] |
Y. N. He, H. L. Miao and C. F. Ren, A two-level finite element Galerkin method for the nonstationary Navier-Stokes equations, Ⅱ: Time discretization, J. Comput. Math., 22 (2004), 33-54. Google Scholar |
[23] |
Y. N. He and W. W. Sun,
Stability and convergence of the Crank-Nicolson/Adams-Bashforth scheme for the time-dependent Navier-Stokes equations, SIAM J. Numer. Anal., 45 (2007), 837-869.
doi: 10.1137/050639910. |
[24] |
F. Hecht,
New development in Freefem++, J. Numer. Math., 20 (2012), 251-266.
doi: 10.1515/jnum-2012-0013. |
[25] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin-New York, 1981. |
[26] |
T. J. R. Hughes,
Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid-scale models, bubbles and the origins of stabilized methods, Comput. Methods Appl. Mech. Engrg., 127 (1995), 387-401.
doi: 10.1016/0045-7825(95)00844-9. |
[27] |
T. J. R. Hughes, L. Mazzei and K. E. Jansen,
Large eddy simulation and the variational multiscale method, Comput. Vis. Sci., 3 (2000), 47-59.
doi: 10.1007/s007910050051. |
[28] |
V. John, Finite Element Methods for Incompressible Flow Problems, Springer Series in Computational Mathematics, 51. Springer, Cham, 2016.
doi: 10.1007/978-3-319-45750-5. |
[29] |
A. Labovschii,
A defect correction method for the time-dependent Navier-Stokes equations, Numer. Meth. PDEs., 25 (2009), 1-25.
doi: 10.1002/num.20329. |
[30] |
W. Layton,
A connection between subgrid scale eddy viscosity and mixed methods, Appl. Math. Comput., 133 (2002), 147-157.
doi: 10.1016/S0096-3003(01)00228-4. |
[31] |
W. Layton, H. K. Lee and J. Peterson,
A defect-correction method for the incompressible Navier-Stokes equations, Appl. Math. Comput., 129 (2002), 1-19.
doi: 10.1016/S0096-3003(01)00026-1. |
[32] |
M. A. Olshanskii,
Two-level method and some a priori estimates in unsteady Navier-Stokes calculations, J. Comput. Appl. Math., 104 (1999), 173-191.
doi: 10.1016/S0377-0427(99)00056-4. |
[33] |
Y. Q. Shang,
A two-level subgrid stabilized Oseen iterative method for the steady Navier-Stokes equations, J. Comput. Phys., 233 (2013), 210-226.
doi: 10.1016/j.jcp.2012.08.024. |
[34] |
J. Smagorinsky,
General circulation experiments with the primitive equations, I: The basic experiments, Mon. Wea. Rev., 91 (1963), 99-164.
doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2. |
[35] |
R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, North-Holland Publishing Co., Amsterdam 1984. |
[36] |
K. Wang,
A new defect correction method for the Navier-Stokes equations at high Reynolds numbers, Appl. Math. Comput., 216 (2010), 3252-3264.
doi: 10.1016/j.amc.2010.04.050. |
[37] |
Y. Zhang and Y. N. He,
Assessment of subgrid-scale models for the incompressible Navier-Stokes equations, J. Comput. Appl. Math., 234 (2010), 593-604.
doi: 10.1016/j.cam.2009.12.051. |





rate | rate | |||
0.00217733 | - | 0.000992868 | - | |
0.000529178 | 3.48866 | 0.00016355 | 4.44792 | |
0.000202786 | 3.33415 | 4.4057e-05 | 4.55932 | |
9.95046e-05 | 3.19053 | 1.6059e-05 | 4.52272 | |
5.64563e-05 | 3.10845 | 7.11378e-06 | 4.46594 | |
3.52027e-05 | 3.06417 | 3.57486e-06 | 4.46387 | |
2.34586e-05 | 3.03961 | 1.94755e-06 | 4.54840 |
rate | rate | |||
0.00217733 | - | 0.000992868 | - | |
0.000529178 | 3.48866 | 0.00016355 | 4.44792 | |
0.000202786 | 3.33415 | 4.4057e-05 | 4.55932 | |
9.95046e-05 | 3.19053 | 1.6059e-05 | 4.52272 | |
5.64563e-05 | 3.10845 | 7.11378e-06 | 4.46594 | |
3.52027e-05 | 3.06417 | 3.57486e-06 | 4.46387 | |
2.34586e-05 | 3.03961 | 1.94755e-06 | 4.54840 |
rate | rate | |||
0.0508249 | - | 0.018681 | - | |
0.0226069 | 1.99803 | 0.00493605 | 3.28251 | |
0.0127961 | 1.97827 | 0.0018011 | 3.50444 | |
0.00823732 | 1.97391 | 0.000813042 | 3.56439 | |
0.00574502 | 1.97641 | 0.000424348 | 3.56638 | |
0.00423382 | 1.98007 | 0.000245707 | 3.54467 | |
0.00324871 | 1.9834 | 0.000153708 | 3.51292 |
rate | rate | |||
0.0508249 | - | 0.018681 | - | |
0.0226069 | 1.99803 | 0.00493605 | 3.28251 | |
0.0127961 | 1.97827 | 0.0018011 | 3.50444 | |
0.00823732 | 1.97391 | 0.000813042 | 3.56439 | |
0.00574502 | 1.97641 | 0.000424348 | 3.56638 | |
0.00423382 | 1.98007 | 0.000245707 | 3.54467 | |
0.00324871 | 1.9834 | 0.000153708 | 3.51292 |
rate | rate | |||
0.16059 | - | 0.00173177 | - | |
0.0713664 | 2.00024 | 0.00038025 | 3.7391 | |
0.0401428 | 2.00007 | 0.000124192 | 3.88971 | |
0.0256912 | 2.00003 | 5.17408e-05 | 3.92385 | |
0.0178411 | 2.00001 | 2.55797e-05 | 3.86376 | |
0.0131077 | 2 | 1.46068e-05 | 3.63484 | |
0.0100356 | 2 | 9.62881e-06 | 3.12082 |
rate | rate | |||
0.16059 | - | 0.00173177 | - | |
0.0713664 | 2.00024 | 0.00038025 | 3.7391 | |
0.0401428 | 2.00007 | 0.000124192 | 3.88971 | |
0.0256912 | 2.00003 | 5.17408e-05 | 3.92385 | |
0.0178411 | 2.00001 | 2.55797e-05 | 3.86376 | |
0.0131077 | 2 | 1.46068e-05 | 3.63484 | |
0.0100356 | 2 | 9.62881e-06 | 3.12082 |
S-FEM | 7.8146 | 17.1435 | 30.0884 | 46.7738 | 69.0377 | 93.4098 | 122.664 |
SP-FEM | 7.8334 | 17.1858 | 30.1654 | 46.8942 | 69.2128 | 93.6512 | 122.973 |
S-FEM | 7.8146 | 17.1435 | 30.0884 | 46.7738 | 69.0377 | 93.4098 | 122.664 |
SP-FEM | 7.8334 | 17.1858 | 30.1654 | 46.8942 | 69.2128 | 93.6512 | 122.973 |
Method | CPU | ||||
Present | 5.41056e-08 | 6.5595e-06 | 5.55593e-06 | 803.389 | |
4.25516e-07 | 7.98607e-06 | 5.27302e-06 | 805.513 | ||
4.52353e-06 | 4.51348e-05 | 5.19797e-06 | 820.973 | ||
4.5248e-05 | 0.000441765 | 5.1803e-06 | 800.503 | ||
0.000398027 | 0.00350141 | 5.16923e-06 | 779.926 | ||
0.00179621 | 0.0145128 | 5.17307e-06 | 779.998 | ||
0.00276865 | 0.022324 | 5.1727e-06 | 783.388 | ||
Ref. [3] | 5.18142e-08 | 6.5516e-06 | 5.54746e-06 | 718.683 | |
4.14903e-07 | 7.36316e-06 | 5.25698e-06 | 718.624 | ||
4.51539e-06 | 3.36283e-05 | 5.20106e-06 | 722.98 | ||
4.59266e-05 | 0.000333893 | 5.17257e-06 | 732.069 | ||
0.000460089 | 0.00334075 | 5.16772e-06 | 740.576 | ||
0.00460161 | 0.0334164 | 5.16846e-06 | 735.447 | ||
0.0460168 | 0.334242 | 3.85961e-05 | 738.079 |
Method | CPU | ||||
Present | 5.41056e-08 | 6.5595e-06 | 5.55593e-06 | 803.389 | |
4.25516e-07 | 7.98607e-06 | 5.27302e-06 | 805.513 | ||
4.52353e-06 | 4.51348e-05 | 5.19797e-06 | 820.973 | ||
4.5248e-05 | 0.000441765 | 5.1803e-06 | 800.503 | ||
0.000398027 | 0.00350141 | 5.16923e-06 | 779.926 | ||
0.00179621 | 0.0145128 | 5.17307e-06 | 779.998 | ||
0.00276865 | 0.022324 | 5.1727e-06 | 783.388 | ||
Ref. [3] | 5.18142e-08 | 6.5516e-06 | 5.54746e-06 | 718.683 | |
4.14903e-07 | 7.36316e-06 | 5.25698e-06 | 718.624 | ||
4.51539e-06 | 3.36283e-05 | 5.20106e-06 | 722.98 | ||
4.59266e-05 | 0.000333893 | 5.17257e-06 | 732.069 | ||
0.000460089 | 0.00334075 | 5.16772e-06 | 740.576 | ||
0.00460161 | 0.0334164 | 5.16846e-06 | 735.447 | ||
0.0460168 | 0.334242 | 3.85961e-05 | 738.079 |
Method | CPU | ||||
Present | 1.88993e-06 | 0.000148371 | 0.000266744 | 23.2019 | |
1.80946e-05 | 0.000208457 | 0.000266742 | 23.161 | ||
0.00016378 | 0.00141076 | 0.000266724 | 23.188 | ||
0.00100617 | 0.00903462 | 0.000266679 | 23.2399 | ||
0.00208262 | 0.0218984 | 0.000266653 | 23.0764 | ||
0.00233199 | 0.0255756 | 0.000266624 | 23.7189 | ||
0.00236024 | 0.0260096 | 0.000266632 | 24.2022 | ||
Ref. [3] | 1.86059e-06 | 0.000148096 | 0.000266745 | 21.2937 | |
1.86303e-05 | 0.000193416 | 0.000266733 | 21.2211 | ||
0.00018424 | 0.00133237 | 0.000266741 | 21.1333 | ||
0.00183899 | 0.0133119 | 0.000266752 | 21.1595 | ||
0.0183863 | 0.133176 | 0.000266773 | 21.1786 | ||
0.183859 | 1.3318 | 0.000267064 | 21.1574 | ||
1.83858 | 13.318 | 0.000272255 | 21.88 |
Method | CPU | ||||
Present | 1.88993e-06 | 0.000148371 | 0.000266744 | 23.2019 | |
1.80946e-05 | 0.000208457 | 0.000266742 | 23.161 | ||
0.00016378 | 0.00141076 | 0.000266724 | 23.188 | ||
0.00100617 | 0.00903462 | 0.000266679 | 23.2399 | ||
0.00208262 | 0.0218984 | 0.000266653 | 23.0764 | ||
0.00233199 | 0.0255756 | 0.000266624 | 23.7189 | ||
0.00236024 | 0.0260096 | 0.000266632 | 24.2022 | ||
Ref. [3] | 1.86059e-06 | 0.000148096 | 0.000266745 | 21.2937 | |
1.86303e-05 | 0.000193416 | 0.000266733 | 21.2211 | ||
0.00018424 | 0.00133237 | 0.000266741 | 21.1333 | ||
0.00183899 | 0.0133119 | 0.000266752 | 21.1595 | ||
0.0183863 | 0.133176 | 0.000266773 | 21.1786 | ||
0.183859 | 1.3318 | 0.000267064 | 21.1574 | ||
1.83858 | 13.318 | 0.000272255 | 21.88 |
[1] |
Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095 |
[2] |
Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241 |
[3] |
Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001 |
[4] |
Wenya Qi, Padmanabhan Seshaiyer, Junping Wang. A four-field mixed finite element method for Biot's consolidation problems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020127 |
[5] |
Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020348 |
[6] |
Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020110 |
[7] |
Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020408 |
[8] |
Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142 |
[9] |
Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163 |
[10] |
Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096 |
[11] |
Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120 |
[12] |
Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097 |
[13] |
Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020352 |
[14] |
Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020126 |
[15] |
Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128 |
[16] |
Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234 |
[17] |
Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089 |
[18] |
Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 61-79. doi: 10.3934/dcdsb.2020351 |
[19] |
Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039 |
[20] |
Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141 |
2019 Impact Factor: 1.27
Tools
Article outline
Figures and Tables
[Back to Top]