doi: 10.3934/dcdsb.2020224

Revisit of the Peierls-Nabarro model for edge dislocations in Hilbert space

1. 

Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China

2. 

Department of Mathematics, Duke University, Durham NC 27708, USA

3. 

Department of Mathematics and Department of Physics, Duke University, Durham NC 27708, USA

4. 

Department of Mathematics, Purdue University, West Lafayette IN 47907, USA

Received  May 2020 Published  July 2020

In this paper, we revisit the mathematical validation of the Peierls–Nabarro (PN) models, which are multiscale models of dislocations that incorporate the detailed dislocation core structure. We focus on the static and dynamic PN models of an edge dislocation in Hilbert space. In a PN model, the total energy includes the elastic energy in the two half-space continua and a nonlinear potential energy, which is always infinite, across the slip plane. We revisit the relationship between the PN model in the full space and the reduced problem on the slip plane in terms of both governing equations and energy variations. The shear displacement jump is determined only by the reduced problem on the slip plane while the displacement fields in the two half spaces are determined by linear elasticity. We establish the existence and sharp regularities of classical solutions in Hilbert space. For both the reduced problem and the full PN model, we prove that a static solution is a global minimizer in a perturbed sense. We also show that there is a unique classical, global in time solution of the dynamic PN model.

Citation: Yuan Gao, Jian-Guo Liu, Tao Luo, Yang Xiang. Revisit of the Peierls-Nabarro model for edge dislocations in Hilbert space. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020224
References:
[1]

G. AlbertiG. Bouchitté and P. Seppecher, Un résultat de perturbations singulieres avec la norm $H^{1/2}$, C. R. Acad. Sci. Paris Sér. I Math., 319 (1994), 333-338.   Google Scholar

[2]

O. AlvarezP. HochY. Le Bouar and and R. Monneau, Dislocation dynamics: Short-time existence and uniqueness of the solution, Arch. Ration. Mech. Anal., 181 (2006), 449-504.  doi: 10.1007/s00205-006-0418-5.  Google Scholar

[3]

T. BlassI. FonsecaG. Leoni and M. Morandotti, Dynamics for systems of screw dislocations, SIAM J. Appl. Math., 75 (2015), 393-419.  doi: 10.1137/140980065.  Google Scholar

[4]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians Ⅱ: Existence, uniqueness, and qualitative properties of solutions, Trans. Am. Math. Soc., 367 (2015), 911-941.  doi: 10.1090/S0002-9947-2014-05906-0.  Google Scholar

[5]

X. Cabré and J. Solà-Morales, Layer solutions in a half-space for boundary reactions, Comm. Pure Appl. Math., 58 (2005), 1678-1732.  doi: 10.1002/cpa.20093.  Google Scholar

[6]

S. CacaceA. Chambolle and R. Monneau, A posteriori error estimates for the effective Hamiltonian of dislocation dynamics, Numer. Math., 121 (2012), 281-335.  doi: 10.1007/s00211-011-0430-z.  Google Scholar

[7]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260. doi: 10.1080/03605300600987306.  Google Scholar

[8]

P. Cermelli and G. Leoni, Renormalized energy and forces on dislocations, SIAM J. Math. Anal., 37 (2005), 1131-1160.  doi: 10.1137/040621636.  Google Scholar

[9]

X. Chen, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differ. Equ., 2 (1997), 125-160.   Google Scholar

[10]

S. ContiA. Garroni and S. Müller, Singular kernels, multiscale decomposition of microstructure, and dislocation models, Arch. Ration. Mech. Anal., 199 (2011), 779-819.  doi: 10.1007/s00205-010-0333-7.  Google Scholar

[11]

S. DaiY. Xiang and D. J. Srolovitz, Structure and energy of (111) low-angle twist boundaries in Al, Cu and Ni, Acta Mater., 61 (2013), 1327-1337.  doi: 10.1016/j.actamat.2012.11.010.  Google Scholar

[12]

S. DipierroA. Figalli and E. Valdinoci, Strongly nonlocal dislocation dynamics in crystals, Comm. Partial Differential Equations, 39 (2014), 2351-2387.  doi: 10.1080/03605302.2014.914536.  Google Scholar

[13]

S. DipierroG. Palatucci and E. Valdinoci, Dislocation dynamics in crystals: a macroscopic theory in a fractional Laplace setting, Comm. Math. Phys., 333 (2015), 1061-1105.  doi: 10.1007/s00220-014-2118-6.  Google Scholar

[14]

S. Dipierro, S. Patrizi and E. Valdinoci, Heteroclinic connections for nonlocal equations, Math. Models Methods Appl. Sci., 29 (2019), 2585–2636. arXiv: 1711.01491. doi: 10.1142/S0218202519500556.  Google Scholar

[15]

A. Z. FinoH. Ibrahim and R. Monneau, The Peierls-Nabarro model as a limit of a Frenkel-Kontorova model, J. Differ. Equations, 252 (2012), 258-293.  doi: 10.1016/j.jde.2011.08.007.  Google Scholar

[16]

J. Frenkel, Theory of the elastic limits and rigidity of crystalline bodies, Z. Phys., 37 (1926), 572-609.   Google Scholar

[17]

I. FonsecaN. FuscoG. Leoni and M. Morini, A model for dislocations in epitaxially strained elastic films, J. Math. Pures Appl., 111 (2018), 126-160.  doi: 10.1016/j.matpur.2017.09.001.  Google Scholar

[18]

I. FonsecaG. Leoni and M. Morini, Equilibria and dislocations in epitaxial growth, Nonlinear Anal., 154 (2017), 88-121.  doi: 10.1016/j.na.2016.10.013.  Google Scholar

[19]

I. FonsecaG. Leoni and X. Y. Lu, Regularity in time for weak solutions of a continuum model for epitaxial growth with elasticity on vicinal surfaces, Commun. Part. Diff. Eq., 40 (2015), 1942-1957.  doi: 10.1080/03605302.2015.1045074.  Google Scholar

[20]

A. GarroniG. Leoni and M. Ponsiglione, Gradient theory for plasticity via homogenization of discrete dislocations, J. Eur. Math. Soc., 12 (2010), 1231-1266.  doi: 10.4171/JEMS/228.  Google Scholar

[21]

A. Garroni and S. Müller, $\Gamma$-limit of a phase-field model of dislocations, SIAM J. Math. Anal., 36 (2005), 1943-1964.  doi: 10.1137/S003614100343768X.  Google Scholar

[22]

M. del M. González and R. Monneau, Slow motion of particle systems as a limit of a reaction-diffusion equation with half-Laplacian in dimension one, Discrete Contin. Dyn. Syst., 32 (2012), 1255-1286.  doi: 10.3934/dcds.2012.32.1255.  Google Scholar

[23]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840. Springer-Verlag, Berlin-New York, 1981.  Google Scholar

[24]

J. P. Hirth and J. Lothe, Theory of Dislocations, John Wiley, New York, 2nd edition, 1982. Google Scholar

[25]

E. Kaxiras and M. S. Duesbery, Free energies of generalized stacking faults in Si and implications for the brittle-ductile transition, Phys. Rev. Lett., 70 (1993), 3752-3755.  doi: 10.1103/PhysRevLett.70.3752.  Google Scholar

[26]

M. KoslowskiA. M. Cuitiño and M. Ortiz, A phase-field theory of dislocation dynamics, strain hardening and hysteresis in ductile single crystals, J. Mech. Phys. Solids, 50 (2002), 2597-2635.  doi: 10.1016/S0022-5096(02)00037-6.  Google Scholar

[27]

X. Y. Lu, On the solutions of a $2+1$-dimensional model for epitaxial growth with axial symmetry, J. Nonlinear Sci., 28 (2018), 807-831.  doi: 10.1007/s00332-017-9428-8.  Google Scholar

[28]

G. LuN. KioussisV. V. Bulatov and E. Kaxiras, Generalized-stacking-fault energy surface and dislocation properties of aluminum, Phys. Rev. B, 62 (2000), 3099-3108.  doi: 10.1103/PhysRevB.62.3099.  Google Scholar

[29]

T. LuoP. Ming and Y. Xiang, From atomistic model to the Peierls-Nabarro model with Gamma-surface for dislocations, Arch. Ration. Mech. Anal., 230 (2018), 735-781.  doi: 10.1007/s00205-018-1257-x.  Google Scholar

[30]

F. R. N. Nabarro, Dislocations in a simple cubic lattice, Proc. Phys. Soc., 59 (1947), 256-272.  doi: 10.1088/0959-5309/59/2/309.  Google Scholar

[31]

G. PalatucciO. Savin and E. Valdinoci, Local and global minimizers for a variational energy involving a fractional norm, Ann. Mat. Pura Appl., 192 (2013), 673-718.  doi: 10.1007/s10231-011-0243-9.  Google Scholar

[32]

S. Patrizi and E. Valdinoci, Crystal dislocations with different orientations and collisions, Arch. Rational Mech. Anal., 217 (2015), 231-261.  doi: 10.1007/s00205-014-0832-z.  Google Scholar

[33]

S. Patrizi and E. Valdinoci, Relaxation times for atom dislocations in crystals, Calc. Var. Partial Differ. Equ., 55 (2016), 44 pp. doi: 10.1007/s00526-016-1000-0.  Google Scholar

[34]

R. Peierls, The size of a dislocation, Selected Scientific Papers of Sir Rudolf Peierls, (1997), 273–276. doi: 10.1142/9789812795779_0032.  Google Scholar

[35]

G. Schoeck, The generalized Peierls-Nabarro model, Phil. Mag. A, 69 (1994), 1085-1095.  doi: 10.1080/01418619408242240.  Google Scholar

[36]

C. ShenJ. Li and Y. Wang, Predicting structure and energy of dislocations and grain boundaries, Acta Mater., 74 (2014), 125-131.  doi: 10.1016/j.actamat.2014.03.065.  Google Scholar

[37]

C. Shen and Y. Wang, Incorporation of $\gamma$-surface to phase field model of dislocations: Simulating dislocation dissociation in fcc crystals, Acta Mater., 52 (2004), 683-691.   Google Scholar

[38] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton university press, 1970.   Google Scholar
[39]

V. Vitek, Intrinsic stacking faults in body-centred cubic crystals, Philos. Mag., 18 (1968), 773-786.  doi: 10.1080/14786436808227500.  Google Scholar

[40]

V. Volterra, Sur l'équilibre des corps élastiques multiplement connexes, Ann. Sci. École Norm. Sup., 24 (1907), 401-517.  doi: 10.24033/asens.583.  Google Scholar

[41]

Y. XiangL. T. ChengD. J. Srolovitz and W. E, A level set method for dislocation dynamics, Acta Mater., 51 (2003), 5499-5518.   Google Scholar

[42]

Y. Xiang, Modeling dislocations at different scales, Commun. Comput. Phys., 1 (2006), 383-424.   Google Scholar

[43]

Y. XiangH. WeiP. Ming and W. E, A generalized Peierls–Nabarro model for curved dislocations and core structures of dislocation loops in Al and Cu, Acta Mater., 56 (2008), 1447-1460.  doi: 10.1016/j.actamat.2007.11.033.  Google Scholar

[44] A. Zangwill, Physics at Surfaces, Cambridge University Press, New York, 1988.  doi: 10.1017/CBO9780511622564.  Google Scholar
[45]

S. Zhou, J. Han, S. Dai, J. Sun and D. J. Srolovitz, van der Waals bilayer energetics: Generalized stacking-fault energy of graphene, boron nitride, and graphene/boron nitride bilayers, Phys. Rev. B, $\texttt92$ (2015), 155438. doi: 10.1103/PhysRevB.92.155438.  Google Scholar

show all references

References:
[1]

G. AlbertiG. Bouchitté and P. Seppecher, Un résultat de perturbations singulieres avec la norm $H^{1/2}$, C. R. Acad. Sci. Paris Sér. I Math., 319 (1994), 333-338.   Google Scholar

[2]

O. AlvarezP. HochY. Le Bouar and and R. Monneau, Dislocation dynamics: Short-time existence and uniqueness of the solution, Arch. Ration. Mech. Anal., 181 (2006), 449-504.  doi: 10.1007/s00205-006-0418-5.  Google Scholar

[3]

T. BlassI. FonsecaG. Leoni and M. Morandotti, Dynamics for systems of screw dislocations, SIAM J. Appl. Math., 75 (2015), 393-419.  doi: 10.1137/140980065.  Google Scholar

[4]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians Ⅱ: Existence, uniqueness, and qualitative properties of solutions, Trans. Am. Math. Soc., 367 (2015), 911-941.  doi: 10.1090/S0002-9947-2014-05906-0.  Google Scholar

[5]

X. Cabré and J. Solà-Morales, Layer solutions in a half-space for boundary reactions, Comm. Pure Appl. Math., 58 (2005), 1678-1732.  doi: 10.1002/cpa.20093.  Google Scholar

[6]

S. CacaceA. Chambolle and R. Monneau, A posteriori error estimates for the effective Hamiltonian of dislocation dynamics, Numer. Math., 121 (2012), 281-335.  doi: 10.1007/s00211-011-0430-z.  Google Scholar

[7]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260. doi: 10.1080/03605300600987306.  Google Scholar

[8]

P. Cermelli and G. Leoni, Renormalized energy and forces on dislocations, SIAM J. Math. Anal., 37 (2005), 1131-1160.  doi: 10.1137/040621636.  Google Scholar

[9]

X. Chen, Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differ. Equ., 2 (1997), 125-160.   Google Scholar

[10]

S. ContiA. Garroni and S. Müller, Singular kernels, multiscale decomposition of microstructure, and dislocation models, Arch. Ration. Mech. Anal., 199 (2011), 779-819.  doi: 10.1007/s00205-010-0333-7.  Google Scholar

[11]

S. DaiY. Xiang and D. J. Srolovitz, Structure and energy of (111) low-angle twist boundaries in Al, Cu and Ni, Acta Mater., 61 (2013), 1327-1337.  doi: 10.1016/j.actamat.2012.11.010.  Google Scholar

[12]

S. DipierroA. Figalli and E. Valdinoci, Strongly nonlocal dislocation dynamics in crystals, Comm. Partial Differential Equations, 39 (2014), 2351-2387.  doi: 10.1080/03605302.2014.914536.  Google Scholar

[13]

S. DipierroG. Palatucci and E. Valdinoci, Dislocation dynamics in crystals: a macroscopic theory in a fractional Laplace setting, Comm. Math. Phys., 333 (2015), 1061-1105.  doi: 10.1007/s00220-014-2118-6.  Google Scholar

[14]

S. Dipierro, S. Patrizi and E. Valdinoci, Heteroclinic connections for nonlocal equations, Math. Models Methods Appl. Sci., 29 (2019), 2585–2636. arXiv: 1711.01491. doi: 10.1142/S0218202519500556.  Google Scholar

[15]

A. Z. FinoH. Ibrahim and R. Monneau, The Peierls-Nabarro model as a limit of a Frenkel-Kontorova model, J. Differ. Equations, 252 (2012), 258-293.  doi: 10.1016/j.jde.2011.08.007.  Google Scholar

[16]

J. Frenkel, Theory of the elastic limits and rigidity of crystalline bodies, Z. Phys., 37 (1926), 572-609.   Google Scholar

[17]

I. FonsecaN. FuscoG. Leoni and M. Morini, A model for dislocations in epitaxially strained elastic films, J. Math. Pures Appl., 111 (2018), 126-160.  doi: 10.1016/j.matpur.2017.09.001.  Google Scholar

[18]

I. FonsecaG. Leoni and M. Morini, Equilibria and dislocations in epitaxial growth, Nonlinear Anal., 154 (2017), 88-121.  doi: 10.1016/j.na.2016.10.013.  Google Scholar

[19]

I. FonsecaG. Leoni and X. Y. Lu, Regularity in time for weak solutions of a continuum model for epitaxial growth with elasticity on vicinal surfaces, Commun. Part. Diff. Eq., 40 (2015), 1942-1957.  doi: 10.1080/03605302.2015.1045074.  Google Scholar

[20]

A. GarroniG. Leoni and M. Ponsiglione, Gradient theory for plasticity via homogenization of discrete dislocations, J. Eur. Math. Soc., 12 (2010), 1231-1266.  doi: 10.4171/JEMS/228.  Google Scholar

[21]

A. Garroni and S. Müller, $\Gamma$-limit of a phase-field model of dislocations, SIAM J. Math. Anal., 36 (2005), 1943-1964.  doi: 10.1137/S003614100343768X.  Google Scholar

[22]

M. del M. González and R. Monneau, Slow motion of particle systems as a limit of a reaction-diffusion equation with half-Laplacian in dimension one, Discrete Contin. Dyn. Syst., 32 (2012), 1255-1286.  doi: 10.3934/dcds.2012.32.1255.  Google Scholar

[23]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840. Springer-Verlag, Berlin-New York, 1981.  Google Scholar

[24]

J. P. Hirth and J. Lothe, Theory of Dislocations, John Wiley, New York, 2nd edition, 1982. Google Scholar

[25]

E. Kaxiras and M. S. Duesbery, Free energies of generalized stacking faults in Si and implications for the brittle-ductile transition, Phys. Rev. Lett., 70 (1993), 3752-3755.  doi: 10.1103/PhysRevLett.70.3752.  Google Scholar

[26]

M. KoslowskiA. M. Cuitiño and M. Ortiz, A phase-field theory of dislocation dynamics, strain hardening and hysteresis in ductile single crystals, J. Mech. Phys. Solids, 50 (2002), 2597-2635.  doi: 10.1016/S0022-5096(02)00037-6.  Google Scholar

[27]

X. Y. Lu, On the solutions of a $2+1$-dimensional model for epitaxial growth with axial symmetry, J. Nonlinear Sci., 28 (2018), 807-831.  doi: 10.1007/s00332-017-9428-8.  Google Scholar

[28]

G. LuN. KioussisV. V. Bulatov and E. Kaxiras, Generalized-stacking-fault energy surface and dislocation properties of aluminum, Phys. Rev. B, 62 (2000), 3099-3108.  doi: 10.1103/PhysRevB.62.3099.  Google Scholar

[29]

T. LuoP. Ming and Y. Xiang, From atomistic model to the Peierls-Nabarro model with Gamma-surface for dislocations, Arch. Ration. Mech. Anal., 230 (2018), 735-781.  doi: 10.1007/s00205-018-1257-x.  Google Scholar

[30]

F. R. N. Nabarro, Dislocations in a simple cubic lattice, Proc. Phys. Soc., 59 (1947), 256-272.  doi: 10.1088/0959-5309/59/2/309.  Google Scholar

[31]

G. PalatucciO. Savin and E. Valdinoci, Local and global minimizers for a variational energy involving a fractional norm, Ann. Mat. Pura Appl., 192 (2013), 673-718.  doi: 10.1007/s10231-011-0243-9.  Google Scholar

[32]

S. Patrizi and E. Valdinoci, Crystal dislocations with different orientations and collisions, Arch. Rational Mech. Anal., 217 (2015), 231-261.  doi: 10.1007/s00205-014-0832-z.  Google Scholar

[33]

S. Patrizi and E. Valdinoci, Relaxation times for atom dislocations in crystals, Calc. Var. Partial Differ. Equ., 55 (2016), 44 pp. doi: 10.1007/s00526-016-1000-0.  Google Scholar

[34]

R. Peierls, The size of a dislocation, Selected Scientific Papers of Sir Rudolf Peierls, (1997), 273–276. doi: 10.1142/9789812795779_0032.  Google Scholar

[35]

G. Schoeck, The generalized Peierls-Nabarro model, Phil. Mag. A, 69 (1994), 1085-1095.  doi: 10.1080/01418619408242240.  Google Scholar

[36]

C. ShenJ. Li and Y. Wang, Predicting structure and energy of dislocations and grain boundaries, Acta Mater., 74 (2014), 125-131.  doi: 10.1016/j.actamat.2014.03.065.  Google Scholar

[37]

C. Shen and Y. Wang, Incorporation of $\gamma$-surface to phase field model of dislocations: Simulating dislocation dissociation in fcc crystals, Acta Mater., 52 (2004), 683-691.   Google Scholar

[38] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton university press, 1970.   Google Scholar
[39]

V. Vitek, Intrinsic stacking faults in body-centred cubic crystals, Philos. Mag., 18 (1968), 773-786.  doi: 10.1080/14786436808227500.  Google Scholar

[40]

V. Volterra, Sur l'équilibre des corps élastiques multiplement connexes, Ann. Sci. École Norm. Sup., 24 (1907), 401-517.  doi: 10.24033/asens.583.  Google Scholar

[41]

Y. XiangL. T. ChengD. J. Srolovitz and W. E, A level set method for dislocation dynamics, Acta Mater., 51 (2003), 5499-5518.   Google Scholar

[42]

Y. Xiang, Modeling dislocations at different scales, Commun. Comput. Phys., 1 (2006), 383-424.   Google Scholar

[43]

Y. XiangH. WeiP. Ming and W. E, A generalized Peierls–Nabarro model for curved dislocations and core structures of dislocation loops in Al and Cu, Acta Mater., 56 (2008), 1447-1460.  doi: 10.1016/j.actamat.2007.11.033.  Google Scholar

[44] A. Zangwill, Physics at Surfaces, Cambridge University Press, New York, 1988.  doi: 10.1017/CBO9780511622564.  Google Scholar
[45]

S. Zhou, J. Han, S. Dai, J. Sun and D. J. Srolovitz, van der Waals bilayer energetics: Generalized stacking-fault energy of graphene, boron nitride, and graphene/boron nitride bilayers, Phys. Rev. B, $\texttt92$ (2015), 155438. doi: 10.1103/PhysRevB.92.155438.  Google Scholar

Figure 1.  Schematic illustration of the PN model for an edge dislocation. The dislocation locates along the $ z $ axis with $ +z $ direction, and its slip plane is the $ y = 0 $ plane. $ \mathbf b $ is the Burgers vector and $ d $ is the interplanar distance in the direction normal to the slip plane. The black dots and red circles show the locations of atoms of the two atomic planes $ y = 0^+ $ and $ y = 0^- $ in the lattice with the dislocation and in the reference states before elastic deformation, respectively, based on a simple cubic lattice. The Burgers vector enclosed by a loop $ L $ enclosing the dislocation is $ \mathbf b_L = \oint_L \,\mathrm{d} \mathbf u $
[1]

Fuensanta Andrés, Julio Muñoz, Jesús Rosado. Optimal design problems governed by the nonlocal $ p $-Laplacian equation. Mathematical Control & Related Fields, 2021, 11 (1) : 119-141. doi: 10.3934/mcrf.2020030

[2]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[3]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[4]

Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365

[5]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[6]

Tadahiro Oh, Yuzhao Wang. On global well-posedness of the modified KdV equation in modulation spaces. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2020393

[7]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[8]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[9]

Pengyan Ding, Zhijian Yang. Well-posedness and attractor for a strongly damped wave equation with supercritical nonlinearity on $ \mathbb{R}^{N} $. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021006

[10]

Mario Bukal. Well-posedness and convergence of a numerical scheme for the corrected Derrida-Lebowitz-Speer-Spohn equation using the Hellinger distance. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021001

[11]

Erica Ipocoana, Andrea Zafferi. Further regularity and uniqueness results for a non-isothermal Cahn-Hilliard equation. Communications on Pure & Applied Analysis, 2021, 20 (2) : 763-782. doi: 10.3934/cpaa.2020289

[12]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[13]

Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021002

[14]

Xiuli Xu, Xueke Pu. Optimal convergence rates of the magnetohydrodynamic model for quantum plasmas with potential force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 987-1010. doi: 10.3934/dcdsb.2020150

[15]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[16]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[17]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

[18]

Bilel Elbetch, Tounsia Benzekri, Daniel Massart, Tewfik Sari. The multi-patch logistic equation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021025

[19]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[20]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (65)
  • HTML views (221)
  • Cited by (0)

Other articles
by authors

[Back to Top]