-
Previous Article
Input-to-state stability and Lyapunov functions with explicit domains for SIR model of infectious diseases
- DCDS-B Home
- This Issue
-
Next Article
Dynamic transitions of the Swift-Hohenberg equation with third-order dispersion
Invariant measures of stochastic delay lattice systems
1. | School of Mathematics, Shandong University, Jinan 250100, China |
2. | School of Mathematics and Information Science, Shandong Technology and Business University, Yantai, Shandong 264005, China |
3. | Department of Mathematics, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA |
This paper is concerned with the existence and uniqueness of invariant measures for infinite-dimensional stochastic delay lattice systems defined on the entire integer set. For Lipschitz drift and diffusion terms, we prove the existence of invariant measures of the systems by showing the tightness of a family of probability distributions of solutions in the space of continuous functions from a finite interval to an infinite-dimensional space, based on the idea of uniform tail-estimates, the technique of diadic division and the Arzela-Ascoli theorem. We also show the uniqueness of invariant measures when the Lipschitz coefficients of the nonlinear drift and diffusion terms are sufficiently small.
References:
[1] |
V. S. Afraimovich and V. I. Nekorkin,
Chaos of traveling waves in a discrete chain of diffusively coupled maps, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 4 (1994), 631-637.
doi: 10.1142/S0218127494000459. |
[2] |
P. W. Bates, X. Chen and A. Chmaj,
Traveling waves of bistable dynamics on a lattice, SIAM J. Math. Anal., 35 (2003), 520-546.
doi: 10.1137/S0036141000374002. |
[3] |
P. W. Bates and A. Chmaj,
On a discrete convolution model for phase transitions, Arch. Ration. Mech. Anal., 150 (1999), 281-305.
doi: 10.1007/s002050050189. |
[4] |
P. W. Bates, K. Lu and B. Wang,
Attractors for lattice dynamical systems, International J. Bifur. Chaos, 11 (2001), 143-153.
doi: 10.1142/S0218127401002031. |
[5] |
P. W. Bates, H. Lisei and K. Lu,
Attractors for stochastic lattice dynamical systems, Stochastics and Dynamics, 6 (2006), 1-21.
doi: 10.1142/S0219493706001621. |
[6] |
P. W. Bates, K. Lu and B. Wang,
Attractors of non-autonomous stochastic lattice systems in weighted spaces, Physica D, 289 (2014), 32-50.
doi: 10.1016/j.physd.2014.08.004. |
[7] |
J. Bell and C. Cosner,
Threshold behaviour and propagation for nonlinear differential-difference systems motivated by modeling myelinated axons, Quarterly Appl. Math., 42 (1984), 1-14.
doi: 10.1090/qam/736501. |
[8] |
W. J. Beyn and S. Y. Pilyugin,
Attractors of reaction diffusion systems on infinite lattices, J. Dyn. Differential Equations, 15 (2003), 485-515.
doi: 10.1023/B:JODY.0000009745.41889.30. |
[9] |
Z. Brzezniak, M. Ondrejat and J. Seidler,
Invariant measures for stochastic nonlinear beam and wave equations, J. Differential Equations, 260 (2016), 4157-4179.
doi: 10.1016/j.jde.2015.11.007. |
[10] |
Z. Brzezniak, E. Motyl and M. Ondrejat,
Invariant measure for the stochastic Navier-Stokes equations in unbounded 2D domains, Annals of Probability, 45 (2017), 3145-3201.
doi: 10.1214/16-AOP1133. |
[11] |
O. Butkovsky and M. Scheutzow,
Invariant measures for stochastic functional differential equations, Electron. J. Probab., 22 (2017), 1-23.
doi: 10.1214/17-EJP122. |
[12] |
T. Caraballo, M. J. Garrido-Atienza and B. Schmalfuss,
Exponential stability of stationary solutions for semilinear stochastic evolution equations with delays, Discret. Contin. Dyn. Syst., 18 (2007), 271-293.
doi: 10.3934/dcds.2007.18.271. |
[13] |
T. Caraballo, M. J. Garrido-Atienza and T. Taniguchi,
The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion, Nonlinear Anal., 74 (2011), 3671-3684.
doi: 10.1016/j.na.2011.02.047. |
[14] |
T. Caraballo and K. Lu,
Attractors for stochastic lattice dynamical systems with a multiplicative noise, Frontiers of Mathematics in China, 3 (2008), 317-335.
doi: 10.1007/s11464-008-0028-7. |
[15] |
T. Caraballo, F. Morillas and J. Valero,
Attractors of stochastic lattice dynamical systems with a multiplicative noise and non-Lipschitz nonlinearity, J. Differential Equations, 253 (2012), 667-693.
doi: 10.1016/j.jde.2012.03.020. |
[16] |
S. N. Chow and J. Mallet-Paret, Pattern formation and spatial chaos in lattice dynamical systems, I, II,, IEEE Trans. Circuits Systems, 42 (1995), 746–751.
doi: 10.1109/81.473583. |
[17] |
S. N. Chow, J. Mallet-Paret and W. Shen,
Traveling waves in lattice dynamical systems, J. Differential Equations, 49 (1998), 248-291.
doi: 10.1006/jdeq.1998.3478. |
[18] |
S. N. Chow, J. Mallet-Paret and E. S. Van Vleck,
Pattern formation and spatial chaos in spatially discrete evolution equations, Random Computational Dynamics, 4 (1996), 109-178.
|
[19] |
S. N. Chow and W. Shen,
Dynamics in a discrete Nagumo equation: Spatial topological chaos, SIAM J. Appl. Math., 55 (1995), 1764-1781.
doi: 10.1137/S0036139994261757. |
[20] |
L. O. Chua and T. Roska,
The CNN paradigm, IEEE Trans. Circuits Systems, 40 (1993), 147-156.
doi: 10.1109/81.222795. |
[21] |
L. O. Chua and Y. Yang,
Cellular neural networks: Theory, IEEE Trans. Circuits Systems, 35 (1988), 1257-1272.
doi: 10.1109/31.7600. |
[22] |
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992.
doi: 10.1017/CBO9780511666223.![]() ![]() |
[23] |
J. Eckmann and M. Hairer,
Invariant measures for stochastic partial differential equations in unbounded domains, Nonlinearity, 14 (2001), 133-151.
doi: 10.1088/0951-7715/14/1/308. |
[24] |
C. E. Elmer and E. S. Van Vleck,
Analysis and computation of traveling wave solutions of bistable differential-difference equations, Nonlinearity, 12 (1999), 771-798.
doi: 10.1088/0951-7715/12/4/303. |
[25] |
C. E. Elmer and E. S. Van Vleck,
Traveling waves solutions for bistable differential-difference equations with periodic diffusion, SIAM J. Appl. Math., 61 (2001), 1648-1679.
doi: 10.1137/S0036139999357113. |
[26] |
T. Erneux and G. Nicolis,
Propagating waves in discrete bistable reaction diffusion systems, Physica D, 67 (1993), 237-244.
doi: 10.1016/0167-2789(93)90208-I. |
[27] |
A. Es-Sarhir, M. Scheutzow and O. van Gaans,
Invariant measures for stochastic functional differential equations with superlinear drift term, Differential Integral Equations, 23 (2010), 189-200.
|
[28] |
M. J. Garrido-Atienza, A. Ogrowsky and B. Schmalfuss,
Random differential equations with random delays, Stochastics and Dynamics, 11 (2011), 369-388.
doi: 10.1142/S0219493711003358. |
[29] |
K. Gopalsamy, Stability and Oscillation in Delay Differential Equations of Population Dynamics, Kluwer Academic, Dordrecht, 1992.
doi: 10.1007/978-94-015-7920-9. |
[30] |
J. K. Hale,
Functional differential equations with infinite delays, J. Math. Anal. Appl., 48 (1974), 276-283.
doi: 10.1016/0022-247X(74)90233-9. |
[31] |
J. K. Hale and S. M. V. Lunel, Introduction to Functional Differential Equations, Springer-Verlag, Berlin, 1993.
doi: 10.1007/978-1-4612-4342-7. |
[32] |
X. Han,
Random attractors for stochastic sine-Gordon lattice systems with multiplicative white noise, J. Math. Anal. Appl., 376 (2011), 481-493.
doi: 10.1016/j.jmaa.2010.11.032. |
[33] |
X. Han, W. Shen and S. Zhou,
Random attractors for stochastic lattice dynamical systems in weighted spaces, J. Differential Equations, 250 (2011), 1235-1266.
doi: 10.1016/j.jde.2010.10.018. |
[34] |
X. Han and P. E. Kloeden,
Non-autonomous lattice systems with switching effects and delayed recovery, J. Differential Equations, 261 (2016), 2986-3009.
doi: 10.1016/j.jde.2016.05.015. |
[35] |
X. Han,
Asymptotic behaviors for second order stochastic lattice dynamical systems on $Z^k$ in weighted spaces, J. Math. Anal. Appl., 397 (2013), 242-254.
doi: 10.1016/j.jmaa.2012.07.015. |
[36] |
Y. Hino, T. Naito and S. Murakami, Functional Differential Equations with Infinite Delay, Springer-Verlag, Berlin, 1991.
doi: 10.1007/BFb0084432. |
[37] |
K. Ito and M. Nisio,
On stationary solutions of a stochastic differential equation, J. Math. Kyoto Univ., 4 (1964), 1-75.
doi: 10.1215/kjm/1250524705. |
[38] |
R. Kapval,
Discrete models for chemically reacting systems, J. Math. Chem., 6 (1991), 113-163.
doi: 10.1007/BF01192578. |
[39] |
N. I. Karachalios and A. N. Yannacopoulos,
Global existence and compact attractors for the discrete nonlinear Schrodinger equation, J. Differential Equations, 217 (2005), 88-123.
doi: 10.1016/j.jde.2005.06.002. |
[40] |
J. P. Keener,
Propagation and its failure in coupled systems of discrete excitable cells, SIAM J. Appl. Math., 47 (1987), 556-572.
doi: 10.1137/0147038. |
[41] |
J. P. Keener,
The effects of discrete gap junction coupling on propagation in myocardium, J. Theor. Biol., 148 (1991), 49-82.
doi: 10.1016/S0022-5193(05)80465-5. |
[42] |
J. Kim,
On the stochastic Burgers equation with polynomial nonlinearity in the real line, Discrete Continuous Dynam. Systems - B, 6 (2006), 835-866.
doi: 10.3934/dcdsb.2006.6.835. |
[43] |
J. Kim,
On the stochastic Benjamin-Ono equation, J. Differential Equations, 228 (2006), 737-768.
doi: 10.1016/j.jde.2005.11.005. |
[44] |
J. Kim,
Periodic and invariant measures for stochastic wave equations, Electronic Journal of Differential Equations, 2004 (2004), 1-30.
|
[45] |
J. Kim,
Invariant measures for a stochastic nonlinear Schrodinger equation, Indiana University Mathematics Journal, 55 (2006), 687-717.
doi: 10.1512/iumj.2006.55.2701. |
[46] |
V. B. Kolmanovskii and V. R. Nosov, Stability of Functional Differential Equations, Academic Press, New York, 1986.
![]() |
[47] |
Y. Kuang, Delay Differential Equations: With Applications in Population Dynamics, Academic Press, Boston, 1993.
![]() |
[48] |
Y. Kuang and H. L. Smith,
Global stability for infinite delay Lotka-Volterra type system, J. Differential Equations, 103 (1993), 221-246.
doi: 10.1006/jdeq.1993.1048. |
[49] |
X. Mao, Stochastic Differential Equations and Applications, 2$^{nd}$ edition, Woodhead Publishing Limited, Chichester, 2008. |
[50] |
X. Mao,
The LaSalle-type theorems for stochastic functional differential equations, Nonlinear Stud., 7 (2000), 307-328.
|
[51] |
X. Mao,
Razumikhin-type theorems on exponential stability of stochastic functional differential equations, Stochastic Process. Appl., 65 (1996), 233-250.
doi: 10.1016/S0304-4149(96)00109-3. |
[52] |
F. Morillas and J. Valero,
A Peano's theorem and attractors for lattice dynamical systems, International J. Bifur. Chaos, 19 (2009), 557-578.
doi: 10.1142/S0218127409023196. |
[53] |
O. Misiats, O. Stanzhytskyi and N. Yip,
Existence and uniqueness of invariant measures for stochastic reaction-diffusion equations in unbounded domains, Journal of Theoretical Probability, 29 (2016), 996-1026.
doi: 10.1007/s10959-015-0606-z. |
[54] |
S. E. A. Mohammed, Stochastic Functional Differential Equations, Longman, New York, 1984. |
[55] |
J. D. Murray, Mathematical Biology, Springer-Verlag, Berlin, 1993.
doi: 10.1007/b98869. |
[56] |
T. Naito,
On autonomous linear retarded equations in abstract phase for infinite retardations, J. Differential Equations, 21 (1976), 297-315.
doi: 10.1016/0022-0396(76)90124-8. |
[57] |
T. Naito,
On linear autonomous retarded equations in abstract phase for infinite delay, J. Differential Equations, 33 (1979), 74-91.
doi: 10.1016/0022-0396(79)90081-0. |
[58] |
M. Reiss, M. Riedle and O. van Gaans,
Delay differential equations driven by Levy processes: Stationarity and Feller properties, Stoch. Process. Appl., 116 (2006), 1409-1432.
doi: 10.1016/j.spa.2006.03.002. |
[59] |
M. Scheutzow,
Qualitative behaviour of stochastic delay equations with a bounded memory, Stochastics, 12 (1984), 41-80.
doi: 10.1080/17442508408833294. |
[60] |
B. Wang,
Dynamics of systems on infinite lattices, J. Differential Equations, 221 (2006), 224-245.
doi: 10.1016/j.jde.2005.01.003. |
[61] |
B. Wang,
Dynamics of stochastic reaction-diffusion lattice systems driven by nonlinear noise, J. Math. Anal. Appl., 477 (2019), 104-132.
doi: 10.1016/j.jmaa.2019.04.015. |
[62] |
B. Wang and R. Wang,
Asymptotic behavior of stochastic Schrodinger lattice systems driven by nonlinear noise, Stochastic Analysis and Applications, 38 (2020), 213-237.
doi: 10.1080/07362994.2019.1679646. |
[63] |
B. Wang,
Dynamics of fractional stochastic reaction-diffusion equations on unbounded domains driven by nonlinear noise, J. Differential Equations, 268 (2019), 1-59.
doi: 10.1016/j.jde.2019.08.007. |
[64] |
X. Wang, K. Lu and B. Wang,
Random attractors for delay parabolic equations with additive noise and deterministic nonautonomous forcing, SIAM J. Applied Dynamical Systems, 14 (2015), 1018-1047.
doi: 10.1137/140991819. |
[65] |
X. Wang, K. Lu and B. Wang,
Exponential stability of non-autonomous stochastic delay lattice systems with multiplicative noise, J. Dyn. Differential Equations, 28 (2016), 1309-1335.
doi: 10.1007/s10884-015-9448-8. |
[66] |
F. Wu, G. Yin and H. Mei,
Stochastic functional differential equations with infinite delay: Existence and uniqueness of solutions, solution maps, Markov properties, and ergodicity, J. Differential Equations, 262 (2017), 1226-1252.
doi: 10.1016/j.jde.2016.10.006. |
[67] |
B. Zinner,
Existence of traveling wavefront solutions for the discrete Nagumo equation, J. Differential Equations, 96 (1992), 1-27.
doi: 10.1016/0022-0396(92)90142-A. |
show all references
References:
[1] |
V. S. Afraimovich and V. I. Nekorkin,
Chaos of traveling waves in a discrete chain of diffusively coupled maps, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 4 (1994), 631-637.
doi: 10.1142/S0218127494000459. |
[2] |
P. W. Bates, X. Chen and A. Chmaj,
Traveling waves of bistable dynamics on a lattice, SIAM J. Math. Anal., 35 (2003), 520-546.
doi: 10.1137/S0036141000374002. |
[3] |
P. W. Bates and A. Chmaj,
On a discrete convolution model for phase transitions, Arch. Ration. Mech. Anal., 150 (1999), 281-305.
doi: 10.1007/s002050050189. |
[4] |
P. W. Bates, K. Lu and B. Wang,
Attractors for lattice dynamical systems, International J. Bifur. Chaos, 11 (2001), 143-153.
doi: 10.1142/S0218127401002031. |
[5] |
P. W. Bates, H. Lisei and K. Lu,
Attractors for stochastic lattice dynamical systems, Stochastics and Dynamics, 6 (2006), 1-21.
doi: 10.1142/S0219493706001621. |
[6] |
P. W. Bates, K. Lu and B. Wang,
Attractors of non-autonomous stochastic lattice systems in weighted spaces, Physica D, 289 (2014), 32-50.
doi: 10.1016/j.physd.2014.08.004. |
[7] |
J. Bell and C. Cosner,
Threshold behaviour and propagation for nonlinear differential-difference systems motivated by modeling myelinated axons, Quarterly Appl. Math., 42 (1984), 1-14.
doi: 10.1090/qam/736501. |
[8] |
W. J. Beyn and S. Y. Pilyugin,
Attractors of reaction diffusion systems on infinite lattices, J. Dyn. Differential Equations, 15 (2003), 485-515.
doi: 10.1023/B:JODY.0000009745.41889.30. |
[9] |
Z. Brzezniak, M. Ondrejat and J. Seidler,
Invariant measures for stochastic nonlinear beam and wave equations, J. Differential Equations, 260 (2016), 4157-4179.
doi: 10.1016/j.jde.2015.11.007. |
[10] |
Z. Brzezniak, E. Motyl and M. Ondrejat,
Invariant measure for the stochastic Navier-Stokes equations in unbounded 2D domains, Annals of Probability, 45 (2017), 3145-3201.
doi: 10.1214/16-AOP1133. |
[11] |
O. Butkovsky and M. Scheutzow,
Invariant measures for stochastic functional differential equations, Electron. J. Probab., 22 (2017), 1-23.
doi: 10.1214/17-EJP122. |
[12] |
T. Caraballo, M. J. Garrido-Atienza and B. Schmalfuss,
Exponential stability of stationary solutions for semilinear stochastic evolution equations with delays, Discret. Contin. Dyn. Syst., 18 (2007), 271-293.
doi: 10.3934/dcds.2007.18.271. |
[13] |
T. Caraballo, M. J. Garrido-Atienza and T. Taniguchi,
The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion, Nonlinear Anal., 74 (2011), 3671-3684.
doi: 10.1016/j.na.2011.02.047. |
[14] |
T. Caraballo and K. Lu,
Attractors for stochastic lattice dynamical systems with a multiplicative noise, Frontiers of Mathematics in China, 3 (2008), 317-335.
doi: 10.1007/s11464-008-0028-7. |
[15] |
T. Caraballo, F. Morillas and J. Valero,
Attractors of stochastic lattice dynamical systems with a multiplicative noise and non-Lipschitz nonlinearity, J. Differential Equations, 253 (2012), 667-693.
doi: 10.1016/j.jde.2012.03.020. |
[16] |
S. N. Chow and J. Mallet-Paret, Pattern formation and spatial chaos in lattice dynamical systems, I, II,, IEEE Trans. Circuits Systems, 42 (1995), 746–751.
doi: 10.1109/81.473583. |
[17] |
S. N. Chow, J. Mallet-Paret and W. Shen,
Traveling waves in lattice dynamical systems, J. Differential Equations, 49 (1998), 248-291.
doi: 10.1006/jdeq.1998.3478. |
[18] |
S. N. Chow, J. Mallet-Paret and E. S. Van Vleck,
Pattern formation and spatial chaos in spatially discrete evolution equations, Random Computational Dynamics, 4 (1996), 109-178.
|
[19] |
S. N. Chow and W. Shen,
Dynamics in a discrete Nagumo equation: Spatial topological chaos, SIAM J. Appl. Math., 55 (1995), 1764-1781.
doi: 10.1137/S0036139994261757. |
[20] |
L. O. Chua and T. Roska,
The CNN paradigm, IEEE Trans. Circuits Systems, 40 (1993), 147-156.
doi: 10.1109/81.222795. |
[21] |
L. O. Chua and Y. Yang,
Cellular neural networks: Theory, IEEE Trans. Circuits Systems, 35 (1988), 1257-1272.
doi: 10.1109/31.7600. |
[22] |
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992.
doi: 10.1017/CBO9780511666223.![]() ![]() |
[23] |
J. Eckmann and M. Hairer,
Invariant measures for stochastic partial differential equations in unbounded domains, Nonlinearity, 14 (2001), 133-151.
doi: 10.1088/0951-7715/14/1/308. |
[24] |
C. E. Elmer and E. S. Van Vleck,
Analysis and computation of traveling wave solutions of bistable differential-difference equations, Nonlinearity, 12 (1999), 771-798.
doi: 10.1088/0951-7715/12/4/303. |
[25] |
C. E. Elmer and E. S. Van Vleck,
Traveling waves solutions for bistable differential-difference equations with periodic diffusion, SIAM J. Appl. Math., 61 (2001), 1648-1679.
doi: 10.1137/S0036139999357113. |
[26] |
T. Erneux and G. Nicolis,
Propagating waves in discrete bistable reaction diffusion systems, Physica D, 67 (1993), 237-244.
doi: 10.1016/0167-2789(93)90208-I. |
[27] |
A. Es-Sarhir, M. Scheutzow and O. van Gaans,
Invariant measures for stochastic functional differential equations with superlinear drift term, Differential Integral Equations, 23 (2010), 189-200.
|
[28] |
M. J. Garrido-Atienza, A. Ogrowsky and B. Schmalfuss,
Random differential equations with random delays, Stochastics and Dynamics, 11 (2011), 369-388.
doi: 10.1142/S0219493711003358. |
[29] |
K. Gopalsamy, Stability and Oscillation in Delay Differential Equations of Population Dynamics, Kluwer Academic, Dordrecht, 1992.
doi: 10.1007/978-94-015-7920-9. |
[30] |
J. K. Hale,
Functional differential equations with infinite delays, J. Math. Anal. Appl., 48 (1974), 276-283.
doi: 10.1016/0022-247X(74)90233-9. |
[31] |
J. K. Hale and S. M. V. Lunel, Introduction to Functional Differential Equations, Springer-Verlag, Berlin, 1993.
doi: 10.1007/978-1-4612-4342-7. |
[32] |
X. Han,
Random attractors for stochastic sine-Gordon lattice systems with multiplicative white noise, J. Math. Anal. Appl., 376 (2011), 481-493.
doi: 10.1016/j.jmaa.2010.11.032. |
[33] |
X. Han, W. Shen and S. Zhou,
Random attractors for stochastic lattice dynamical systems in weighted spaces, J. Differential Equations, 250 (2011), 1235-1266.
doi: 10.1016/j.jde.2010.10.018. |
[34] |
X. Han and P. E. Kloeden,
Non-autonomous lattice systems with switching effects and delayed recovery, J. Differential Equations, 261 (2016), 2986-3009.
doi: 10.1016/j.jde.2016.05.015. |
[35] |
X. Han,
Asymptotic behaviors for second order stochastic lattice dynamical systems on $Z^k$ in weighted spaces, J. Math. Anal. Appl., 397 (2013), 242-254.
doi: 10.1016/j.jmaa.2012.07.015. |
[36] |
Y. Hino, T. Naito and S. Murakami, Functional Differential Equations with Infinite Delay, Springer-Verlag, Berlin, 1991.
doi: 10.1007/BFb0084432. |
[37] |
K. Ito and M. Nisio,
On stationary solutions of a stochastic differential equation, J. Math. Kyoto Univ., 4 (1964), 1-75.
doi: 10.1215/kjm/1250524705. |
[38] |
R. Kapval,
Discrete models for chemically reacting systems, J. Math. Chem., 6 (1991), 113-163.
doi: 10.1007/BF01192578. |
[39] |
N. I. Karachalios and A. N. Yannacopoulos,
Global existence and compact attractors for the discrete nonlinear Schrodinger equation, J. Differential Equations, 217 (2005), 88-123.
doi: 10.1016/j.jde.2005.06.002. |
[40] |
J. P. Keener,
Propagation and its failure in coupled systems of discrete excitable cells, SIAM J. Appl. Math., 47 (1987), 556-572.
doi: 10.1137/0147038. |
[41] |
J. P. Keener,
The effects of discrete gap junction coupling on propagation in myocardium, J. Theor. Biol., 148 (1991), 49-82.
doi: 10.1016/S0022-5193(05)80465-5. |
[42] |
J. Kim,
On the stochastic Burgers equation with polynomial nonlinearity in the real line, Discrete Continuous Dynam. Systems - B, 6 (2006), 835-866.
doi: 10.3934/dcdsb.2006.6.835. |
[43] |
J. Kim,
On the stochastic Benjamin-Ono equation, J. Differential Equations, 228 (2006), 737-768.
doi: 10.1016/j.jde.2005.11.005. |
[44] |
J. Kim,
Periodic and invariant measures for stochastic wave equations, Electronic Journal of Differential Equations, 2004 (2004), 1-30.
|
[45] |
J. Kim,
Invariant measures for a stochastic nonlinear Schrodinger equation, Indiana University Mathematics Journal, 55 (2006), 687-717.
doi: 10.1512/iumj.2006.55.2701. |
[46] |
V. B. Kolmanovskii and V. R. Nosov, Stability of Functional Differential Equations, Academic Press, New York, 1986.
![]() |
[47] |
Y. Kuang, Delay Differential Equations: With Applications in Population Dynamics, Academic Press, Boston, 1993.
![]() |
[48] |
Y. Kuang and H. L. Smith,
Global stability for infinite delay Lotka-Volterra type system, J. Differential Equations, 103 (1993), 221-246.
doi: 10.1006/jdeq.1993.1048. |
[49] |
X. Mao, Stochastic Differential Equations and Applications, 2$^{nd}$ edition, Woodhead Publishing Limited, Chichester, 2008. |
[50] |
X. Mao,
The LaSalle-type theorems for stochastic functional differential equations, Nonlinear Stud., 7 (2000), 307-328.
|
[51] |
X. Mao,
Razumikhin-type theorems on exponential stability of stochastic functional differential equations, Stochastic Process. Appl., 65 (1996), 233-250.
doi: 10.1016/S0304-4149(96)00109-3. |
[52] |
F. Morillas and J. Valero,
A Peano's theorem and attractors for lattice dynamical systems, International J. Bifur. Chaos, 19 (2009), 557-578.
doi: 10.1142/S0218127409023196. |
[53] |
O. Misiats, O. Stanzhytskyi and N. Yip,
Existence and uniqueness of invariant measures for stochastic reaction-diffusion equations in unbounded domains, Journal of Theoretical Probability, 29 (2016), 996-1026.
doi: 10.1007/s10959-015-0606-z. |
[54] |
S. E. A. Mohammed, Stochastic Functional Differential Equations, Longman, New York, 1984. |
[55] |
J. D. Murray, Mathematical Biology, Springer-Verlag, Berlin, 1993.
doi: 10.1007/b98869. |
[56] |
T. Naito,
On autonomous linear retarded equations in abstract phase for infinite retardations, J. Differential Equations, 21 (1976), 297-315.
doi: 10.1016/0022-0396(76)90124-8. |
[57] |
T. Naito,
On linear autonomous retarded equations in abstract phase for infinite delay, J. Differential Equations, 33 (1979), 74-91.
doi: 10.1016/0022-0396(79)90081-0. |
[58] |
M. Reiss, M. Riedle and O. van Gaans,
Delay differential equations driven by Levy processes: Stationarity and Feller properties, Stoch. Process. Appl., 116 (2006), 1409-1432.
doi: 10.1016/j.spa.2006.03.002. |
[59] |
M. Scheutzow,
Qualitative behaviour of stochastic delay equations with a bounded memory, Stochastics, 12 (1984), 41-80.
doi: 10.1080/17442508408833294. |
[60] |
B. Wang,
Dynamics of systems on infinite lattices, J. Differential Equations, 221 (2006), 224-245.
doi: 10.1016/j.jde.2005.01.003. |
[61] |
B. Wang,
Dynamics of stochastic reaction-diffusion lattice systems driven by nonlinear noise, J. Math. Anal. Appl., 477 (2019), 104-132.
doi: 10.1016/j.jmaa.2019.04.015. |
[62] |
B. Wang and R. Wang,
Asymptotic behavior of stochastic Schrodinger lattice systems driven by nonlinear noise, Stochastic Analysis and Applications, 38 (2020), 213-237.
doi: 10.1080/07362994.2019.1679646. |
[63] |
B. Wang,
Dynamics of fractional stochastic reaction-diffusion equations on unbounded domains driven by nonlinear noise, J. Differential Equations, 268 (2019), 1-59.
doi: 10.1016/j.jde.2019.08.007. |
[64] |
X. Wang, K. Lu and B. Wang,
Random attractors for delay parabolic equations with additive noise and deterministic nonautonomous forcing, SIAM J. Applied Dynamical Systems, 14 (2015), 1018-1047.
doi: 10.1137/140991819. |
[65] |
X. Wang, K. Lu and B. Wang,
Exponential stability of non-autonomous stochastic delay lattice systems with multiplicative noise, J. Dyn. Differential Equations, 28 (2016), 1309-1335.
doi: 10.1007/s10884-015-9448-8. |
[66] |
F. Wu, G. Yin and H. Mei,
Stochastic functional differential equations with infinite delay: Existence and uniqueness of solutions, solution maps, Markov properties, and ergodicity, J. Differential Equations, 262 (2017), 1226-1252.
doi: 10.1016/j.jde.2016.10.006. |
[67] |
B. Zinner,
Existence of traveling wavefront solutions for the discrete Nagumo equation, J. Differential Equations, 96 (1992), 1-27.
doi: 10.1016/0022-0396(92)90142-A. |
[1] |
Shang Wu, Pengfei Xu, Jianhua Huang, Wei Yan. Ergodicity of stochastic damped Ostrovsky equation driven by white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1615-1626. doi: 10.3934/dcdsb.2020175 |
[2] |
Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020352 |
[3] |
Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020468 |
[4] |
Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324 |
[5] |
François Dubois. Third order equivalent equation of lattice Boltzmann scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 221-248. doi: 10.3934/dcds.2009.23.221 |
[6] |
Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002 |
[7] |
Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392 |
[8] |
Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020048 |
[9] |
Mia Jukić, Hermen Jan Hupkes. Dynamics of curved travelling fronts for the discrete Allen-Cahn equation on a two-dimensional lattice. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020402 |
[10] |
Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020107 |
[11] |
Maoli Chen, Xiao Wang, Yicheng Liu. Collision-free flocking for a time-delay system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1223-1241. doi: 10.3934/dcdsb.2020251 |
[12] |
Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003 |
[13] |
Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020383 |
[14] |
Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242 |
[15] |
Nicolas Dirr, Hubertus Grillmeier, Günther Grün. On stochastic porous-medium equations with critical-growth conservative multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020388 |
[16] |
Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305 |
[17] |
Qingfeng Zhu, Yufeng Shi. Nonzero-sum differential game of backward doubly stochastic systems with delay and applications. Mathematical Control & Related Fields, 2021, 11 (1) : 73-94. doi: 10.3934/mcrf.2020028 |
[18] |
Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020317 |
[19] |
Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020432 |
[20] |
Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391 |
2019 Impact Factor: 1.27
Tools
Article outline
[Back to Top]