-
Previous Article
The global attractor for the wave equation with nonlocal strong damping
- DCDS-B Home
- This Issue
-
Next Article
On the generalized Burgers-Huxley equation: Existence, uniqueness, regularity, global attractors and numerical studies
Global well-posedness of a 3D Stokes-Magneto equations with fractional magnetic diffusion
School of Applied Mathematics, Guangdong University of Technology, Guangzhou, 510520, China |
This paper is devoted to the global well-posedness of a three-dimensional Stokes-Magneto equations with fractional magnetic diffusion. It is proved that the equations admit a unique global-in-time strong solution for arbitrary initial data when the fractional index $ \alpha\ge\frac32 $. This result might have a potential application in the theory of magnetic relaxtion.
References:
[1] |
D. Biskamp, Nonlinear Magnetohydrodynamics, Cambridge University Press, Cambridge, 1993.
doi: 10.1017/CBO9780511599965.![]() ![]() |
[2] |
J. Chemin, D. McCormick, J. Robinson and J. Rodrigo,
Local existence for the non-resistive MHD equations in Besov spaces, Adv. Math., 286 (2016), 1-31.
doi: 10.1016/j.aim.2015.09.004. |
[3] |
P. Davidson, An Introduction to Magnetohydrodynamics, Cambridge University Press, Cambridge, 2001.
doi: 10.1017/CBO9780511626333.![]() ![]() |
[4] |
C. Fefferman, D. McCormick, J. Robinson and J. Rodrigo,
Higher order commutator estimates and local existence for the non-resistive MHD equations and related models, J. Funct. Anal., 267 (2014), 1035-1056.
doi: 10.1016/j.jfa.2014.03.021. |
[5] |
G. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, 2nd ed. Springer, Berlin, 2011.
doi: 10.1007/978-0-387-09620-9. |
[6] |
L. Laudau and E. Lifshitz, Electrodynamics of Continuous Media, Pergamon Press, OxfordLondon-New York-Paris; Addison-Wesley Publishing Co., Inc., Reading, Mass., 1960. |
[7] |
D. McCormick, J. Robinson and J. Rodrigo,
Existence and uniqueness for a coupled parabolic-elliptic model with applications to magnetic relaxation, Arch. Ration. Mech. Anal., 214 (2014), 503-523.
doi: 10.1007/s00205-014-0760-y. |
[8] |
H. Moffatt,
Magnetostatic equilibria and analogous Euler flows of arbitrarily complex topology. Part 1. Fundamentals, J. Fluid Mech., 159 (1985), 359-378.
doi: 10.1017/S0022112085003251. |
[9] |
H. Moffatt, Relaxation routes to steady Euler flows of complex topology (2009), http://www2.warwick.ac.uk/fac/sci/maths/research/miraw/days/t3_d5_he/keith.pdf.Slides of talk given during MIRaW Day, "Weak Solutions of the 3D Euler Equations", University of Warwick, 8th June 2009. Google Scholar |
[10] |
J. Mattingly and Y. Sinai,
An elementary proof of the existence and uniqueness theorem for the Navier-Stokes equation, Commun. Contemp. Math., 1 (1999), 497-516.
doi: 10.1142/S0219199799000183. |
[11] |
W. Tan, On the global existence for a coupled parabolic-elliptic equations in three dimensions, submitted. Google Scholar |
[12] |
J. Wu,
Generalized MHD equations, J. Differential Equations., 195 (2003), 284-312.
doi: 10.1016/j.jde.2003.07.007. |
show all references
References:
[1] |
D. Biskamp, Nonlinear Magnetohydrodynamics, Cambridge University Press, Cambridge, 1993.
doi: 10.1017/CBO9780511599965.![]() ![]() |
[2] |
J. Chemin, D. McCormick, J. Robinson and J. Rodrigo,
Local existence for the non-resistive MHD equations in Besov spaces, Adv. Math., 286 (2016), 1-31.
doi: 10.1016/j.aim.2015.09.004. |
[3] |
P. Davidson, An Introduction to Magnetohydrodynamics, Cambridge University Press, Cambridge, 2001.
doi: 10.1017/CBO9780511626333.![]() ![]() |
[4] |
C. Fefferman, D. McCormick, J. Robinson and J. Rodrigo,
Higher order commutator estimates and local existence for the non-resistive MHD equations and related models, J. Funct. Anal., 267 (2014), 1035-1056.
doi: 10.1016/j.jfa.2014.03.021. |
[5] |
G. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, 2nd ed. Springer, Berlin, 2011.
doi: 10.1007/978-0-387-09620-9. |
[6] |
L. Laudau and E. Lifshitz, Electrodynamics of Continuous Media, Pergamon Press, OxfordLondon-New York-Paris; Addison-Wesley Publishing Co., Inc., Reading, Mass., 1960. |
[7] |
D. McCormick, J. Robinson and J. Rodrigo,
Existence and uniqueness for a coupled parabolic-elliptic model with applications to magnetic relaxation, Arch. Ration. Mech. Anal., 214 (2014), 503-523.
doi: 10.1007/s00205-014-0760-y. |
[8] |
H. Moffatt,
Magnetostatic equilibria and analogous Euler flows of arbitrarily complex topology. Part 1. Fundamentals, J. Fluid Mech., 159 (1985), 359-378.
doi: 10.1017/S0022112085003251. |
[9] |
H. Moffatt, Relaxation routes to steady Euler flows of complex topology (2009), http://www2.warwick.ac.uk/fac/sci/maths/research/miraw/days/t3_d5_he/keith.pdf.Slides of talk given during MIRaW Day, "Weak Solutions of the 3D Euler Equations", University of Warwick, 8th June 2009. Google Scholar |
[10] |
J. Mattingly and Y. Sinai,
An elementary proof of the existence and uniqueness theorem for the Navier-Stokes equation, Commun. Contemp. Math., 1 (1999), 497-516.
doi: 10.1142/S0219199799000183. |
[11] |
W. Tan, On the global existence for a coupled parabolic-elliptic equations in three dimensions, submitted. Google Scholar |
[12] |
J. Wu,
Generalized MHD equations, J. Differential Equations., 195 (2003), 284-312.
doi: 10.1016/j.jde.2003.07.007. |
[1] |
Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142 |
[2] |
Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361 |
[3] |
Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241 |
[4] |
Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163 |
[5] |
Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039 |
[6] |
Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020377 |
[7] |
Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020382 |
[8] |
Dongfen Bian, Yao Xiao. Global well-posedness of non-isothermal inhomogeneous nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1243-1272. doi: 10.3934/dcdsb.2020161 |
[9] |
Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302 |
[10] |
Charlotte Rodriguez. Networks of geometrically exact beams: Well-posedness and stabilization. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021002 |
[11] |
Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119 |
[12] |
Balázs Kósa, Karol Mikula, Markjoe Olunna Uba, Antonia Weberling, Neophytos Christodoulou, Magdalena Zernicka-Goetz. 3D image segmentation supported by a point cloud. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 971-985. doi: 10.3934/dcdss.2020351 |
[13] |
Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248 |
[14] |
Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062 |
[15] |
Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074 |
[16] |
Xiaoli Lu, Pengzhan Huang, Yinnian He. Fully discrete finite element approximation of the 2D/3D unsteady incompressible magnetohydrodynamic-Voigt regularization flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 815-845. doi: 10.3934/dcdsb.2020143 |
[17] |
Zaihui Gan, Fanghua Lin, Jiajun Tong. On the viscous Camassa-Holm equations with fractional diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3427-3450. doi: 10.3934/dcds.2020029 |
[18] |
Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020408 |
[19] |
Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020354 |
[20] |
Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza. Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29 (1) : 1625-1639. doi: 10.3934/era.2020083 |
2019 Impact Factor: 1.27
Tools
Article outline
[Back to Top]