October  2020, 25(10): 3857-3887. doi: 10.3934/dcdsb.2020228

Quantitative jacobian determinant bounds for the conductivity equation in high contrast composite media

1. 

Université de Paris and Sorbonne Université, CNRS, Laboratoire Jacques-Louis Lions (LJLL), F-75006 Paris, France

2. 

Mathematical Institute, University of Oxford, OX2 6GG, UK

Received  June 2019 Revised  April 2020 Published  October 2020 Early access  July 2020

We consider the conductivity equation in a bounded domain in $ \mathbb{R}^{d} $ with $ d\geq3 $. In this study, the medium corresponds to a very contrasted two phase homogeneous and isotropic material, consisting of a unit matrix phase, and an inclusion with high conductivity. The geometry of the inclusion phase is so that the resulting Jacobian determinant of the gradients of solutions $ DU $ takes both positive and negatives values. In this work, we construct a class of inclusions $ Q $ and boundary conditions $ \phi $ such that the determinant of the solution of the boundary value problem satisfies this sign-changing constraint. We provide lower bounds for the measure of the sets where the Jacobian determinant is greater than a positive constant (or lower than a negative constant). Different sign changing structures where introduced in [9], where the existence of such media was first established. The quantitative estimates provided here are new.

 

Erratum: The name of the second author has been corrected from Haun Chen Yang Ong to Shaun Chen Yang Ong. We apologize for any inconvenience this may cause.

Citation: Yves Capdeboscq, Shaun Chen Yang Ong. Quantitative jacobian determinant bounds for the conductivity equation in high contrast composite media. Discrete and Continuous Dynamical Systems - B, 2020, 25 (10) : 3857-3887. doi: 10.3934/dcdsb.2020228
References:
[1]

G. S. Alberti and Y. Capdeboscq, Lectures on Elliptic Methods for Hybrid Inverse Problems, vol. 25 of Cours Spécialisés, Société Mathématique de France, 2018.

[2]

G. Alessandrini and R. Magnanini, Elliptic equations in divergence form, geometric critical points of solutions, and Stekloff eigenfunctions, SIAM J. Math. Anal., 25 (1994), 1259-1268.  doi: 10.1137/S0036141093249080.

[3]

G. Alessandrini and V. Nesi, Quantitative estimates on jacobians for hybrid inverse problems, Vestnik YuUrGU. Ser. Mat. Model. Progr., 8 (2015), 25-41.  doi: 10.14529/mmp150302.

[4]

G. Alessandrini and V. Nesi, Univalent $\sigma$-harmonic mappings, Arch. Ration. Mech. Anal., 158 (2001), 155-171.  doi: 10.1007/PL00004242.

[5]

H. Ammari, E. Bonnetier, F. Triki and M. Vogelius, Elliptic estimates in composite media with smooth inclusions: An integral equation approach, Ann. Sci. Éc. Norm. Supér. (4), 48 (2015), 453–495. doi: 10.24033/asens.2249.

[6]

H. Ammari and H. Kang, Reconstruction of Small Inhomogeneities from Boundary Measurements, vol. 1846 of Lecture Notes in Mathematics, Springer, 2004. doi: 10.1007/b98245.

[7]

E. S. BaoY. Y. Li and B. Yin, Gradient estimates for the perfect conductivity problem, Archive for Rational Mechanics and Analysis, 193 (2009), 195-226.  doi: 10.1007/s00205-008-0159-8.

[8]

L. Berlyand and H. Owhadi, Flux norm approach to finite dimensional homogenization approximations with non-separated scales and high contrast, Archive for Rational Mechanics and Analysis, 198 (2010), 677-721.  doi: 10.1007/s00205-010-0302-1.

[9]

M. Briane and G. W. Milton, Change of sign of the correctors determinant for homogenization in three-dimensional conductivity, Archive for Rational Mechanics and Analysis, 173 (2004), 133-150.  doi: 10.1007/s00205-004-0315-8.

[10]

Y. Capdeboscq, On a counter-example to quantitative jacobian bounds, Journal de l'École polytechnique - Mathématiques, 2 (2015), 171–178. doi: 10.5802/jep.21.

[11]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, vol. 93 of Applied Mathematical Sciences, 2nd edition, Springer Verlag, Berlin, 1998. doi: 10.1007/978-3-662-03537-5.

[12]

S. Friedland, Variation of tensor powers and spectra, Linear and Multilinear Algebra, 12 (1982/83), 81-98.  doi: 10.1080/03081088208817475.

[13]

P. Grisvard, Elliptic Problems in Nonsmooth Domains, vol. 24 of Monographs and Studies in Mathematics, Pitman (Advanced Publishing Program), Boston, MA, 1985.

[14]

H. Kang, K. Kim, H. Lee, J. Shin and S. Yu, Spectral properties of the Neumann-Poincaré operator and uniformity of estimates for the conductivity equation with complex coefficients, J. Lond. Math. Soc. (2), 93 (2016), 519–545. doi: 10.1112/jlms/jdw003.

[15]

R. S. Laugesen, Injectivity can fail for higher-dimensional harmonic extensions, Complex Variables Theory Appl., 28 (1996), 357-369.  doi: 10.1080/17476939608814865.

[16]

Y. Y. Li and M. S. Vogelius, Gradient estimates for solutions of divergence form elliptic equations with discontinuous coefficients, Arch. Rational Mech. Anal, 153 (2000), 91-151.  doi: 10.1007/s002050000082.

[17]

A. D. Melas, An example of a harmonic map between Euclidean balls, Proc. Amer. Math. Soc., 117 (1993), 857-859.  doi: 10.1090/S0002-9939-1993-1112497-9.

[18]

K.-O. Widman, Inequalities for the Green function and boundary continuity of the gradient of solutions of elliptic differential equations, Math. Scand., 21 (1967), 17–37 (1968). doi: 10.7146/math.scand.a-10841.

[19]

J. C. Wood, Lewy's theorem fails in higher dimensions, Math. Scand., 69 (1991), 166 (1992). doi: 10.7146/math.scand.a-12375.

show all references

References:
[1]

G. S. Alberti and Y. Capdeboscq, Lectures on Elliptic Methods for Hybrid Inverse Problems, vol. 25 of Cours Spécialisés, Société Mathématique de France, 2018.

[2]

G. Alessandrini and R. Magnanini, Elliptic equations in divergence form, geometric critical points of solutions, and Stekloff eigenfunctions, SIAM J. Math. Anal., 25 (1994), 1259-1268.  doi: 10.1137/S0036141093249080.

[3]

G. Alessandrini and V. Nesi, Quantitative estimates on jacobians for hybrid inverse problems, Vestnik YuUrGU. Ser. Mat. Model. Progr., 8 (2015), 25-41.  doi: 10.14529/mmp150302.

[4]

G. Alessandrini and V. Nesi, Univalent $\sigma$-harmonic mappings, Arch. Ration. Mech. Anal., 158 (2001), 155-171.  doi: 10.1007/PL00004242.

[5]

H. Ammari, E. Bonnetier, F. Triki and M. Vogelius, Elliptic estimates in composite media with smooth inclusions: An integral equation approach, Ann. Sci. Éc. Norm. Supér. (4), 48 (2015), 453–495. doi: 10.24033/asens.2249.

[6]

H. Ammari and H. Kang, Reconstruction of Small Inhomogeneities from Boundary Measurements, vol. 1846 of Lecture Notes in Mathematics, Springer, 2004. doi: 10.1007/b98245.

[7]

E. S. BaoY. Y. Li and B. Yin, Gradient estimates for the perfect conductivity problem, Archive for Rational Mechanics and Analysis, 193 (2009), 195-226.  doi: 10.1007/s00205-008-0159-8.

[8]

L. Berlyand and H. Owhadi, Flux norm approach to finite dimensional homogenization approximations with non-separated scales and high contrast, Archive for Rational Mechanics and Analysis, 198 (2010), 677-721.  doi: 10.1007/s00205-010-0302-1.

[9]

M. Briane and G. W. Milton, Change of sign of the correctors determinant for homogenization in three-dimensional conductivity, Archive for Rational Mechanics and Analysis, 173 (2004), 133-150.  doi: 10.1007/s00205-004-0315-8.

[10]

Y. Capdeboscq, On a counter-example to quantitative jacobian bounds, Journal de l'École polytechnique - Mathématiques, 2 (2015), 171–178. doi: 10.5802/jep.21.

[11]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, vol. 93 of Applied Mathematical Sciences, 2nd edition, Springer Verlag, Berlin, 1998. doi: 10.1007/978-3-662-03537-5.

[12]

S. Friedland, Variation of tensor powers and spectra, Linear and Multilinear Algebra, 12 (1982/83), 81-98.  doi: 10.1080/03081088208817475.

[13]

P. Grisvard, Elliptic Problems in Nonsmooth Domains, vol. 24 of Monographs and Studies in Mathematics, Pitman (Advanced Publishing Program), Boston, MA, 1985.

[14]

H. Kang, K. Kim, H. Lee, J. Shin and S. Yu, Spectral properties of the Neumann-Poincaré operator and uniformity of estimates for the conductivity equation with complex coefficients, J. Lond. Math. Soc. (2), 93 (2016), 519–545. doi: 10.1112/jlms/jdw003.

[15]

R. S. Laugesen, Injectivity can fail for higher-dimensional harmonic extensions, Complex Variables Theory Appl., 28 (1996), 357-369.  doi: 10.1080/17476939608814865.

[16]

Y. Y. Li and M. S. Vogelius, Gradient estimates for solutions of divergence form elliptic equations with discontinuous coefficients, Arch. Rational Mech. Anal, 153 (2000), 91-151.  doi: 10.1007/s002050000082.

[17]

A. D. Melas, An example of a harmonic map between Euclidean balls, Proc. Amer. Math. Soc., 117 (1993), 857-859.  doi: 10.1090/S0002-9939-1993-1112497-9.

[18]

K.-O. Widman, Inequalities for the Green function and boundary continuity of the gradient of solutions of elliptic differential equations, Math. Scand., 21 (1967), 17–37 (1968). doi: 10.7146/math.scand.a-10841.

[19]

J. C. Wood, Lewy's theorem fails in higher dimensions, Math. Scand., 69 (1991), 166 (1992). doi: 10.7146/math.scand.a-12375.

[1]

Pedro Teixeira. Dacorogna-Moser theorem on the Jacobian determinant equation with control of support. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 4071-4089. doi: 10.3934/dcds.2017173

[2]

Bernard Dacorogna, Olivier Kneuss. Multiple Jacobian equations. Communications on Pure and Applied Analysis, 2014, 13 (5) : 1779-1787. doi: 10.3934/cpaa.2014.13.1779

[3]

Isabelle Déchène. On the security of generalized Jacobian cryptosystems. Advances in Mathematics of Communications, 2007, 1 (4) : 413-426. doi: 10.3934/amc.2007.1.413

[4]

Zsolt Páles, Vera Zeidan. $V$-Jacobian and $V$-co-Jacobian for Lipschitzian maps. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 623-646. doi: 10.3934/dcds.2011.29.623

[5]

Andrew D. Lewis, David R. Tyner. Geometric Jacobian linearization and LQR theory. Journal of Geometric Mechanics, 2010, 2 (4) : 397-440. doi: 10.3934/jgm.2010.2.397

[6]

Ronen Peretz, Nguyen Van Chau, L. Andrew Campbell, Carlos Gutierrez. Iterated images and the plane Jacobian conjecture. Discrete and Continuous Dynamical Systems, 2006, 16 (2) : 455-461. doi: 10.3934/dcds.2006.16.455

[7]

Neil S. Trudinger. On the local theory of prescribed Jacobian equations. Discrete and Continuous Dynamical Systems, 2014, 34 (4) : 1663-1681. doi: 10.3934/dcds.2014.34.1663

[8]

Bartosz Bieganowski, Jaros law Mederski. Nonlinear SchrÖdinger equations with sum of periodic and vanishing potentials and sign-changing nonlinearities. Communications on Pure and Applied Analysis, 2018, 17 (1) : 143-161. doi: 10.3934/cpaa.2018009

[9]

Shingo Takeuchi. The basis property of generalized Jacobian elliptic functions. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2675-2692. doi: 10.3934/cpaa.2014.13.2675

[10]

Zhengping Wang, Huan-Song Zhou. Radial sign-changing solution for fractional Schrödinger equation. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 499-508. doi: 10.3934/dcds.2016.36.499

[11]

A. El Hamidi. Multiple solutions with changing sign energy to a nonlinear elliptic equation. Communications on Pure and Applied Analysis, 2004, 3 (2) : 253-265. doi: 10.3934/cpaa.2004.3.253

[12]

Addolorata Salvatore. Sign--changing solutions for an asymptotically linear Schrödinger equation. Conference Publications, 2009, 2009 (Special) : 669-677. doi: 10.3934/proc.2009.2009.669

[13]

Guirong Liu, Yuanwei Qi. Sign-changing solutions of a quasilinear heat equation with a source term. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1389-1414. doi: 10.3934/dcdsb.2013.18.1389

[14]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454

[15]

Shiliang Weng, Xiang Zhang. Integrability of vector fields versus inverse Jacobian multipliers and normalizers. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6539-6555. doi: 10.3934/dcds.2016083

[16]

Ziran Yin, Liwei Zhang. Perturbation analysis of a class of conic programming problems under Jacobian uniqueness conditions. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1387-1397. doi: 10.3934/jimo.2018100

[17]

Jincai Kang, Chunlei Tang. Ground state radial sign-changing solutions for a gauged nonlinear Schrödinger equation involving critical growth. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5239-5252. doi: 10.3934/cpaa.2020235

[18]

Jun Yang, Yaotian Shen. Weighted Sobolev-Hardy spaces and sign-changing solutions of degenerate elliptic equation. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2565-2575. doi: 10.3934/cpaa.2013.12.2565

[19]

Angela Pistoia, Tonia Ricciardi. Sign-changing tower of bubbles for a sinh-Poisson equation with asymmetric exponents. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5651-5692. doi: 10.3934/dcds.2017245

[20]

Yufeng Shi, Qingfeng Zhu. A Kneser-type theorem for backward doubly stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1565-1579. doi: 10.3934/dcdsb.2010.14.1565

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (248)
  • HTML views (100)
  • Cited by (0)

Other articles
by authors

[Back to Top]