
-
Previous Article
An adaptive finite element DtN method for the three-dimensional acoustic scattering problem
- DCDS-B Home
- This Issue
-
Next Article
Preface for the special issue "20 years of DCDS-B"
Bifurcations in periodic integrodifference equations in $ C(\Omega) $ I: Analytical results and applications
Institut für Mathematik, Universität Klagenfurt, Universitätsstraße 65–67, 9020 Klagenfurt, Austria |
We study local bifurcations of periodic solutions to time-periodic (systems of) integrodifference equations over compact habitats. Such infinite-dimensional discrete dynamical systems arise in theoretical ecology as models to describe the spatial dispersal of species having nonoverlapping generations. Our explicit criteria allow us to identify branchings of fold- and crossing curve-type, which include the classical transcritical-, pitchfork- and flip-scenario as special cases. Indeed, not only tools to detect qualitative changes in models from e.g. spatial ecology and related simulations are provided, but these critical transitions are also classified. In addition, the bifurcation behavior of various time-periodic integrodifference equations is investigated and illustrated. This requires a combination of analytical methods and numerical tools based on Nyström discretization of the integral operators involved.
References:
[1] |
C. Aarset and C. Pötzsche, Bifurcations in periodic integrodifference equations in $C(\Omega)$ II: Discrete torus bifurcations, Commun. Pure Appl. Anal., 19 (2020), 1847-1874. Google Scholar |
[2] |
M. Y. M. Alzoubi,
The net reproductive number and bifurcation in an integro-difference system of equations, Appl. Math. Sci., 4 (2010), 191-200.
|
[3] |
H. Amann, Ordinary Differential Equations: An Introduction to Nonlinear Analysis, Studies in Mathematics 13, Walter de Gruyter, Berlin-New York, 1990.
doi: 10.1515/9783110853698. |
[4] |
M. Andersen,
Properties of some density-dependent integrodifference equation population models, Math. Biosci., 104 (1991), 135-157.
doi: 10.1016/0025-5564(91)90034-G. |
[5] |
T. Ando,
Totally positive matrices, Linear Algebra Appl., 90 (1987), 165-219.
doi: 10.1016/0024-3795(87)90313-2. |
[6] |
P. Anselone and J. Lee,
Spectral properties of integral operators with nonnegative kernels, Linear Algebra Appl., 9 (1974), 67-87.
doi: 10.1016/0024-3795(74)90027-5. |
[7] |
K. Atkinson,
Convergence rates for approximate eigenvalues of compact integral operators, SIAM J. Numer. Anal., 12 (1975), 213-222.
doi: 10.1137/0712020. |
[8] |
K. Atkinson,
A survey of numerical methods for solving nonlinear integral equations, J. Integr. Equat. Appl., 4 (1992), 15-46.
doi: 10.1216/jiea/1181075664. |
[9] |
K. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Monographs on Applied and Comp. Mathematics 4, University Press, Cambridge, 1997.
doi: 10.1017/CBO9780511626340.![]() ![]() |
[10] |
N. Bacaër,
Periodic matrix population models: Growth rate, basic reproduction number, and entropy, Bull. Math. Biol., 71 (2009), 1781-1792.
doi: 10.1007/s11538-009-9426-6. |
[11] |
N. Bacaër and E. H. Ait Dads,
On the biological interpretation of a definition for the parameter $R_0$ in periodic population models, J. Math. Biol., 65 (2012), 601-621.
doi: 10.1007/s00285-011-0479-4. |
[12] |
W.-J. Beyn, T. Hüls and M.-C. Samtenschnieder.,
On $r$-periodic orbits of $k$-periodic maps, J. Difference Equ. Appl., 14 (2008), 865-887.
doi: 10.1080/10236190801940010. |
[13] |
J. Bramburger and F. Lutscher,
Analysis of integrodifference equations with a separable dispersal kernel, Acta Applicandae Mathematicae, 161 (2019), 127-151.
doi: 10.1007/s10440-018-0207-9. |
[14] |
F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Second edition. Texts in Applied Mathematics, 40. Springer, New York, 2012.
doi: 10.1007/978-1-4614-1686-9. |
[15] |
B. Buffoni and J. F. Toland, Analytic Theory of Global Bifurcation: An Introduction, University Press, Princeton NJ, 2003.
doi: 10.1515/9781400884339.![]() ![]() |
[16] |
D. Cohn, Measure Theory, Birkhäuser, Boston etc., 1980. |
[17] |
J. M. Cushing and A. S. Ackleh,
A net reproductive number for periodic matrix models, J. Biol. Dyn., 6 (2012), 166-188.
doi: 10.1080/17513758.2010.544410. |
[18] |
J. M. Cushing and S. M. Henson,
Periodic matrix models for seasonal dynamics of structured populations with application to a seabird population, J. Math. Biol., 77 (2018), 1689-1720.
doi: 10.1007/s00285-018-1211-4. |
[19] |
M. Crandall and P. Rabinowitz,
Bifurcation from simple eigenvalues, J. Funct. Anal., 8 (1971), 321-340.
doi: 10.1016/0022-1236(71)90015-2. |
[20] |
————,
Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Ration. Mech. Anal., 52 (1973), 161-180.
doi: 10.1007/BF00282325. |
[21] |
S. Day, O. Junge and K. Mischaikow,
A rigerous numerical method for the global dynamics of infinite-dimensional discrete dynamical systems, SIAM J. Appl. Dyn. Syst., 3(2) (2004), 117-160.
doi: 10.1137/030600210. |
[22] |
K. Deimling, Nonlinear Functional Analysis, Springer, Berlin etc., 1985.
doi: 10.1007/978-3-662-00547-7. |
[23] |
G. Engeln-Müllges and F. Uhlig, Numerical Algorithms with C, Springer, Berlin etc., 1996. |
[24] |
I. Győri and M. Pituk,
The converse of the theorem on stability by the first approximation for difference equations, Nonlin. Analysis (TMA), 47 (2001), 4635-4640.
doi: 10.1016/S0362-546X(01)00576-4. |
[25] |
D. P. Hardin, P. Takáč and G. F. Webb,
A comparison of dispersal strategies for survival of spatially heterogeneous populations, SIAM J. Appl. Math., 48 (1988), 1396-1423.
doi: 10.1137/0148086. |
[26] |
————,
Dispersion population models discrete in time and continuous in space, J. Math. Biol., 28 (1990), 1-20.
doi: 10.1007/BF00171515. |
[27] |
G. Iooss, Bifurcation of Maps and Applications, Mathematics Studies 36, North-Holland, Amsterdam etc., 1979. |
[28] |
J. Jacobsen and T. McAdam,
A boundary value problem for integrodifference population models with cyclic kernels, Discrete Contin. Dyn. Syst. (Series B), 19 (2014), 3191-3207.
doi: 10.3934/dcdsb.2014.19.3191. |
[29] |
W. Jin and H. R. Thieme,
An extinction/persistence threshold for sexually reproducing populations: The cone spectral radius, Discrete Contin. Dyn. Syst. (Series B), 21 (2016), 447-470.
doi: 10.3934/dcdsb.2016.21.447. |
[30] |
T. Kato, Perturbation Theory for Linear Operators (corrected 2nd ed.), Grundlehren der mathematischen Wissenschaften 132, Springer, Berlin etc., 1980. Google Scholar |
[31] |
C. Kelley, Solving Nonlinear Equations with Newton's Method, Fundamentals of Algorithms 1, SIAM, Philadelphia, PA, 2003.
doi: 10.1137/1.9780898718898. |
[32] |
H. Kielhöfer, Bifurcation Theory: An Introduction with Applications to PDEs (2nd ed.), Applied Mathematical Sciences 156, Springer, New York etc., 2012.
doi: 10.1007/978-1-4614-0502-3. |
[33] |
M. Kot and W. M. Schaffer,
Discrete-time growth-dispersal models, Math. Biosci., 80 (1986), 109-136.
doi: 10.1016/0025-5564(86)90069-6. |
[34] |
U. Krause, Positive Dynamical Systems in Discrete Time, Studies in Mathematics 62, de Gruyter, Berlin etc., 2015.
doi: 10.1515/9783110365696. |
[35] |
R. Kress, Linear Integral Equations ($3$rd ed.), Applied Mathematical Sciences 82, Springer, New York etc., 2014.
doi: 10.1007/978-1-4614-9593-2. |
[36] |
P. Liu, J. Shi and Y. Wang,
Imperfect transcritical and pitchfork bifurcations, J. Funct. Anal., 251 (2007), 573-600.
doi: 10.1016/j.jfa.2007.06.015. |
[37] |
R. Luís, S. Elaydi and H. Oliveira, Local bifurcation in one-dimensional nonautonomous periodic difference equations, Int. J. Bifurcation Chaos, 23 (2013), 1350049, 18 pp.
doi: 10.1142/S0218127413500491. |
[38] |
F. Lutscher and M. A. Lewis,
Spatially-explicit matrix models, J. Math. Biol., 48 (2004), 293-324.
doi: 10.1007/s00285-003-0234-6. |
[39] |
F. Lutscher and S. Petrovskii,
The importance of census times in discrete-dime growth-dispersal models, J. Biol. Dynamics, 2 (2008), 55-63.
doi: 10.1080/17513750701769899. |
[40] |
F. Lutscher, Integrodifference Equations in Spatial Ecology, Interdisciplinary Applied Mathematics 49, Springer, Cham, 2019.
doi: 10.1007/978-3-030-29294-2. |
[41] |
R. H. Martin, Nonlinear Operators and Differential Equations in Banach Spaces, Pure and Applied Mathematics 11, John Wiley & Sons, Chichester etc., 1976. |
[42] |
A. Pinkus, Spectral properties of totally positive kernels and matrices, in Total Positivity and Its Applications (M. Gasca et al., eds.), Mathematics and Its Applications, 359, Kluwer, Dordrecht (1996), 477–511.
doi: 10.1007/978-94-015-8674-0_23. |
[43] |
C. Pötzsche,
Bifurcations in a periodic discrete-time environment, Nonlinear Analysis: Real World Applications, 14 (2013), 53-82.
doi: 10.1016/j.nonrwa.2012.05.002. |
[44] |
————,
Numerical dynamics of integrodifference equations: Basics and discretization errors in a $C^0$-setting, Appl. Math. Comput., 354 (2019), 422-443.
doi: 10.1016/j.amc.2019.02.033. |
[45] |
C. Pötzsche and E. Ruß, Reduction principle for nonautonomous integrodifference equations at work, Preprint, 2020. Google Scholar |
[46] |
I. K. Rana, An Introduction to Measure and Integration ($2$nd ed.), Graduate Studies in Mathematics 45, American Mathematical Society, Providence RI, 2002.
doi: 10.1090/gsm/045. |
[47] |
J. R. Reimer, M. B. Bonsall and P. K. Maini,
Approximating the critical domain size of integrodifference equations, Bull. Math. Biol., 78 (2016), 72-109.
doi: 10.1007/s11538-015-0129-x. |
[48] |
S. L. Robertson and J. M. Cushing,
A bifurcation analysis of stage-structured density dependent integrodifference equations, J. Math. Anal. Appl., 388 (2012), 490-499.
doi: 10.1016/j.jmaa.2011.09.064. |
[49] |
J. Shi,
Persistence and bifurcation of degenerate solutions, J. Funct. Anal., 169 (1999), 494-531.
doi: 10.1006/jfan.1999.3483. |
[50] |
M. Slatkin,
Gene flow and selection in a cline, Genetics, 75 (1973), 733-756.
|
[51] |
H. R. Thieme,
On a class of Hammerstein integral equations, Manuscripta Math., 29 (1979), 49-84.
doi: 10.1007/BF01309313. |
[52] |
————, Discrete time population dynamics on the state space of measures, Math. Biosci. ngin., 17 (2020), 1168-1217. Google Scholar |
[53] |
R. W. Van Kirk and M. A. Lewis, Integrodifference models for persistence in fragmented habitats, Bull. Math. Biol., 59 (1997), 107-137. Google Scholar |
[54] |
D. S. Watkins, The Matrix Eigenvalue Problem –- GR and Krylov Subspace Methods, SIAM, Philadelphia, PA, 2007.
doi: 10.1137/1.9780898717808. |
[55] |
R. Weiss,
On the approximation of fixed points of nonlinear compact operators, SIAM J. Numer. Anal., 11 (1974), 550-553.
doi: 10.1137/0711046. |
[56] |
E. Zeidler, Applied Functional Analysis: Main Principles and their Applications, Applied Mathematical Sciences 109, Springer, Heidelberg, 1995. |
[57] |
X.-Q. Zhao, Dynamical Systems in Population Biology (2nd ed.), CMS Books in Mathematics, Springer, Cham, 2017.
doi: 10.1007/978-3-319-56433-3. |
[58] |
Y. Zhou and W. F. Fagan,
A discrete-time model for population persistence in habitats with time-varying sizes, J. Math. Biol., 75 (2017), 649-704.
doi: 10.1007/s00285-017-1095-8. |
show all references
References:
[1] |
C. Aarset and C. Pötzsche, Bifurcations in periodic integrodifference equations in $C(\Omega)$ II: Discrete torus bifurcations, Commun. Pure Appl. Anal., 19 (2020), 1847-1874. Google Scholar |
[2] |
M. Y. M. Alzoubi,
The net reproductive number and bifurcation in an integro-difference system of equations, Appl. Math. Sci., 4 (2010), 191-200.
|
[3] |
H. Amann, Ordinary Differential Equations: An Introduction to Nonlinear Analysis, Studies in Mathematics 13, Walter de Gruyter, Berlin-New York, 1990.
doi: 10.1515/9783110853698. |
[4] |
M. Andersen,
Properties of some density-dependent integrodifference equation population models, Math. Biosci., 104 (1991), 135-157.
doi: 10.1016/0025-5564(91)90034-G. |
[5] |
T. Ando,
Totally positive matrices, Linear Algebra Appl., 90 (1987), 165-219.
doi: 10.1016/0024-3795(87)90313-2. |
[6] |
P. Anselone and J. Lee,
Spectral properties of integral operators with nonnegative kernels, Linear Algebra Appl., 9 (1974), 67-87.
doi: 10.1016/0024-3795(74)90027-5. |
[7] |
K. Atkinson,
Convergence rates for approximate eigenvalues of compact integral operators, SIAM J. Numer. Anal., 12 (1975), 213-222.
doi: 10.1137/0712020. |
[8] |
K. Atkinson,
A survey of numerical methods for solving nonlinear integral equations, J. Integr. Equat. Appl., 4 (1992), 15-46.
doi: 10.1216/jiea/1181075664. |
[9] |
K. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Monographs on Applied and Comp. Mathematics 4, University Press, Cambridge, 1997.
doi: 10.1017/CBO9780511626340.![]() ![]() |
[10] |
N. Bacaër,
Periodic matrix population models: Growth rate, basic reproduction number, and entropy, Bull. Math. Biol., 71 (2009), 1781-1792.
doi: 10.1007/s11538-009-9426-6. |
[11] |
N. Bacaër and E. H. Ait Dads,
On the biological interpretation of a definition for the parameter $R_0$ in periodic population models, J. Math. Biol., 65 (2012), 601-621.
doi: 10.1007/s00285-011-0479-4. |
[12] |
W.-J. Beyn, T. Hüls and M.-C. Samtenschnieder.,
On $r$-periodic orbits of $k$-periodic maps, J. Difference Equ. Appl., 14 (2008), 865-887.
doi: 10.1080/10236190801940010. |
[13] |
J. Bramburger and F. Lutscher,
Analysis of integrodifference equations with a separable dispersal kernel, Acta Applicandae Mathematicae, 161 (2019), 127-151.
doi: 10.1007/s10440-018-0207-9. |
[14] |
F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Second edition. Texts in Applied Mathematics, 40. Springer, New York, 2012.
doi: 10.1007/978-1-4614-1686-9. |
[15] |
B. Buffoni and J. F. Toland, Analytic Theory of Global Bifurcation: An Introduction, University Press, Princeton NJ, 2003.
doi: 10.1515/9781400884339.![]() ![]() |
[16] |
D. Cohn, Measure Theory, Birkhäuser, Boston etc., 1980. |
[17] |
J. M. Cushing and A. S. Ackleh,
A net reproductive number for periodic matrix models, J. Biol. Dyn., 6 (2012), 166-188.
doi: 10.1080/17513758.2010.544410. |
[18] |
J. M. Cushing and S. M. Henson,
Periodic matrix models for seasonal dynamics of structured populations with application to a seabird population, J. Math. Biol., 77 (2018), 1689-1720.
doi: 10.1007/s00285-018-1211-4. |
[19] |
M. Crandall and P. Rabinowitz,
Bifurcation from simple eigenvalues, J. Funct. Anal., 8 (1971), 321-340.
doi: 10.1016/0022-1236(71)90015-2. |
[20] |
————,
Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Ration. Mech. Anal., 52 (1973), 161-180.
doi: 10.1007/BF00282325. |
[21] |
S. Day, O. Junge and K. Mischaikow,
A rigerous numerical method for the global dynamics of infinite-dimensional discrete dynamical systems, SIAM J. Appl. Dyn. Syst., 3(2) (2004), 117-160.
doi: 10.1137/030600210. |
[22] |
K. Deimling, Nonlinear Functional Analysis, Springer, Berlin etc., 1985.
doi: 10.1007/978-3-662-00547-7. |
[23] |
G. Engeln-Müllges and F. Uhlig, Numerical Algorithms with C, Springer, Berlin etc., 1996. |
[24] |
I. Győri and M. Pituk,
The converse of the theorem on stability by the first approximation for difference equations, Nonlin. Analysis (TMA), 47 (2001), 4635-4640.
doi: 10.1016/S0362-546X(01)00576-4. |
[25] |
D. P. Hardin, P. Takáč and G. F. Webb,
A comparison of dispersal strategies for survival of spatially heterogeneous populations, SIAM J. Appl. Math., 48 (1988), 1396-1423.
doi: 10.1137/0148086. |
[26] |
————,
Dispersion population models discrete in time and continuous in space, J. Math. Biol., 28 (1990), 1-20.
doi: 10.1007/BF00171515. |
[27] |
G. Iooss, Bifurcation of Maps and Applications, Mathematics Studies 36, North-Holland, Amsterdam etc., 1979. |
[28] |
J. Jacobsen and T. McAdam,
A boundary value problem for integrodifference population models with cyclic kernels, Discrete Contin. Dyn. Syst. (Series B), 19 (2014), 3191-3207.
doi: 10.3934/dcdsb.2014.19.3191. |
[29] |
W. Jin and H. R. Thieme,
An extinction/persistence threshold for sexually reproducing populations: The cone spectral radius, Discrete Contin. Dyn. Syst. (Series B), 21 (2016), 447-470.
doi: 10.3934/dcdsb.2016.21.447. |
[30] |
T. Kato, Perturbation Theory for Linear Operators (corrected 2nd ed.), Grundlehren der mathematischen Wissenschaften 132, Springer, Berlin etc., 1980. Google Scholar |
[31] |
C. Kelley, Solving Nonlinear Equations with Newton's Method, Fundamentals of Algorithms 1, SIAM, Philadelphia, PA, 2003.
doi: 10.1137/1.9780898718898. |
[32] |
H. Kielhöfer, Bifurcation Theory: An Introduction with Applications to PDEs (2nd ed.), Applied Mathematical Sciences 156, Springer, New York etc., 2012.
doi: 10.1007/978-1-4614-0502-3. |
[33] |
M. Kot and W. M. Schaffer,
Discrete-time growth-dispersal models, Math. Biosci., 80 (1986), 109-136.
doi: 10.1016/0025-5564(86)90069-6. |
[34] |
U. Krause, Positive Dynamical Systems in Discrete Time, Studies in Mathematics 62, de Gruyter, Berlin etc., 2015.
doi: 10.1515/9783110365696. |
[35] |
R. Kress, Linear Integral Equations ($3$rd ed.), Applied Mathematical Sciences 82, Springer, New York etc., 2014.
doi: 10.1007/978-1-4614-9593-2. |
[36] |
P. Liu, J. Shi and Y. Wang,
Imperfect transcritical and pitchfork bifurcations, J. Funct. Anal., 251 (2007), 573-600.
doi: 10.1016/j.jfa.2007.06.015. |
[37] |
R. Luís, S. Elaydi and H. Oliveira, Local bifurcation in one-dimensional nonautonomous periodic difference equations, Int. J. Bifurcation Chaos, 23 (2013), 1350049, 18 pp.
doi: 10.1142/S0218127413500491. |
[38] |
F. Lutscher and M. A. Lewis,
Spatially-explicit matrix models, J. Math. Biol., 48 (2004), 293-324.
doi: 10.1007/s00285-003-0234-6. |
[39] |
F. Lutscher and S. Petrovskii,
The importance of census times in discrete-dime growth-dispersal models, J. Biol. Dynamics, 2 (2008), 55-63.
doi: 10.1080/17513750701769899. |
[40] |
F. Lutscher, Integrodifference Equations in Spatial Ecology, Interdisciplinary Applied Mathematics 49, Springer, Cham, 2019.
doi: 10.1007/978-3-030-29294-2. |
[41] |
R. H. Martin, Nonlinear Operators and Differential Equations in Banach Spaces, Pure and Applied Mathematics 11, John Wiley & Sons, Chichester etc., 1976. |
[42] |
A. Pinkus, Spectral properties of totally positive kernels and matrices, in Total Positivity and Its Applications (M. Gasca et al., eds.), Mathematics and Its Applications, 359, Kluwer, Dordrecht (1996), 477–511.
doi: 10.1007/978-94-015-8674-0_23. |
[43] |
C. Pötzsche,
Bifurcations in a periodic discrete-time environment, Nonlinear Analysis: Real World Applications, 14 (2013), 53-82.
doi: 10.1016/j.nonrwa.2012.05.002. |
[44] |
————,
Numerical dynamics of integrodifference equations: Basics and discretization errors in a $C^0$-setting, Appl. Math. Comput., 354 (2019), 422-443.
doi: 10.1016/j.amc.2019.02.033. |
[45] |
C. Pötzsche and E. Ruß, Reduction principle for nonautonomous integrodifference equations at work, Preprint, 2020. Google Scholar |
[46] |
I. K. Rana, An Introduction to Measure and Integration ($2$nd ed.), Graduate Studies in Mathematics 45, American Mathematical Society, Providence RI, 2002.
doi: 10.1090/gsm/045. |
[47] |
J. R. Reimer, M. B. Bonsall and P. K. Maini,
Approximating the critical domain size of integrodifference equations, Bull. Math. Biol., 78 (2016), 72-109.
doi: 10.1007/s11538-015-0129-x. |
[48] |
S. L. Robertson and J. M. Cushing,
A bifurcation analysis of stage-structured density dependent integrodifference equations, J. Math. Anal. Appl., 388 (2012), 490-499.
doi: 10.1016/j.jmaa.2011.09.064. |
[49] |
J. Shi,
Persistence and bifurcation of degenerate solutions, J. Funct. Anal., 169 (1999), 494-531.
doi: 10.1006/jfan.1999.3483. |
[50] |
M. Slatkin,
Gene flow and selection in a cline, Genetics, 75 (1973), 733-756.
|
[51] |
H. R. Thieme,
On a class of Hammerstein integral equations, Manuscripta Math., 29 (1979), 49-84.
doi: 10.1007/BF01309313. |
[52] |
————, Discrete time population dynamics on the state space of measures, Math. Biosci. ngin., 17 (2020), 1168-1217. Google Scholar |
[53] |
R. W. Van Kirk and M. A. Lewis, Integrodifference models for persistence in fragmented habitats, Bull. Math. Biol., 59 (1997), 107-137. Google Scholar |
[54] |
D. S. Watkins, The Matrix Eigenvalue Problem –- GR and Krylov Subspace Methods, SIAM, Philadelphia, PA, 2007.
doi: 10.1137/1.9780898717808. |
[55] |
R. Weiss,
On the approximation of fixed points of nonlinear compact operators, SIAM J. Numer. Anal., 11 (1974), 550-553.
doi: 10.1137/0711046. |
[56] |
E. Zeidler, Applied Functional Analysis: Main Principles and their Applications, Applied Mathematical Sciences 109, Springer, Heidelberg, 1995. |
[57] |
X.-Q. Zhao, Dynamical Systems in Population Biology (2nd ed.), CMS Books in Mathematics, Springer, Cham, 2017.
doi: 10.1007/978-3-319-56433-3. |
[58] |
Y. Zhou and W. F. Fagan,
A discrete-time model for population persistence in habitats with time-varying sizes, J. Math. Biol., 75 (2017), 649-704.
doi: 10.1007/s00285-017-1095-8. |















growth function | |||||
logistic | |||||
Hassell | |||||
Ricker |
growth function | |||||
logistic | |||||
Hassell | |||||
Ricker |
rule | nodes |
weights |
||
midpoint | ||||
trapezoidal | ||||
Chebyshev | ||||
rule | nodes |
weights |
||
midpoint | ||||
trapezoidal | ||||
Chebyshev | ||||
[1] |
Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032 |
[2] |
Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173 |
[3] |
Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344 |
[4] |
Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053 |
[5] |
Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020342 |
[6] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
[7] |
Kuo-Chih Hung, Shin-Hwa Wang. Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020281 |
[8] |
Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021013 |
[9] |
Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388 |
[10] |
Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079 |
[11] |
Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037 |
[12] |
Taige Wang, Bing-Yu Zhang. Forced oscillation of viscous Burgers' equation with a time-periodic force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1205-1221. doi: 10.3934/dcdsb.2020160 |
[13] |
Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021022 |
[14] |
Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303 |
[15] |
Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002 |
[16] |
Bilel Elbetch, Tounsia Benzekri, Daniel Massart, Tewfik Sari. The multi-patch logistic equation. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021025 |
[17] |
Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136 |
[18] |
Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020345 |
[19] |
Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020384 |
[20] |
Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265 |
2019 Impact Factor: 1.27
Tools
Article outline
Figures and Tables
[Back to Top]