This paper investigates mainly the long term behavior of the non-autonomous random Ginzburg-Landau equation driven by nonlinear colored noise on unbounded domains. Due to the noncompactness of Sobolev embeddings on unbounded domains, pullback asymptotic compactness of random dynamical system associated with such random Ginzburg-Landau equation is proved by the tail-estimates method. Moreover, it is proved that the pullback random attractor of the non-autonomous random Ginzburg-Landau equation driven by a linear multiplicative colored noise converges to that of the corresponding stochastic system driven by a linear multiplicative white noise.
Citation: |
[1] |
P. Acquistapace and B. Terreni, An approach to Ito linear equations in Hilbert spaces by approximation of white noise with coloured noise, Stochastic Anal. Appl., 2 (1984), 131-186.
doi: 10.1080/07362998408809031.![]() ![]() ![]() |
[2] |
L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-662-12878-7.![]() ![]() ![]() |
[3] |
M. Bartuccelli, P. Constantin, C. R. Doering, J. D. Gibbon and M. Gisselfält, On the possibility of soft and hard turbulence in the complex Ginzburg-Landau equation, Phys. D, 44 (1990), 421-444.
doi: 10.1016/0167-2789(90)90156-J.![]() ![]() ![]() |
[4] |
D. Blömker and Y. Han, Asymptotic compactness of stochastic complex Ginzburg-Landau equation on an unbounded domain, Stoch. Dyn., 10 (2010), 613-636.
doi: 10.1142/S0219493710003121.![]() ![]() ![]() |
[5] |
C. Bu, On the Cauchy problem for the 1+2 complex Ginzburg-Landau equation, J. Austral. Math. Soc. Ser. B, 36 (1995), 313-324.
doi: 10.1017/S0334270000010468.![]() ![]() ![]() |
[6] |
H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393.
doi: 10.1007/BF01193705.![]() ![]() ![]() |
[7] |
C. R. Doering, J. D. Gibbon and C. D. Levermore, Weak and strong solutions of the complex Ginzburg-Landau equation, Phys. D, 71 (1994), 285-318.
doi: 10.1016/0167-2789(94)90150-3.![]() ![]() ![]() |
[8] |
J. Duan, E. S. Titi and P. Holmes, Regularity, approximation and asymptotic dynamics for a generalized Ginzburg-Landau equation, Nonlinearity, 6 (1993), 915-933.
doi: 10.1088/0951-7715/6/6/005.![]() ![]() ![]() |
[9] |
J. Duan and P. Holmes, On the Cauchy problem of a generalized Ginzburg-Landau equation, Nonlinear Anal., 22 (1994), 1033-1040.
doi: 10.1016/0362-546X(94)90065-5.![]() ![]() ![]() |
[10] |
J. Duan, P. Holmes and E. S. Titi, Global existence theory for a generalized Ginzburg-Landau equation, Nonlinearity, 5 (1992), 1303-1314.
doi: 10.1088/0951-7715/5/6/005.![]() ![]() ![]() |
[11] |
H. Gao and C. Bu, A Dirichlet boundary value problem for a generalized Ginzburg-Landau equation, Appl. Math. Lett., 16 (2003), 179-184.
doi: 10.1016/S0893-9659(03)80029-0.![]() ![]() ![]() |
[12] |
A. Gu and B. Wang, Asymptotic behavior of random Fitzhugh-Nagumo systems driven by colored noise, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 1689-1720.
doi: 10.3934/dcdsb.2018072.![]() ![]() ![]() |
[13] |
A. Gu and B. Wang, Random attractors of FitzHugh-Nagumo systems driven by colored noise on unbounded domains, Stoch. Dyn., 19 (2019), 1950035, 38.
doi: 10.1142/S0219493719500357.![]() ![]() ![]() |
[14] |
A. Gu, K. Lu and B. Wang, Asymptotic behavior of random Navier-Stokes equations driven by Wong-Zakai approximations, Discrete Contin. Dyn. Syst., 39 (2019), 185-218.
doi: 10.3934/dcds.2019008.![]() ![]() ![]() |
[15] |
B. Guo, G. Wang and D. Li, The attractor of the stochastic generalized Ginzburg-Landau equation, Sci. China Ser. A: Math., 51 (2008), 955-964.
doi: 10.1007/s11425-007-0181-6.![]() ![]() ![]() |
[16] |
Y. F. Guo and D. L. Li, Random attractor of stochastic complex Ginzburg-Landau equation with multiplicative noise on unbounded domain, Stoch. Anal. Appl., 35 (2017), 409-422.
doi: 10.1080/07362994.2016.1259075.![]() ![]() ![]() |
[17] |
T. Jiang, X. Liu and J. Duan, Approximation for random stable manifolds under multiplicative correlated noises, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 3163-3174.
doi: 10.3934/dcdsb.2016091.![]() ![]() ![]() |
[18] |
M. M. Kłosek-Dygas, B. J. Matkowsky and Z. Schuss, Colored noise in dynamical systems, SIAM J. Appl. Math., 48 (1988), 425-441.
doi: 10.1137/0148023.![]() ![]() ![]() |
[19] |
Y. Lan and J. Shu, Fractal dimension of random attractors for non-autonomous fractional stochastic {G}inzburg-{L}andau equations with multiplicative noise, Dyn. Syst., 34 (2019), 274-300.
doi: 10.1080/14689367.2018.1523368.![]() ![]() ![]() |
[20] |
D. Li, Z. Dai and X. Liu, Long time behaviour for generalized complex Ginzburg-Landau equation, J. Math. Anal. Appl., 330 (2007), 934-948.
doi: 10.1016/j.jmaa.2006.07.095.![]() ![]() ![]() |
[21] |
J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Nonlinéaires, Dunod; Gauthier-Villars, Paris, 1969.
![]() ![]() |
[22] |
Z. Liu and Z. Qiao, Wong-Zakai approximation of stochastic Allen-Cahn equation, Int. J. Numer. Anal. Model., 16 (2019), 681-694.
![]() ![]() |
[23] |
K. Lu and B. Wang, Wong-Zakai approximations and long term behavior of stochastic partial differential equations, J. Dynam. Differential Equations, 31 (2019), 1341-1371.
doi: 10.1007/s10884-017-9626-y.![]() ![]() ![]() |
[24] |
H. Lu, P. W. Bates, S. Lü and M. Zhang, Dynamics of the 3D fractional Ginzburg-Landau equation with multiplicative noise on an unbounded domain, Commun. Math. Sci., 14 (2016), 273-295.
![]() ![]() |
[25] |
T. Nakayama and S. Tappe, Wong-Zakai approximations with convergence rate for stochastic partial differential equations, Stoch. Anal. Appl., 36 (2018), 832-857.
doi: 10.1080/07362994.2018.1471402.![]() ![]() ![]() |
[26] |
L. Ridolfi, P. D'Odorico and F. Laio, Noise-Induced Phenomena in the Environmental Sciences, Cambridge University Press, Cambridge, 2011.
doi: 10.1017/CBO9780511984730.![]() ![]() ![]() |
[27] |
J. Shen, K. Lu and W. Zhang, Heteroclinic chaotic behavior driven by a Brownian motion, J. Differential Equations, 255 (2013), 4185-4225.
doi: 10.1016/j.jde.2013.08.003.![]() ![]() ![]() |
[28] |
J. Shen, J. Zhao, K. Lu and B. Wang, The Wong-Zakai approximations of invariant manifolds and foliations for stochastic evolution equations, J. Differential Equations, 266 (2019), 4568-4623.
doi: 10.1016/j.jde.2018.10.008.![]() ![]() ![]() |
[29] |
R. Temam, Navier-Stokes Equations, Revised Edition, North-Holland Publishing Co., Amsterdam-New York, 1979.
![]() ![]() |
[30] |
B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.
doi: 10.1016/j.jde.2012.05.015.![]() ![]() ![]() |
[31] |
B. Wang, Existence and upper semicontinuity of attractors for stochastic equations with deterministic non-autonomous terms, Stoch. Dyn., 14 (2014), 1450009, 31pp.
doi: 10.1142/S0219493714500099.![]() ![]() ![]() |
[32] |
G. Wang, B. Guo and Y. Li, The asymptotic behavior of the stochastic Ginzburg-Landau equation with additive noise, Appl. Math. Comput., 198 (2008), 849-857.
doi: 10.1016/j.amc.2007.09.029.![]() ![]() ![]() |
[33] |
M. C. Wang and G. E. Uhlenbeck, On the theory of the Brownian motion. II, Rev. Modern Phys., 17 (1945), 323-342.
doi: 10.1103/RevModPhys.17.323.![]() ![]() ![]() |
[34] |
R. Wang, Y. Li and B. Wang, Random dynamics of fractional nonclassical diffusion equations driven by colored noise, Discrete Contin. Dyn. Syst., 39 (2019), 4091-4126.
doi: 10.3934/dcds.2019165.![]() ![]() ![]() |
[35] |
X. Wang, K. Lu and B. Wang, Wong-Zakai approximations and attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 264 (2018), 378-424.
doi: 10.1016/j.jde.2017.09.006.![]() ![]() ![]() |
[36] |
D. Yang, The asymptotic behavior of the stochastic Ginzburg-Landau equation with multiplicative noise, J. Math. Phys., 45 (2004), 4064-4076.
doi: 10.1063/1.1794365.![]() ![]() ![]() |
[37] |
J. Zhang and J. Shu, Existence and upper semicontinuity of random attractors for non-autonomous fractional stochastic Ginzburg-Landau equations, J. Math. Phys., 60 (2019), 042702.
doi: 10.1063/1.5037480.![]() ![]() ![]() |
[38] |
Q. Zhang, Random attractors for a Ginzburg-Landau equation with additive noise, Chaos Solitons Fractals, 39 (2009), 463-472.
doi: 10.1016/j.chaos.2007.03.001.![]() ![]() ![]() |