
-
Previous Article
On the generalized Burgers-Huxley equation: Existence, uniqueness, regularity, global attractors and numerical studies
- DCDS-B Home
- This Issue
-
Next Article
A dynamical theory for singular stochastic delay differential equations Ⅱ: nonlinear equations and invariant manifolds
Entropy-dissipating finite-difference schemes for nonlinear fourth-order parabolic equations
Institute of Analysis and Scientific Computing, Technische Universität Wien, Wiedner Hauptstraße 8–10, 1040 Wien, Austria |
Structure-preserving finite-difference schemes for general nonlinear fourth-order parabolic equations on the one-dimensional torus are derived. Examples include the thin-film and the Derrida–Lebowitz–Speer–Spohn equations. The schemes conserve the mass and dissipate the entropy. The scheme associated to the logarithmic entropy also preserves the positivity. The idea of the derivation is to reformulate the equations in such a way that the chain rule is avoided. A central finite-difference discretization is then applied to the reformulation. In this way, the same dissipation rates as in the continuous case are recovered. The strategy can be extended to a multi-dimensional thin-film equation. Numerical examples in one and two space dimensions illustrate the dissipation properties.
References:
[1] |
F. Bernis, Viscous flows, fourth order nonlinear degenerate parabolic equations and singular elliptic problems, In: J.I. Díaz et al. (eds.). Free Boundary Problems: Theory and Applications. Longman Sci. Tech., Pitman Res. Notes Math. Ser., 323 (1995), 40–56. |
[2] |
A. L. Bertozzi and J. B. Greer,
Low-curvature image simplifiers: Global regularity of smooth solutions and Laplacian limiting schemes, Commun. Pure Appl. Math., 57 (2004), 764-790.
doi: 10.1002/cpa.20019. |
[3] |
A. L. Bertozzi and M. Pugh,
The lubrication approximation for thin viscous films: regularity and long-time behavior of weak solutions, Commun. Pure Appl. Math., 49 (1996), 85-123.
doi: 10.1002/(SICI)1097-0312(199602)49:2<85::AID-CPA1>3.0.CO;2-2. |
[4] |
P. M. Bleher, J. L. Lebowitz and E. R. Speer,
Existence and positivity of solutions of a fourth-order nonlinear PDE describing interface fluctuations, Commun. Pure Appl. Math., 47 (1994), 923-942.
doi: 10.1002/cpa.3160470702. |
[5] |
A.-S. Boudou, P. Caputo, P. Dai Pra and G. Posta,
Spectral gap estimates for interacting particle systems via a Bochner-type identity, J. Funct. Anal., 232 (2006), 222-258.
doi: 10.1016/j.jfa.2005.07.012. |
[6] |
M. Bukal, E. Emmrich and A. Jüngel,
Entropy-stable and entropy-dissipative approximations of a fourth-order quantum diffusion equation, Numer. Math., 127 (2014), 365-396.
doi: 10.1007/s00211-013-0588-7. |
[7] |
P. Caputo, P. Dai Pra and G. Posta,
Convex entropy decay via the Bochner–Bakry–Emery approach, Ann. Inst. H. Poincaré Prob. Stat., 45 (2009), 734-753.
doi: 10.1214/08-AIHP183. |
[8] |
R. Dal Passo, H. Garcke and G. Grün,
On a fourth order degenerate parabolic equation: global entropy estimates and qualitative behaviour of solutions, SIAM J. Math. Anal., 29 (1998), 321-342.
doi: 10.1137/S0036141096306170. |
[9] |
B. Derrida, J. L. Lebowitz, E. R. Speer and H. Spohn,
Fluctuations of a stationary nonequilibrium interface, Phys. Rev. Lett., 67 (1991), 165-168.
doi: 10.1103/PhysRevLett.67.165. |
[10] |
B. Düring, D. Matthes and J.-P. Milišić,
A gradient flow scheme for nonlinear fourth order equations, Discrete Cont. Dyn. Sys. B, 14 (2010), 935-959.
doi: 10.3934/dcdsb.2010.14.935. |
[11] |
H. Egger,
Structure preserving approximation of dissipative evolution problems, Numer. Math., 143 (2019), 85-106.
doi: 10.1007/s00211-019-01050-w. |
[12] |
M. Fathi and J. Maas,
Entropic Ricci curvature bounds for discrete interacting systems, Ann. Appl. Prob., 26 (2016), 1774-1806.
doi: 10.1214/15-AAP1133. |
[13] |
D. Furihata and T. Matsuo, Discrete Variational Derivative Method, Chapman and Hall/CRC
Press, Boca Raton, Florida, 2010. |
[14] |
P. Guidotti and K. Longo,
Well-posedness for a class of fourth order diffusions for image processing, Nonlin. Diff. Eqs. Appl. NoDEA, 18 (2011), 407-425.
doi: 10.1007/s00030-011-0101-x. |
[15] |
X. Huo and H. Liu, A positivity-preserving and energy stable scheme for a quantum diffusion equation, Submitted for publication, 2019. arXiv: 1912.00813. Google Scholar |
[16] |
A. Jüngel and D. Matthes,
The Derrida–Lebowitz–Speer–Spohn equation: Existence, non-uniqueness, and decay rates of the solutions, SIAM J. Math. Anal., 39 (2008), 1996-2015.
doi: 10.1137/060676878. |
[17] |
A. Jüngel and D. Matthes,
An algorithmic construction of entropies in higher-order nonlinear PDEs, Nonlinearity, 19 (2006), 633-659.
doi: 10.1088/0951-7715/19/3/006. |
[18] |
A. Jüngel and W. Yue,
Discrete Bochner inequalities via the Bochner–Bakry–Emery approach for Markov chains, Ann. Appl. Prob., 27 (2017), 2238-2269.
doi: 10.1214/16-AAP1258. |
[19] |
A. Jüngel and S. Schuchnigg,
Entropy-dissipating semi-discrete Runge-Kutta schemes for nonlinear diffusion equations, Commun. Math. Sci., 15 (2017), 27-53.
doi: 10.4310/CMS.2017.v15.n1.a2. |
[20] |
A. Jüngel and J.-P. Miličić,
Entropy dissipative one-leg multistep time approximations of nonlinear diffusive equations, Numer. Meth. Partial Diff. Eqs., 31 (2015), 1119-1149.
doi: 10.1002/num.21938. |
[21] |
S. Lisini, D. Matthes and and G. Savaré,
Cahn–Hilliard and thin film equations with nonlinear mobility as gradient flows in weighted-Wasserstein metrics, J. Diff. Eqs., 253 (2012), 814-850.
doi: 10.1016/j.jde.2012.04.004. |
[22] |
J. Maas and D. Matthes,
Long-time behavior of a finite volume discretization for a fourth order diffusion equation, Nonlinearity, 29 (2016), 1992-2023.
doi: 10.1088/0951-7715/29/7/1992. |
[23] |
D. Matthes and H. Osberger,
A convergent Lagrangian discretization for a nonlinear fourth-order equation, Found. Comput. Math., 17 (2017), 73-126.
doi: 10.1007/s10208-015-9284-6. |
[24] |
G. W. Wei,
Generalized Perona–Malik equation for image restoration, IEEE Signal Process. Lett., 6 (1999), 165-167.
doi: 10.1109/97.769359. |
[25] |
L. Zhornitskaya and A. L. Bertozzi,
Positivity-preserving numerical schemes for lubrication-type equations, SIAM J. Numer. Anal., 37 (2000), 523-555.
doi: 10.1137/S0036142998335698. |
show all references
References:
[1] |
F. Bernis, Viscous flows, fourth order nonlinear degenerate parabolic equations and singular elliptic problems, In: J.I. Díaz et al. (eds.). Free Boundary Problems: Theory and Applications. Longman Sci. Tech., Pitman Res. Notes Math. Ser., 323 (1995), 40–56. |
[2] |
A. L. Bertozzi and J. B. Greer,
Low-curvature image simplifiers: Global regularity of smooth solutions and Laplacian limiting schemes, Commun. Pure Appl. Math., 57 (2004), 764-790.
doi: 10.1002/cpa.20019. |
[3] |
A. L. Bertozzi and M. Pugh,
The lubrication approximation for thin viscous films: regularity and long-time behavior of weak solutions, Commun. Pure Appl. Math., 49 (1996), 85-123.
doi: 10.1002/(SICI)1097-0312(199602)49:2<85::AID-CPA1>3.0.CO;2-2. |
[4] |
P. M. Bleher, J. L. Lebowitz and E. R. Speer,
Existence and positivity of solutions of a fourth-order nonlinear PDE describing interface fluctuations, Commun. Pure Appl. Math., 47 (1994), 923-942.
doi: 10.1002/cpa.3160470702. |
[5] |
A.-S. Boudou, P. Caputo, P. Dai Pra and G. Posta,
Spectral gap estimates for interacting particle systems via a Bochner-type identity, J. Funct. Anal., 232 (2006), 222-258.
doi: 10.1016/j.jfa.2005.07.012. |
[6] |
M. Bukal, E. Emmrich and A. Jüngel,
Entropy-stable and entropy-dissipative approximations of a fourth-order quantum diffusion equation, Numer. Math., 127 (2014), 365-396.
doi: 10.1007/s00211-013-0588-7. |
[7] |
P. Caputo, P. Dai Pra and G. Posta,
Convex entropy decay via the Bochner–Bakry–Emery approach, Ann. Inst. H. Poincaré Prob. Stat., 45 (2009), 734-753.
doi: 10.1214/08-AIHP183. |
[8] |
R. Dal Passo, H. Garcke and G. Grün,
On a fourth order degenerate parabolic equation: global entropy estimates and qualitative behaviour of solutions, SIAM J. Math. Anal., 29 (1998), 321-342.
doi: 10.1137/S0036141096306170. |
[9] |
B. Derrida, J. L. Lebowitz, E. R. Speer and H. Spohn,
Fluctuations of a stationary nonequilibrium interface, Phys. Rev. Lett., 67 (1991), 165-168.
doi: 10.1103/PhysRevLett.67.165. |
[10] |
B. Düring, D. Matthes and J.-P. Milišić,
A gradient flow scheme for nonlinear fourth order equations, Discrete Cont. Dyn. Sys. B, 14 (2010), 935-959.
doi: 10.3934/dcdsb.2010.14.935. |
[11] |
H. Egger,
Structure preserving approximation of dissipative evolution problems, Numer. Math., 143 (2019), 85-106.
doi: 10.1007/s00211-019-01050-w. |
[12] |
M. Fathi and J. Maas,
Entropic Ricci curvature bounds for discrete interacting systems, Ann. Appl. Prob., 26 (2016), 1774-1806.
doi: 10.1214/15-AAP1133. |
[13] |
D. Furihata and T. Matsuo, Discrete Variational Derivative Method, Chapman and Hall/CRC
Press, Boca Raton, Florida, 2010. |
[14] |
P. Guidotti and K. Longo,
Well-posedness for a class of fourth order diffusions for image processing, Nonlin. Diff. Eqs. Appl. NoDEA, 18 (2011), 407-425.
doi: 10.1007/s00030-011-0101-x. |
[15] |
X. Huo and H. Liu, A positivity-preserving and energy stable scheme for a quantum diffusion equation, Submitted for publication, 2019. arXiv: 1912.00813. Google Scholar |
[16] |
A. Jüngel and D. Matthes,
The Derrida–Lebowitz–Speer–Spohn equation: Existence, non-uniqueness, and decay rates of the solutions, SIAM J. Math. Anal., 39 (2008), 1996-2015.
doi: 10.1137/060676878. |
[17] |
A. Jüngel and D. Matthes,
An algorithmic construction of entropies in higher-order nonlinear PDEs, Nonlinearity, 19 (2006), 633-659.
doi: 10.1088/0951-7715/19/3/006. |
[18] |
A. Jüngel and W. Yue,
Discrete Bochner inequalities via the Bochner–Bakry–Emery approach for Markov chains, Ann. Appl. Prob., 27 (2017), 2238-2269.
doi: 10.1214/16-AAP1258. |
[19] |
A. Jüngel and S. Schuchnigg,
Entropy-dissipating semi-discrete Runge-Kutta schemes for nonlinear diffusion equations, Commun. Math. Sci., 15 (2017), 27-53.
doi: 10.4310/CMS.2017.v15.n1.a2. |
[20] |
A. Jüngel and J.-P. Miličić,
Entropy dissipative one-leg multistep time approximations of nonlinear diffusive equations, Numer. Meth. Partial Diff. Eqs., 31 (2015), 1119-1149.
doi: 10.1002/num.21938. |
[21] |
S. Lisini, D. Matthes and and G. Savaré,
Cahn–Hilliard and thin film equations with nonlinear mobility as gradient flows in weighted-Wasserstein metrics, J. Diff. Eqs., 253 (2012), 814-850.
doi: 10.1016/j.jde.2012.04.004. |
[22] |
J. Maas and D. Matthes,
Long-time behavior of a finite volume discretization for a fourth order diffusion equation, Nonlinearity, 29 (2016), 1992-2023.
doi: 10.1088/0951-7715/29/7/1992. |
[23] |
D. Matthes and H. Osberger,
A convergent Lagrangian discretization for a nonlinear fourth-order equation, Found. Comput. Math., 17 (2017), 73-126.
doi: 10.1007/s10208-015-9284-6. |
[24] |
G. W. Wei,
Generalized Perona–Malik equation for image restoration, IEEE Signal Process. Lett., 6 (1999), 165-167.
doi: 10.1109/97.769359. |
[25] |
L. Zhornitskaya and A. L. Bertozzi,
Positivity-preserving numerical schemes for lubrication-type equations, SIAM J. Numer. Anal., 37 (2000), 523-555.
doi: 10.1137/S0036142998335698. |







[1] |
Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079 |
[2] |
Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269 |
[3] |
Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020319 |
[4] |
Mia Jukić, Hermen Jan Hupkes. Dynamics of curved travelling fronts for the discrete Allen-Cahn equation on a two-dimensional lattice. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020402 |
[5] |
Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052 |
[6] |
Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226 |
[7] |
Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303 |
[8] |
Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002 |
[9] |
Bilel Elbetch, Tounsia Benzekri, Daniel Massart, Tewfik Sari. The multi-patch logistic equation. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021025 |
[10] |
Xiaoli Lu, Pengzhan Huang, Yinnian He. Fully discrete finite element approximation of the 2D/3D unsteady incompressible magnetohydrodynamic-Voigt regularization flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 815-845. doi: 10.3934/dcdsb.2020143 |
[11] |
Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136 |
[12] |
Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020345 |
[13] |
Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020384 |
[14] |
Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265 |
[15] |
Maicon Sônego. Stable transition layers in an unbalanced bistable equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020370 |
[16] |
François Dubois. Third order equivalent equation of lattice Boltzmann scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 221-248. doi: 10.3934/dcds.2009.23.221 |
[17] |
Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2-D Burgers equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 299-313. doi: 10.3934/dcds.2009.23.299 |
[18] |
Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021015 |
[19] |
Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392 |
[20] |
Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319 |
2019 Impact Factor: 1.27
Tools
Article outline
Figures and Tables
[Back to Top]