[1]
|
L. J. S. Allen, M. K. Hannigan and M. J. Strauss, Mathematical analysis of a model for a plant-herbivore system, Bull. Math. Biol., 55 (1993), 847-864.
|
[2]
|
J. Carr, Application of Center Manifold Theory, , Springer, New York, 1981.
|
[3]
|
V. Castellanos and F. Sánchez-Garduño, The existence of a limit cycle in a pollinator-plant-herbivore mathematical model, Nonlinear Anal. Real World Appl., 48 (2019), 212-231.
doi: 10.1016/j.nonrwa.2019.01.011.
|
[4]
|
F. M. Dannan, S. N. Elaydi and V. Ponomarenko, Stability of hyperbolic and nonhyperbolic fixed points of one-dimensional maps, J. Difference Equ. Appl., 9 (2003), 449-457.
doi: 10.1080/1023619031000078315.
|
[5]
|
L. Edelstein-Keshet, Mathematical Models in Biology, Society for industrial and Applied Mathematics, Philadelphia, 2005.
doi: 10.1137/1.9780898719147.
|
[6]
|
S. Elaydi, An Introduction to Difference Equations, 3$^rd$ edition, Springer, New York, 2005.
|
[7]
|
M. Erb and P. Reymond, Molecular interactions between plants and insect herbivores, Annu. Rev. Plant Biol., 70 (2019), 527-557.
doi: 10.1146/annurev-arplant-050718-095910.
|
[8]
|
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, New York, 1983.
doi: 10.1007/978-1-4612-1140-2.
|
[9]
|
J. Huang, S. Liu, S. Ruan and D. Xiao, Bifurcations in a discrete predator-prey model with nonmonotonic functional response, J. Math. Anal. Appl., 464 (2018), 201-230.
doi: 10.1016/j.jmaa.2018.03.074.
|
[10]
|
R. R Kariyat and S. L. Portman, Plant-herbivore interactions: Thinking beyond larval growth and mortality, Am. J. Bot., 103 (2016), 789-791.
doi: 10.3732/ajb.1600066.
|
[11]
|
A. Q. Khan and M. N. Qureshi, Stability analysis of a discrete biological model, Int. J. Biomath., 9 (2016), 1650021, 19 pp.
doi: 10.1142/S1793524516500212.
|
[12]
|
A. Q. Khan, J. Ma and D. Xiao, Bifurcations of a two-dimensional discrete time plant-herbivore system, Commun. Nonlinear Sci. Numer. Simul., 39 (2016), 185-198.
doi: 10.1016/j.cnsns.2016.02.037.
|
[13]
|
Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, 2$^nd$ edition, Springer, New York, 1998.
|
[14]
|
Y. Li, Z. Feng, R. Swihart, J. Bryant and N. Huntly, Modeling the impact of plant toxicity on plant-herbivore dynamics, J. Dyn. Differ. Equ., 18 (2006), 1021-1042.
doi: 10.1007/s10884-006-9029-y.
|
[15]
|
L. Li, J. Zhen and L. Jing, Periodic solutions in a herbivore-plant system with time delay and spatial diffusion, Appl. Math. Model., 40 (2016), 4765-4777.
doi: 10.1016/j.apm.2015.12.003.
|
[16]
|
S. Li and W. Zhang, Bifurcations of a discrete prey-predator model with Holling type Ⅱ functional response, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 159-176.
doi: 10.3934/dcdsb.2010.14.159.
|
[17]
|
X. Liu and D. Xiao, Bifurcations in a discrete time Lotka-Volterra predator-prey system, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 559-572.
doi: 10.3934/dcdsb.2006.6.559.
|
[18]
|
R. Liu, Z. Feng, H. Zhu and D. L. DeAngelis, Bifurcation analysis of a plant-herbivore model with toxin-determined functional response, J. Differential Equations, 245 (2008), 442-467.
doi: 10.1016/j.jde.2007.10.034.
|
[19]
|
E. Lorenz, Computational chaos - a prelude to computational instability, Physica D, 35 (1989), 299-317.
doi: 10.1016/0167-2789(89)90072-9.
|
[20]
|
J. L. Maron, A. A. Agrawal and D. W. Schemske, Plant-herbivore coevolution and plant speciation, Ecology, 100 (2019), e02704 (33pages).
doi: 10.1002/ecy.2704.
|
[21]
|
R. M. May, Biological populations with nonoverlapping generations: Stable points, stable cycles, and chaos, Science, 186 (1974), 645-647.
doi: 10.1126/science.186.4164.645.
|
[22]
|
G.-Q. Sun, A. Chakraborty, Q.-X. Liu, Z. Jin, K. E. Anderson and B.-L. Li, Influence of time delay and nonlinear diffusion on herbivore outbreak, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 1507-1518.
doi: 10.1016/j.cnsns.2013.09.016.
|
[23]
|
S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd edition, Springer, New York, 2003.
|
[24]
|
J. Zhang and J. Zhong, Qualitative structures of a degenerate fixed point of a Ricker competition model, J. Difference Equ. Appl., 25 (2019), 430-454.
doi: 10.1080/10236198.2019.1581181.
|
[25]
|
Y. Zhao, Z. Feng, Y. Zheng and X. Cen, Existence of limit cycles and homoclinic bifurcation in a plant-herbivore model with toxin-determined functional response, J. Differential Equations, 258 (2015), 2847-2872.
doi: 10.1016/j.jde.2014.12.029.
|
[26]
|
J. Zhong and J. Zhang, The stability of a degenerate fixed point for Guzowska-Luis-Elaydi Model, J. Differenc Equ. Appl., 24 (2018), 409-424.
doi: 10.1080/10236198.2017.1411909.
|