doi: 10.3934/dcdsb.2020241

Quasi-periodic solutions for nonlinear wave equation with Liouvillean frequency

1. 

College of Mathematics and Physics, Yancheng Institute of Technology, Yancheng 224051, China

2. 

Department of Mathematics, Southeast University, Nanjing 211189, China

* Corresponding author: Yanling Shi

Received  April 2019 Published  August 2020

Fund Project: The first author is partially supported by NSFC Grant(11801492, 61877052), NSFJS Grant (BK 20170472). The second author is supported by the NSFC Grant(11871146)

In this paper, one dimensional nonlinear wave equation
$ u_{tt}-u_{xx} +mu +\varepsilon f(\omega t,x,u;\xi) = 0 $
with Dirichlet boundary condition is considered, where
$ \varepsilon $
is small positive parameter,
$ \omega = \xi \bar{\omega}, $
$ \bar{\omega} $
is weak Liouvillean frequency. It is proved that there are many quasi-periodic solutions with Liouvillean frequency for the above equation. The proof is based on an infinite dimensional KAM Theorem.
Citation: Yanling Shi, Junxiang Xu. Quasi-periodic solutions for nonlinear wave equation with Liouvillean frequency. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020241
References:
[1]

A. Avila, Almost reducitility and absolute continuity, preprint, arXiv: 1006.0704. Google Scholar

[2]

A. Avila, Global theory of one-frequency Schrödinger operators, Acta Math., 215 (2015), 1-54.  doi: 10.1007/s11511-015-0128-7.  Google Scholar

[3]

A. AvilaB. Fayad and R. Krikorian, A KAM scheme for $\mathbb{SL}(2,\mathbb{R})$ cocycles with Liouvillean frequencies, Geom. Funct. Anal., 21 (2011), 1001-1019.  doi: 10.1007/s00039-011-0135-6.  Google Scholar

[4]

M. Bambusi and S. Graffi, Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods, Comm. Math. Phys., 219 (2001), 465-480.  doi: 10.1007/s002200100426.  Google Scholar

[5]

M. Berti and L. Biasco, Branching of Cantor manifolds of elliptic tori and applications to PDEs, Comm. Math. Phys., 305 (2011), 741-796.  doi: 10.1007/s00220-011-1264-3.  Google Scholar

[6]

M. Berti and P. Bolle, Quasi-periodic solutions with Sobolev regularity of NLS on $\mathbb{T}^d$ with a multiplicative potential, Eur. J. Math., 15 (2013), 229-286.  doi: 10.4171/JEMS/361.  Google Scholar

[7]

J. Bourgain, Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE, Internat. Math. Res. Notices, 11 (1994), 475-497.  doi: 10.1155/S1073792894000516.  Google Scholar

[8]

J. Bourgain, Construction of periodic solutions of nonlinear wave equations in higher dimension, Geom. Funct. Anal., 5 (1995), 629-639.  doi: 10.1007/BF01902055.  Google Scholar

[9]

J. Bourgain, Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations, Ann. of Math., 148 (1998), 363-439.  doi: 10.2307/121001.  Google Scholar

[10]

J. Bourgain, Nonlinear Schrödinger Equations, Park City Ser., 5, American Mathematical Society, Providence, 1999. doi: 10.1090/coll/046.  Google Scholar

[11] J. Bourgain, Green's Function Estimates for Lattice Schrödinger Operators and Applications, Annals of Mathematics Studies, 158, Princeton Univ. Press, 2005.  doi: 10.1515/9781400837144.  Google Scholar
[12]

J. Bourgain, On Melnikov's persistency problem, Math. Res. Lett., 4 (1997), 445-458.  doi: 10.4310/MRL.1997.v4.n4.a1.  Google Scholar

[13]

W. Craig and C. Wayne, Newton's method and periodic solutions of nonlinear wave equations, Comm. Pure Appl. Math., 46 (1993), 1409-1498.  doi: 10.1002/cpa.3160461102.  Google Scholar

[14]

L. Eliasson, Perturbations of stable invariant tori, Ann. Sc. Norm. Sup. Pisa CI Sci. Iv Ser., 15 (1998), 115-147.   Google Scholar

[15]

J. Geng and Y. Yi, Quasi-periodic solutions in a nonlinear Schrödinger equation, J. Differential Equations, 233 (2007), 512-542.  doi: 10.1016/j.jde.2006.07.027.  Google Scholar

[16]

J. Geng and J. You, A KAM theorem for one dimensional Schrödinger equation with periodic boundary conditions, J. Differential Equations, 209 (2005), 1-56.  doi: 10.1016/j.jde.2004.09.013.  Google Scholar

[17]

J. Geng and X. Ren, Lower dimensional invariant tori with prescribed frequency for nonlinear wave equation, J. Diff. Eq., 249 (2010), 2796-2821.  doi: 10.1016/j.jde.2010.04.003.  Google Scholar

[18]

X. Hou and J. You, Almost reducibility and non-perturbative reducibility of quasi periodic linear sysems, Invent. Math., 190 (2012), 209-260.  doi: 10.1007/s00222-012-0379-2.  Google Scholar

[19]

T. Kappeler and J. Pöschel, KDV & KAM, Spinger, Berlin, 1993. doi: 10.1007/978-3-662-08054-2.  Google Scholar

[20]

S. Kuksin, Nearly Integrable Infinite-dimensional Hamiltonian Systems, Lecture Notes in Mathematics, 1556, Springer-Verlag, Berlin, 1993. doi: 10.1007/BFb0092243.  Google Scholar

[21]

S. Kuksin and J. Pöschel, Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation, Ann. of Math., 143 (1996), 149-179.  doi: 10.2307/2118656.  Google Scholar

[22]

R. KrikorianJ. WangJ. You and Q. Zhou, Linearization of quasi periodically forced circle flow beyond brjuno condition, Comm. Math. Phys., 358 (2018), 81-100.  doi: 10.1007/s00220-017-3021-8.  Google Scholar

[23]

Z. Liang and J. You, Quasi-periodic solutions for 1D Schrödinger equations with higher order nonlinearity, SIAM J. Math. Anal., 36 (2005), 1965-1990.  doi: 10.1137/S0036141003435011.  Google Scholar

[24]

J. Liu and X. Yuan, A KAM theorem for Hamiltonian partial differential equation with unbounded perturbations, Comm. Math. Phys., 307 (2011), 629-673.  doi: 10.1007/s00220-011-1353-3.  Google Scholar

[25]

H. Niu and J. Geng, Almost periodic solutions for a class of higher dimensional beam equations, Nonlinearity, 20 (2007), 2499-2517.  doi: 10.1088/0951-7715/20/11/003.  Google Scholar

[26]

J. Pöschel, A KAM-theorem for some nonlinear partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 23 (1996), 119â€"148.  Google Scholar

[27]

J. Pöschel, Quasi-periodic solutions for a nonlinear wave equation, Comment. Math. Helv., 71 (1996), 269-296.  doi: 10.1007/BF02566420.  Google Scholar

[28]

Y. ShiJ. Xu and X. Xu, On quasi-periodic solutions for a generalized Boussinesq equation, Nonlinear Anal., 105 (2014), 50-61.  doi: 10.1016/j.na.2014.04.007.  Google Scholar

[29]

C. E. Wayne, Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Comm. Math. Phys., 127 (1990), 479-528.  doi: 10.1007/BF02104499.  Google Scholar

[30]

X. Yuan, Quasi-periodic solutions of completely resonant nonlinear wave equations, J. Differential Equations., 230 (2006), 213-274.  doi: 10.1016/j.jde.2005.12.012.  Google Scholar

[31]

M. Zhang and J. Si, Quasi-periodic solutions of nonlinear wave equations with quasi-periodic forcing, Phys. D, 238 (2009), 2185-2215.  doi: 10.1016/j.physd.2009.09.003.  Google Scholar

[32]

X. Xu, J. You and Q. Zhou, Quasi-periodic solutions of NLS with Liouvillean frequency, preprint, arXiv: 1707.04048. Google Scholar

show all references

References:
[1]

A. Avila, Almost reducitility and absolute continuity, preprint, arXiv: 1006.0704. Google Scholar

[2]

A. Avila, Global theory of one-frequency Schrödinger operators, Acta Math., 215 (2015), 1-54.  doi: 10.1007/s11511-015-0128-7.  Google Scholar

[3]

A. AvilaB. Fayad and R. Krikorian, A KAM scheme for $\mathbb{SL}(2,\mathbb{R})$ cocycles with Liouvillean frequencies, Geom. Funct. Anal., 21 (2011), 1001-1019.  doi: 10.1007/s00039-011-0135-6.  Google Scholar

[4]

M. Bambusi and S. Graffi, Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods, Comm. Math. Phys., 219 (2001), 465-480.  doi: 10.1007/s002200100426.  Google Scholar

[5]

M. Berti and L. Biasco, Branching of Cantor manifolds of elliptic tori and applications to PDEs, Comm. Math. Phys., 305 (2011), 741-796.  doi: 10.1007/s00220-011-1264-3.  Google Scholar

[6]

M. Berti and P. Bolle, Quasi-periodic solutions with Sobolev regularity of NLS on $\mathbb{T}^d$ with a multiplicative potential, Eur. J. Math., 15 (2013), 229-286.  doi: 10.4171/JEMS/361.  Google Scholar

[7]

J. Bourgain, Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE, Internat. Math. Res. Notices, 11 (1994), 475-497.  doi: 10.1155/S1073792894000516.  Google Scholar

[8]

J. Bourgain, Construction of periodic solutions of nonlinear wave equations in higher dimension, Geom. Funct. Anal., 5 (1995), 629-639.  doi: 10.1007/BF01902055.  Google Scholar

[9]

J. Bourgain, Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations, Ann. of Math., 148 (1998), 363-439.  doi: 10.2307/121001.  Google Scholar

[10]

J. Bourgain, Nonlinear Schrödinger Equations, Park City Ser., 5, American Mathematical Society, Providence, 1999. doi: 10.1090/coll/046.  Google Scholar

[11] J. Bourgain, Green's Function Estimates for Lattice Schrödinger Operators and Applications, Annals of Mathematics Studies, 158, Princeton Univ. Press, 2005.  doi: 10.1515/9781400837144.  Google Scholar
[12]

J. Bourgain, On Melnikov's persistency problem, Math. Res. Lett., 4 (1997), 445-458.  doi: 10.4310/MRL.1997.v4.n4.a1.  Google Scholar

[13]

W. Craig and C. Wayne, Newton's method and periodic solutions of nonlinear wave equations, Comm. Pure Appl. Math., 46 (1993), 1409-1498.  doi: 10.1002/cpa.3160461102.  Google Scholar

[14]

L. Eliasson, Perturbations of stable invariant tori, Ann. Sc. Norm. Sup. Pisa CI Sci. Iv Ser., 15 (1998), 115-147.   Google Scholar

[15]

J. Geng and Y. Yi, Quasi-periodic solutions in a nonlinear Schrödinger equation, J. Differential Equations, 233 (2007), 512-542.  doi: 10.1016/j.jde.2006.07.027.  Google Scholar

[16]

J. Geng and J. You, A KAM theorem for one dimensional Schrödinger equation with periodic boundary conditions, J. Differential Equations, 209 (2005), 1-56.  doi: 10.1016/j.jde.2004.09.013.  Google Scholar

[17]

J. Geng and X. Ren, Lower dimensional invariant tori with prescribed frequency for nonlinear wave equation, J. Diff. Eq., 249 (2010), 2796-2821.  doi: 10.1016/j.jde.2010.04.003.  Google Scholar

[18]

X. Hou and J. You, Almost reducibility and non-perturbative reducibility of quasi periodic linear sysems, Invent. Math., 190 (2012), 209-260.  doi: 10.1007/s00222-012-0379-2.  Google Scholar

[19]

T. Kappeler and J. Pöschel, KDV & KAM, Spinger, Berlin, 1993. doi: 10.1007/978-3-662-08054-2.  Google Scholar

[20]

S. Kuksin, Nearly Integrable Infinite-dimensional Hamiltonian Systems, Lecture Notes in Mathematics, 1556, Springer-Verlag, Berlin, 1993. doi: 10.1007/BFb0092243.  Google Scholar

[21]

S. Kuksin and J. Pöschel, Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation, Ann. of Math., 143 (1996), 149-179.  doi: 10.2307/2118656.  Google Scholar

[22]

R. KrikorianJ. WangJ. You and Q. Zhou, Linearization of quasi periodically forced circle flow beyond brjuno condition, Comm. Math. Phys., 358 (2018), 81-100.  doi: 10.1007/s00220-017-3021-8.  Google Scholar

[23]

Z. Liang and J. You, Quasi-periodic solutions for 1D Schrödinger equations with higher order nonlinearity, SIAM J. Math. Anal., 36 (2005), 1965-1990.  doi: 10.1137/S0036141003435011.  Google Scholar

[24]

J. Liu and X. Yuan, A KAM theorem for Hamiltonian partial differential equation with unbounded perturbations, Comm. Math. Phys., 307 (2011), 629-673.  doi: 10.1007/s00220-011-1353-3.  Google Scholar

[25]

H. Niu and J. Geng, Almost periodic solutions for a class of higher dimensional beam equations, Nonlinearity, 20 (2007), 2499-2517.  doi: 10.1088/0951-7715/20/11/003.  Google Scholar

[26]

J. Pöschel, A KAM-theorem for some nonlinear partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 23 (1996), 119â€"148.  Google Scholar

[27]

J. Pöschel, Quasi-periodic solutions for a nonlinear wave equation, Comment. Math. Helv., 71 (1996), 269-296.  doi: 10.1007/BF02566420.  Google Scholar

[28]

Y. ShiJ. Xu and X. Xu, On quasi-periodic solutions for a generalized Boussinesq equation, Nonlinear Anal., 105 (2014), 50-61.  doi: 10.1016/j.na.2014.04.007.  Google Scholar

[29]

C. E. Wayne, Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Comm. Math. Phys., 127 (1990), 479-528.  doi: 10.1007/BF02104499.  Google Scholar

[30]

X. Yuan, Quasi-periodic solutions of completely resonant nonlinear wave equations, J. Differential Equations., 230 (2006), 213-274.  doi: 10.1016/j.jde.2005.12.012.  Google Scholar

[31]

M. Zhang and J. Si, Quasi-periodic solutions of nonlinear wave equations with quasi-periodic forcing, Phys. D, 238 (2009), 2185-2215.  doi: 10.1016/j.physd.2009.09.003.  Google Scholar

[32]

X. Xu, J. You and Q. Zhou, Quasi-periodic solutions of NLS with Liouvillean frequency, preprint, arXiv: 1707.04048. Google Scholar

[1]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[2]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[3]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[4]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284

[5]

Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002

[6]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[7]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[8]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[9]

Masaru Hamano, Satoshi Masaki. A sharp scattering threshold level for mass-subcritical nonlinear Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1415-1447. doi: 10.3934/dcds.2020323

[10]

Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021011

[11]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[12]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[13]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[14]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[15]

Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021022

[16]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[17]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

[18]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

[19]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[20]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

2019 Impact Factor: 1.27

Article outline

[Back to Top]