[1]
|
B. M. Adams, H. T. Banks, M. Davidian, H.-D. Kwon, H. T. Tran, S. N. Wynne and E. S. Rosenberg, HIV dynamics: Modeling, data analysis, and optimal treatment protocols, J. Comput. Appl. Math., 184 (2005), 10-49.
doi: 10.1016/j.cam.2005.02.004.
|
[2]
|
K. Allali, J. Danane and Y. Kuang, Global analysis for an HIV infection model with CTL immune response and infected cells in eclipse phase, Appl. Sci., 7 (2017), 861.
|
[3]
|
R. A. Arnaout, N. Martin A and D. Wodarz, HIV-1 dynamics revisited: Biphasic decay by Cytotoxic T Lymphocyte killing?, Proc. R. Soc. Lond. B, 267 (2000), 1347-1354.
doi: 10.1098/rspb.2000.1149.
|
[4]
|
N. P. Bhatia and G. P. Szegö, Stability Theory of Dynamical Systems, Springer Science & Business Media, 2002.
|
[5]
|
S. M. Blower, D. Hartel, H. Dowlatabadi, R. M. Anderson and R. M. May, Drugs, sex and HIV: A mathematical model for New York City, Proc. R. Soc. Lond. B, 331 (1991), 171-187.
|
[6]
|
S. Bonhoeffer, R. M. May, G. M. Shaw and M. A. Nowak, Virus dynamics and drug therapy, P. Natl. A. Sci., 94 (1997), 6971-6976.
doi: 10.1073/pnas.94.13.6971.
|
[7]
|
J. Cao, J. McNevin, S. Holte, L. Fink, L. Corey and M. J. McElrath, Comprehensive analysis of human immunodeficiency virus type 1 (HIV-1)-specific gamma interferon-secreting CD8+ T cells in primary HIV-1 infection, J. Virol., 77 (2003), 6867-6878.
doi: 10.1128/JVI.77.12.6867-6878.2003.
|
[8]
|
H. Y. Chen, M. Di Mascio, A. S. Perelson, D. D. Ho and L. Zhang, Determination of virus burst size in vivo using a single-cycle SIV in rhesus macaques, P. Natl. A. Sci., 104 (2007), 19079-19084.
doi: 10.1073/pnas.0707449104.
|
[9]
|
M. Ciupe, B. Bivort, D. Bortz and P. Nelson, Estimating kinetic parameters from HIV primary infection data through the eyes of three different mathematical models, Math. Biosci., 200 (2006), 1-27.
doi: 10.1016/j.mbs.2005.12.006.
|
[10]
|
F. Clavel and A. J. Hance, HIV drug resistance, New. Engl. J. Med., 350 (2004), 1023-1035.
doi: 10.1056/NEJMra025195.
|
[11]
|
R. V. Culshaw, S. Ruan and R. J. Spiteri, Optimal HIV treatment by maximising immune response, J. Math. Biol., 48 (2004), 545-562.
doi: 10.1007/s00285-003-0245-3.
|
[12]
|
M. P. Davenport, R. M. Ribeiro and A. S. Perelson, Kinetics of virus-specific CD8+ T cells and the control of human immunodeficiency virus infection, J. Virol., 78 (2004), 10096-10103.
doi: 10.1128/JVI.78.18.10096-10103.2004.
|
[13]
|
M. P. Davenport, R. M. Ribeiro, L. Zhang, D. P. Wilson and A. S. Perelson, Understanding the mechanisms and limitations of immune control of HIV, Immunlo. Rev., 216 (2007), 164-175.
doi: 10.1017/CBO9780511818097.
|
[14]
|
M. P. Davenport, et al., High-potency human immunodeficiency virus vaccination leads to delayed and reduced CD8+ T-cell expansion but improved virus control, J. Virol., 79 (2005), 10059-10062.
doi: 10.1128/JVI.79.15.10059-10062.2005.
|
[15]
|
S. G. Deeks, M. Smith, M. Holodniy and J. O. Kahn, HIV-1 protease inhibitors: A review for clinicians, Jama, 277 (1997), 145-153.
doi: 10.1001/jama.1997.03540260059037.
|
[16]
|
P. Dubey, U. S. Dubey and B. Dubey, Modeling the role of acquired immune response and antiretroviral therapy in the dynamics of HIV infection, Math. Comput. Simulat., 144 (2018), 120-137.
doi: 10.1016/j.matcom.2017.07.006.
|
[17]
|
M. A. Gilchrist, D. Coombs and A. S. Perelson, Optimizing within-host viral fitness: Infected cell lifespan and virion production rate, J. Theor. Biol., 229 (2004), 281-288.
doi: 10.1016/j.jtbi.2004.04.015.
|
[18]
|
T. Guo and Z. Qiu, The effects of CTL immune response on HIV infection model with potent therapy, latently infected cells and cell-to-cell viral transmission,
doi: 10.3934/mbe.2019341.
|
[19]
|
T. Guo, Z. Qiu and L. Rong, Analysis of an hiv model with immune responses and cell-to-cell transmission, Bull. Malays. Math. Sci. So., 43 (2020), 581-607.
doi: 10.1007/s40840-018-0699-5.
|
[20]
|
S. A. Kalams, P. J. Goulder, A. K. Shea, N. G. Jones, A. K. Trocha, G. S. Ogg and B. D. Walker, Levels of human immunodeficiency virus type 1-specific cytotoxic T-lymphocyte effector and memory responses decline after suppression of viremia with highly active antiretroviral therapy, J. Virol., 73 (1999), 6721-6728.
doi: 10.1128/JVI.73.8.6721-6728.1999.
|
[21]
|
D. E. Kirschner and G. Webb, Understanding drug resistance for monotherapy treatment of HIV infection, Bull. Math. Biol., 59 (1997), 763-785.
doi: 10.1007/BF02458429.
|
[22]
|
R. Koup, J. T. Safrit, Y. Cao, C. A. Andrews, G. McLeod, W. Borkowsky, C. Farthing and D. D. Ho, Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome, J. Virol., 68 (1994), 4650-4655.
doi: 10.1128/JVI.68.7.4650-4655.1994.
|
[23]
|
M. Louie, et al., Determining the relative efficacy of highly active antiretroviral therapy, J.Infect. Dis., 187 (2003), 896-900.
doi: 10.1086/368164.
|
[24]
|
L. M. Mansky and H. M. Temin, Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase, J. Virol., 69 (1995), 5087-5094.
doi: 10.1128/JVI.69.8.5087-5094.1995.
|
[25]
|
S. Marino, I. B. Hogue, C. J. Ray and D. E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol., 254 (2009), 178-196.
doi: 10.1016/j.jtbi.2008.04.011.
|
[26]
|
R. D. Mason, M. I. Bowmer, C. M. Howley, M. Gallant, J. C. Myers and M. D. Grant, Antiretroviral drug resistance mutations sustain or enhance CTL recognition of common HIV-1 pol epitopes, J. Immunol., 172 (2004), 7212-7219.
doi: 10.4049/jimmunol.172.11.7212.
|
[27]
|
A. R. McLean and M. A. Nowak, Competition between zidovudine-sensitive and zidovudine-resistant strains of HIV, Aids, 6 (1992), 71-79.
doi: 10.1097/00002030-199201000-00009.
|
[28]
|
S. H. Michaels, R. Clark and P. Kissinger, Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection, New. Engl. J. Med., 339 (1998), 405-406.
doi: 10.1056/NEJM199808063390612.
|
[29]
|
P. Ngina, R. W. Mbogo and L. S. Luboobi, HIV drug resistance: Insights from mathematical modelling, Appl. Math. Model., 75 (2019), 141-161.
doi: 10.1016/j.apm.2019.04.040.
|
[30]
|
M. Nowak and R. M. May, Virus Dynamics: Mathematical Principles of Immunology and Virology: Mathematical Principles of Immunology and Virology, Oxford University Press, UK, 2000.
|
[31]
|
M. A. Nowak and C. R. Bangham, Population dynamics of immune responses to persistent viruses, Science, 272 (1996), 74-79.
doi: 10.1126/science.272.5258.74.
|
[32]
|
M. A. Nowak and R. M. May, Mathematical biology of HIV infections: Antigenic variation and diversity threshold, Math. Biosci., 106 (1991), 1-21.
doi: 10.1016/0025-5564(91)90037-J.
|
[33]
|
M. A. Nowak and A. J. McMichael, How HIV defeats the immune system, Sci. AM., 273 (1995), 58-65.
doi: 10.1038/scientificamerican0895-58.
|
[34]
|
A. S. Perelson, D. E. Kirschner and R. De Boer, Dynamics of HIV infection of CD4+ T cells, Math. Biosci., 114 (1993), 81-125.
doi: 10.1016/0025-5564(93)90043-A.
|
[35]
|
A. S. Perelson, A. U. Neumann, M. Markowitz, J. M. Leonard and D. D. Ho, HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time, Science, 271 (1996), 1582-1586.
doi: 10.1126/science.271.5255.1582.
|
[36]
|
A. S. Perelson and R. M. Ribeiro, Modeling the within-host dynamics of HIV infection, BMC Biol., 11 (2013), 96.
doi: 10.1186/1741-7007-11-96.
|
[37]
|
Z. Qiu and Z. Feng, The dynamics of an epidemic model with targeted antiviral prophylaxis, J. Biol. Dyn., 4 (2010), 506-526.
doi: 10.1080/17513758.2010.498925.
|
[38]
|
S. M. Raimundo, H. M. Yang, E. Venturino and E. Massad, Modeling the emergence of HIV-1 drug resistance resulting from antiretroviral therapy: Insights from theoretical and numerical studies, BioSystems, 108 (2012), 1-13.
doi: 10.1016/j.biosystems.2011.11.009.
|
[39]
|
B. Ramratnam and et al., Rapid production and clearance of HIV-1 and hepatitis C virus assessed by large volume plasma apheresis, The Lancet, 354 (1999), 1782-1785.
doi: 10.1016/S0140-6736(99)02035-8.
|
[40]
|
R. M. Ribeiro and S. Bonhoeffer, Production of resistant HIV mutants during antiretroviral therapy, P. Natl. A. Sci., 97 (2000), 7681-7686.
doi: 10.1073/pnas.97.14.7681.
|
[41]
|
R. M. Ribeiro, S. Bonhoeffer and M. A. Nowak, The frequency of resistant mutant virus before antiviral therapy, Aids, 12 (1998), 461-465.
doi: 10.1097/00002030-199805000-00006.
|
[42]
|
L. Rong, Z. Feng and A. S. Perelson, Emergence of HIV-1 drug resistance during antiretroviral treatment, Bull. Math. Biol., 69 (2007), 2027-2060.
doi: 10.1007/s11538-007-9203-3.
|
[43]
|
L. Rong, Z. Feng and A. S. Perelson, Mathematical modeling of HIV-1 infection and drug therapy, Math. Model. Bios., 87-131.
doi: 10.1007/978-3-540-76784-8_3.
|
[44]
|
L. Rong, M. A. Gilchrist, Z. Feng and A. S. Perelson, Modeling within-host HIV-1 dynamics and the evolution of drug resistance: Trade-offs between viral enzyme function and drug susceptibility, J. Theor. Biol., 247 (2007), 804-818.
doi: 10.1016/j.jtbi.2007.04.014.
|
[45]
|
L. Rong and A. S. Perelson, Asymmetric division of activated latently infected cells may explain the decay kinetics of the HIV-1 latent reservoir and intermittent viral blips, Math. Biosci., 217 (2009), 77-87.
doi: 10.1016/j.mbs.2008.10.006.
|
[46]
|
B. Sebastian and A. N. Martin, Pre-existence and emergence of drug resistance in HIV-1 infection, Proc. R. Soc. Lond. B, 264 (1997), 631-637.
doi: 10.1098/rspb.1997.0089.
|
[47]
|
A. K. Sewell, D. A. Price, A. Oxenius, A. D. Kelleher and R. E. Phillips, Cytotoxic T Lymphocyte responses to human immunodeficiency virus: Control and escape, Stem Cells, 18 (2000), 230-244.
doi: 10.1634/stemcells.18-4-230.
|
[48]
|
T. Shiri, W. Garira and S. D. Musekwa, A two-strain hiv-1 mathematical model to assess the effects of chemotherapy on disease parameters, Math. Biosci. Eng., 2 (2005), 811.
doi: 10.3934/mbe.2005.2.811.
|
[49]
|
M. O. Souza and J. P. Zubelli, Global stability for a class of virus models with Cytotoxic T Lymphocyte immune response and antigenic variation, Bull. Math. Biol., 73 (2011), 609-625.
doi: 10.1007/s11538-010-9543-2.
|
[50]
|
N. Tarfulea and P. Read, A mathematical model for the emergence of HIV drug resistance during periodic bang-bang type antiretroviral treatment, Involve, J. Math., 8 (2015), 401-420.
doi: 10.2140/involve.2015.8.401.
|
[51]
|
P. Van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6.
|
[52]
|
L. M. Wahl and M. A. Nowak, Adherence and drug resistance: Predictions for therapy outcome, Proc. Biol. Sci., 267 (2000), 835-843.
doi: 10.1098/rspb.2000.1079.
|
[53]
|
K. Wang, W. Wang and X. Liu, Global stability in a viral infection model with lytic and nonlytic immune responses, Comput. Math. Appl., 51 (2006), 1593-1610.
doi: 10.1016/j.camwa.2005.07.020.
|
[54]
|
K. Wang, W. Wang, H. Pang and X. Liu, Complex dynamic behavior in a viral model with delayed immune response, Physica D: Nonlinear Phenomena, 226 (2007), 197-208.
doi: 10.1016/j.physd.2006.12.001.
|
[55]
|
X. Wang, A. Elaiw and X. Song, Global properties of a delayed HIV infection model with CTL immune response, Appl. Math. Comput., 218 (2012), 9405-9414.
doi: 10.1016/j.amc.2012.03.024.
|
[56]
|
X. Wang, Y. Tao and X. Song, Global stability of a virus dynamics model with beddington-deangelis incidence rate and CTL immune response, Nonlinear Dyn., 66 (2011), 825-830.
doi: 10.1007/s11071-011-9954-0.
|
[57]
|
Y. Wang, F. Brauer, J. Wu and J. M. Heffernan, A delay-dependent model with HIV drug resistance during therapy, J. Math. Anal. Appl., 414 (2014), 514-531.
doi: 10.1016/j.jmaa.2013.12.064.
|
[58]
|
Y. Wang, Y. Zhou, F. Brauer and J. M. Heffernan, Viral dynamics model with CTL immune response incorporating antiretroviral therapy, J. Math. Biol., 67 (2013), 901-934.
doi: 10.1007/s00285-012-0580-3.
|
[59]
|
R. A. Weiss, How does HIV cause AIDS?, Science, 260 (1993), 1273-1279.
doi: 10.1126/science.8493571.
|
[60]
|
WHO, HIV/AIDS: Key facts, http://www.who.int/news-room/fact-sheets/detail/hiv-aids, 2018.
|
[61]
|
D. Wodarz and A. L. Lloyd, Immune responses and the emergence of drug-resistant virus strains in vivo, Proc. R. Soc. Lond. B, 271 (2004), 1101-1109.
|
[62]
|
D. Wodarz and M. A. Nowak, Specific therapy regimes could lead to long-term immunological control of HIV, P. Natl. A. Sci., 96 (1999), 14464-14469.
doi: 10.1073/pnas.96.25.14464.
|
[63]
|
D. Wodarz and M. A. Nowak, Immune responses and viral phenotype: Do replication rate and cytopathogenicity influence virus load?, Comput. Math. Method. M., 2 (2000), 113-127.
doi: 10.1080/10273660008833041.
|
[64]
|
D. Wodarz and M. A. Nowak, Mathematical models of HIV pathogenesis and treatment, BioEssays, 24 (2002), 1178-1187.
doi: 10.1002/bies.10196.
|
[65]
|
J. Wu, P. Yan and C. Archibald, Modelling the evolution of drug resistance in the presence of antiviral drugs, BMC Public Health, 7 (2007), 300.
doi: 10.1186/1471-2458-7-300.
|
[66]
|
J. Wu, R. Dhingra, M. Gambhir and J. V. Remais, Sensitivity analysis of infectious disease models: Methods, advances and their application, J. R. Soc. Interface, 10 (2013), 20121018.
doi: 10.1098/rsif.2012.1018.
|
[67]
|
Y. Xiao, S. Tang, Y. Zhou, R. J. Smith, J. Wu and N. Wang, Predicting the HIV/AIDS epidemic and measuring the effect of mobility in mainland China, J. Theor. Biol., 317 (2013), 271-285.
doi: 10.1016/j.jtbi.2012.09.037.
|
[68]
|
H. Zhu and X. Zou, Dynamics of a HIV-1 infection model with cell-mediated immune response and intracellular delay, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 511-524.
doi: 10.3934/dcdsb.2009.12.511.
|