doi: 10.3934/dcdsb.2020246

Global strong solution and exponential decay for nonhomogeneous magnetohydrodynamic equations

School of Mathematics and Statistics, Southwest University, Chongqing 400715, China

Received  March 2020 Revised  May 2020 Published  August 2020

Fund Project: Supported by National Natural Science Foundation of China (No. 11901474)

The present paper concerns an initial boundary value problem of two-dimensional (2D) nonhomogeneous magnetohydrodynamic (MHD) equations with non-negative density. We establish the global existence and exponential decay of strong solutions. In particular, the initial data can be arbitrarily large. The key idea is to use a lemma due to Desjardins (Arch. Rational Mech. Anal. 137:135–158, 1997).

Citation: Xin Zhong. Global strong solution and exponential decay for nonhomogeneous magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020246
References:
[1]

H. Abidi and M. Paicu, Global existence for the magnetohydrodynamic system in critical spaces, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 447-476.  doi: 10.1017/S0308210506001181.  Google Scholar

[2]

C. Amrouche and V. Girault, Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension, Czechoslovak Math. J., 44 (1994), 109-140.   Google Scholar

[3]

Q. BieQ. Wang and Z. Yao, Global well-posedness of the 3D incompressible MHD equations with variable density, Nonlinear Anal. Real World Appl., 47 (2019), 85-105.  doi: 10.1016/j.nonrwa.2018.10.008.  Google Scholar

[4]

F. ChenB. Guo and X. Zhai, Global solution to the 3-D inhomogeneous incompressible MHD system with discontinuous density, Kinet. Relat. Models, 12 (2019), 37-58.  doi: 10.3934/krm.2019002.  Google Scholar

[5]

F. ChenY. Li and H. Xu, Global solution to the 3D nonhomogeneous incompressible MHD equations with some large initial data, Discrete Contin. Dyn. Syst., 36 (2016), 2945-2967.  doi: 10.3934/dcds.2016.36.2945.  Google Scholar

[6]

Q. ChenZ. Tan and Y. Wang, Strong solutions to the incompressible magnetohydrodynamic equations, Math. Methods Appl. Sci., 34 (2011), 94-107.  doi: 10.1002/mma.1338.  Google Scholar

[7]

H. J. Choe and H. Kim, Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids, Comm. Partial Differential Equations, 28 (2003), 1183-1201.  doi: 10.1081/PDE-120021191.  Google Scholar

[8]

R. Danchin and P. B. Mucha, The incompressible Navier-Stokes equations in vacuum, Comm. Pure Appl. Math., 72 (2019), 1351-1385.  doi: 10.1002/cpa.21806.  Google Scholar

[9]

B. Desjardins, Regularity results for two-dimensional flows of multiphase viscous fluids, Arch. Rational Mech. Anal., 137 (1997), 135-158.  doi: 10.1007/s002050050025.  Google Scholar

[10]

L. C. Evans, Partial Differential Equations, 2$^nd$ edition, American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/019.  Google Scholar

[11]

A. Friedman, Partial Differential Equations, Dover Books on Mathematics, New York, 2008. Google Scholar

[12]

X. Huang and Y. Wang, Global strong solution to the 2D nonhomogeneous incompressible MHD system, J. Differential Equations, 254 (2013), 511-527.  doi: 10.1016/j.jde.2012.08.029.  Google Scholar

[13]

H. Li, Global strong solution to the three dimensional nonhomogeneous incompressible magnetohydrodynamic equations with density-dependent viscosity and resistivity, Math. Methods Appl. Sci., 41 (2018), 3062-3092.  doi: 10.1002/mma.4801.  Google Scholar

[14]

J. Li, Local existence and uniqueness of strong solutions to the Navier-Stokes equations with nonnegative density, J. Differential Equations, 263 (2017), 6512-6536.  doi: 10.1016/j.jde.2017.07.021.  Google Scholar

[15]

Z. Liang, Local strong solution and blow-up criterion for the 2D nonhomogeneous incompressible fluids, J. Differential Equations, 258 (2015), 2633-2654.  doi: 10.1016/j.jde.2014.12.015.  Google Scholar

[16] P.-L. Lions, Mathematical Topics in Fluid Mechanics, vol. Ⅰ: Incompressible Models, Oxford University Press, Oxford, 1996.   Google Scholar
[17]

Y. Liu, Global existence and exponential decay of strong solutions for the 3D incompressible MHD equations with density-dependent viscosity coefficient, Z. Angew. Math. Phys., 70 (2019), Paper No. 107. doi: 10.1007/s00033-019-1157-4.  Google Scholar

[18]

B. LüX. Shi and X. Zhong, Global existence and large time asymptotic behavior of strong solutions to the Cauchy problem of 2D density-dependent Navier-Stokes equations with vacuum, Nonlinearity, 31 (2018), 2617-2632.  doi: 10.1088/1361-6544/aab31f.  Google Scholar

[19]

B. LüZ. Xu and X. Zhong, Global existence and large time asymptotic behavior of strong solutions to the Cauchy problem of 2D density-dependent magnetohydrodynamic equations with vacuum, J. Math. Pures Appl., 108 (2017), 41-62.  doi: 10.1016/j.matpur.2016.10.009.  Google Scholar

[20]

M. PaicuP. Zhang and Z. Zhang, Global unique solvability of inhomogeneous Navier-Stokes equations with bounded density, Comm. Partial Differential Equations, 38 (2013), 1208-1234.  doi: 10.1080/03605302.2013.780079.  Google Scholar

[21]

X. Si and X. Ye, Global well-posedness for the incompressible MHD equations with density-dependent viscosity and resistivity coefficients, Z. Angew. Math. Phys., 67 (2016), Paper No. 126. doi: 10.1007/s00033-016-0722-3.  Google Scholar

[22]

S. Song, On local strong solutions to the three-dimensional nonhomogeneous incompressible magnetohydrodynamic equations with density-dependent viscosity and vacuum, Z. Angew. Math. Phys., 69 (2018), Paper No. 23. doi: 10.1007/s00033-018-0915-z.  Google Scholar

[23]

M. Struwe, Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, 4$^th$ edition, Springer-Verlag, Berlin, 2008.  Google Scholar

show all references

References:
[1]

H. Abidi and M. Paicu, Global existence for the magnetohydrodynamic system in critical spaces, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 447-476.  doi: 10.1017/S0308210506001181.  Google Scholar

[2]

C. Amrouche and V. Girault, Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension, Czechoslovak Math. J., 44 (1994), 109-140.   Google Scholar

[3]

Q. BieQ. Wang and Z. Yao, Global well-posedness of the 3D incompressible MHD equations with variable density, Nonlinear Anal. Real World Appl., 47 (2019), 85-105.  doi: 10.1016/j.nonrwa.2018.10.008.  Google Scholar

[4]

F. ChenB. Guo and X. Zhai, Global solution to the 3-D inhomogeneous incompressible MHD system with discontinuous density, Kinet. Relat. Models, 12 (2019), 37-58.  doi: 10.3934/krm.2019002.  Google Scholar

[5]

F. ChenY. Li and H. Xu, Global solution to the 3D nonhomogeneous incompressible MHD equations with some large initial data, Discrete Contin. Dyn. Syst., 36 (2016), 2945-2967.  doi: 10.3934/dcds.2016.36.2945.  Google Scholar

[6]

Q. ChenZ. Tan and Y. Wang, Strong solutions to the incompressible magnetohydrodynamic equations, Math. Methods Appl. Sci., 34 (2011), 94-107.  doi: 10.1002/mma.1338.  Google Scholar

[7]

H. J. Choe and H. Kim, Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids, Comm. Partial Differential Equations, 28 (2003), 1183-1201.  doi: 10.1081/PDE-120021191.  Google Scholar

[8]

R. Danchin and P. B. Mucha, The incompressible Navier-Stokes equations in vacuum, Comm. Pure Appl. Math., 72 (2019), 1351-1385.  doi: 10.1002/cpa.21806.  Google Scholar

[9]

B. Desjardins, Regularity results for two-dimensional flows of multiphase viscous fluids, Arch. Rational Mech. Anal., 137 (1997), 135-158.  doi: 10.1007/s002050050025.  Google Scholar

[10]

L. C. Evans, Partial Differential Equations, 2$^nd$ edition, American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/019.  Google Scholar

[11]

A. Friedman, Partial Differential Equations, Dover Books on Mathematics, New York, 2008. Google Scholar

[12]

X. Huang and Y. Wang, Global strong solution to the 2D nonhomogeneous incompressible MHD system, J. Differential Equations, 254 (2013), 511-527.  doi: 10.1016/j.jde.2012.08.029.  Google Scholar

[13]

H. Li, Global strong solution to the three dimensional nonhomogeneous incompressible magnetohydrodynamic equations with density-dependent viscosity and resistivity, Math. Methods Appl. Sci., 41 (2018), 3062-3092.  doi: 10.1002/mma.4801.  Google Scholar

[14]

J. Li, Local existence and uniqueness of strong solutions to the Navier-Stokes equations with nonnegative density, J. Differential Equations, 263 (2017), 6512-6536.  doi: 10.1016/j.jde.2017.07.021.  Google Scholar

[15]

Z. Liang, Local strong solution and blow-up criterion for the 2D nonhomogeneous incompressible fluids, J. Differential Equations, 258 (2015), 2633-2654.  doi: 10.1016/j.jde.2014.12.015.  Google Scholar

[16] P.-L. Lions, Mathematical Topics in Fluid Mechanics, vol. Ⅰ: Incompressible Models, Oxford University Press, Oxford, 1996.   Google Scholar
[17]

Y. Liu, Global existence and exponential decay of strong solutions for the 3D incompressible MHD equations with density-dependent viscosity coefficient, Z. Angew. Math. Phys., 70 (2019), Paper No. 107. doi: 10.1007/s00033-019-1157-4.  Google Scholar

[18]

B. LüX. Shi and X. Zhong, Global existence and large time asymptotic behavior of strong solutions to the Cauchy problem of 2D density-dependent Navier-Stokes equations with vacuum, Nonlinearity, 31 (2018), 2617-2632.  doi: 10.1088/1361-6544/aab31f.  Google Scholar

[19]

B. LüZ. Xu and X. Zhong, Global existence and large time asymptotic behavior of strong solutions to the Cauchy problem of 2D density-dependent magnetohydrodynamic equations with vacuum, J. Math. Pures Appl., 108 (2017), 41-62.  doi: 10.1016/j.matpur.2016.10.009.  Google Scholar

[20]

M. PaicuP. Zhang and Z. Zhang, Global unique solvability of inhomogeneous Navier-Stokes equations with bounded density, Comm. Partial Differential Equations, 38 (2013), 1208-1234.  doi: 10.1080/03605302.2013.780079.  Google Scholar

[21]

X. Si and X. Ye, Global well-posedness for the incompressible MHD equations with density-dependent viscosity and resistivity coefficients, Z. Angew. Math. Phys., 67 (2016), Paper No. 126. doi: 10.1007/s00033-016-0722-3.  Google Scholar

[22]

S. Song, On local strong solutions to the three-dimensional nonhomogeneous incompressible magnetohydrodynamic equations with density-dependent viscosity and vacuum, Z. Angew. Math. Phys., 69 (2018), Paper No. 23. doi: 10.1007/s00033-018-0915-z.  Google Scholar

[23]

M. Struwe, Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, 4$^th$ edition, Springer-Verlag, Berlin, 2008.  Google Scholar

[1]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[2]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[3]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[4]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[5]

Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365

[6]

Xin Zhong. Singularity formation to the nonhomogeneous magneto-micropolar fluid equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021021

[7]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[8]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[9]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[10]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

[11]

Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020105

[12]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020398

[13]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[14]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[15]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[16]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[17]

Ziang Long, Penghang Yin, Jack Xin. Global convergence and geometric characterization of slow to fast weight evolution in neural network training for classifying linearly non-separable data. Inverse Problems & Imaging, 2021, 15 (1) : 41-62. doi: 10.3934/ipi.2020077

[18]

Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093

[19]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[20]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003

2019 Impact Factor: 1.27

Article outline

[Back to Top]