# American Institute of Mathematical Sciences

## Finite-time cluster synchronization of coupled dynamical systems with impulsive effects

 1 School of Mathematics, Southeast University, Nanjing 210096, China 2 Department of Mathematics, Luoyang Normal University, Luoyang 471934, China 3 Department of Applied Mathematics, Changsha University of Science and Technology, Changsha 410114, China

* Corresponding author: Jinde Cao

Received  December 2019 Revised  June 2020 Published  August 2020

In our paper, the finite-time cluster synchronization problem is investigated for the coupled dynamical systems in networks. Based on impulsive differential equation theory and differential inequality method, two novel Lyapunov-based finite-time stability results are proposed and be used to obtain the finite-time cluster synchronization criteria for the coupled dynamical systems with synchronization and desynchronization impulsive effects, respectively. The settling time with respect to the average impulsive interval is estimated according to the sufficient synchronization conditions. It is illustrated that the introduced settling time is not only dependent on the initial conditions, but also dependent on the impulsive effects. Compared with the results without stabilizing impulses, the attractive domain of the finite-time stability can be enlarged by adding impulsive control input. Conversely, the smaller attractive domain can be obtained when the original system is subject to the destabilizing impulses. By using our criteria, the continuous feedback control can always be designed to finite-time stabilize the unstable impulsive system. Several existed results are extended and improved in the literature. Finally, typical numerical examples involving the large-scale complex network are outlined to exemplify the availability of the impulsive control and continuous feedback control, respectively.

Citation: Tianhu Yu, Jinde Cao, Chuangxia Huang. Finite-time cluster synchronization of coupled dynamical systems with impulsive effects. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020248
##### References:

show all references

##### References:
Phase plots of (a). the system (61) and (b). the system (62) in Example 1
Time histories of (a). the coupled system without control input, (b-d). the variables $x_{i1}$, $x_{i2}$ and $x_{i3}$ of the coupled system with synchronization impulsive effect in Example 1
Under control input, time histories of (a). the error function $E(t)$ in Eq. (63), (b-d). the variables $e_{i1}$, $e_{i2}$ and $e_{i3}$ of the synchronization error system in Example 1
With desynchronization impulses, time histories of (a-c). the variables $x_{i1}$, $x_{i2}$ and $x_{i3}$ of the coupled system with nonidentical nodes (61) and (62), (d-f). the variables $e_{i1}$, $e_{i2}$ and $e_{i3}$ of the synchronization error system in Example 1
Time histories of (a-c). the variables $x_{i1}$, $x_{i2}$ and $x_{i3}$ of the complex networks, (d-f). the variables $e_{i1}$, $e_{i2}$ and $e_{i3}$ of the synchronization error system in Example 2
 [1] Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331 [2] Stefan Siegmund, Petr Stehlík. Time scale-induced asynchronous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1011-1029. doi: 10.3934/dcdsb.2020151 [3] Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108 [4] Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561 [5] Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020399 [6] Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434 [7] The Editors. The 2019 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2020, 16: 349-350. doi: 10.3934/jmd.2020013 [8] Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021004 [9] Kuntal Bhandari, Franck Boyer. Boundary null-controllability of coupled parabolic systems with Robin conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 61-102. doi: 10.3934/eect.2020052 [10] Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129 [11] Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021012 [12] Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103 [13] Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020 [14] Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021001 [15] Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003 [16] Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379 [17] Duy Phan, Lassi Paunonen. Finite-dimensional controllers for robust regulation of boundary control systems. Mathematical Control & Related Fields, 2021, 11 (1) : 95-117. doi: 10.3934/mcrf.2020029 [18] Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 [19] Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316 [20] Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

2019 Impact Factor: 1.27

## Tools

Article outline

Figures and Tables