# American Institute of Mathematical Sciences

July  2021, 26(7): 3737-3765. doi: 10.3934/dcdsb.2020255

## The coupled 1:2 resonance in a symmetric case and parametric amplification model

 Department of Mathematical Sciences, Isfahan University of Technology, Isfahan 84156-83111, Iran

* Corresponding author: Reza Mazrooei-Sebdani

Received  November 2019 Revised  June 2020 Published  July 2021 Early access  August 2020

This paper deals with the coupled Hamiltonian $1$:$2$ resonance, i.e. the Hamiltonian $1$:$2$:$1$:$2$ resonance. This resonance is of the first order. We isolate several integrable cases. Our main focus is on two models. In the first part of the paper, we present a discrete symmetric normal form truncated to order three and we compute the relative equilibria for its corresponding system. In the second part, the paper is devoted to the study of the Hamiltonian describing the four-wave mixing (FWM) model. In addition to the Hamiltonian, the corresponding system possesses three more independent integrals. We use these integrals to obtain estimates for the phase space and total energy. Further, we compute the relative equilibria of the FWM system for the $1$:$2$:$1$:$2$ resonance. Finally, we carry out some numerical experiments for the detuned system.

Citation: Reza Mazrooei-Sebdani, Zahra Yousefi. The coupled 1:2 resonance in a symmetric case and parametric amplification model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3737-3765. doi: 10.3934/dcdsb.2020255
##### References:
 [1] V. I. Arnold, V. V. Kozlov and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, in Dynamical Systems III, Encyc. Math. Sciences, Springer-Verlag, Berlin, 2006. [2] H. W. Broer, G. A. Lunter and G. Vegter, Equivariant singularity theory with distinguished parameters: Two case studies of resonant Hamiltonian systems, Phys. D, 112 (1998), 64-80.  doi: 10.1016/S0167-2789(97)00202-9. [3] H. Broer and F. Takens, Dynamical Systems and Chaos, Appl. Math. Sciences, Vol. 172, Springer, New York, 2011. doi: 10.1007/978-1-4419-6870-8. [4] R. Bruggeman and F. Verhulst, The inhomogeneous Fermi-Pasta-Ulam chain. A case study of the $1:2:3$ Resonance, Acta Appl. Math., 152 (2017), 111-145.  doi: 10.1007/s10440-017-0115-4. [5] G. Cappellini and S. Trillo, Third-order three-wave mixxing in single-mode fibers: Exact solutions and spatial instability effects, J. Opt. Soc. Am. B., 8 (1991), 824-838. [6] O. Christov, Non-integrability of first order resonances of Hamiltonian systems in three degrees of freedom, Celestial Mech. Dynam. Astronom., 112 (2012), 147-167.  doi: 10.1007/s10569-011-9389-4. [7] C. De Angelis, M. Santagiustina and S. Trillo, Four-photon homoclinic instabilities in nonlinear highly birefringent media, Phys. Rev. A., 51 (1995), 774-791.  doi: 10.1103/PhysRevA.51.774. [8] J. J. Duistermaat, Non-integrability of the $1$ : $2$ : $1$-resonance, Ergodic Theory Dynam. Systems, 4 (1984), 553-568.  doi: 10.1017/S0143385700002649. [9] J. Egea, S. Ferrer and J. C. van der Meer, Bifurcations of the Hamiltonian fourfold $1$ : $1$ resonance with toroidal symmetry, J. Nonlinear Sci., 21 (2011), 835-874.  doi: 10.1007/s00332-011-9102-5. [10] D. D. Holm and P. Lynch, Stepwise precession of the resonant swinging spring, SIAM J. Appl. Dyn. Syst., 1 (2002), 44-64.  doi: 10.1137/S1111111101388571. [11] G. Haller and S. Wiggins, Geometry and chaos near resonant equilibria of 3-DOF Hamiltonian systems, Physica D, 90 (1996), 319-365.  doi: 10.1016/0167-2789(95)00247-2. [12] H. Hanßmann, Local and Semi-Local Bifurcations in Hamiltonian Dynamical Systems. Results and Examples, Lecture Notes Math., 1893, Springer-Verlag, Berlin, Heidelberg, 2007. [13] H. Hanßmann, R. Mazrooei-Sebdani, F. Verhulst, The $1: 2: 4$ resonance in a particle chain, preprint, 2020, arXiv: 2002.01263. [14] G. Y. Kryuchkyan and K. V. Kheruntsyan, Four-wave mixing with non-degenerate pumps: Steady states and squeezing in the presence of phase modulation, Quantum Semiclass. Opt., 7 (1995), 529-539.  doi: 10.1088/1355-5111/7/4/010. [15] M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices, Cambridge University, Cambridge, 2008. doi: 10.1017/CBO9780511600265. [16] S. Medvedev and B. Bednyakova, Hamiltonian approach for optimization of phase-sensitive double-pumped parametric amplifiers, Opt. Express., 26 (2018), 15503. doi: 10.1364/OE.26.015503. [17] H. Pourbeyram and A. Mafi, Four-wave mixing of a laser and its frequency-doubled version in a multimode optical fiber, Photonics, 2 (2015), 906-915.  doi: 10.3390/photonics2030906. [18] J. R. Ott, H. Steffensen, K. Rottwitt and C. J. Mckinstrie, Geometric interpreation of four-wave mixing, Phys. Rev. A., 88 (2013), 043805. [19] A. A. Redyuk, A. E. Bednyakova, S. B. Medvedev, M. P. Fedoruk and S. K. Turitsyn, Simple Geometric interpreation of signal evolution in phase-sensitive fibre optic parametric amplifier, Opt. Express., 25 (2017), 223-231. [20] D. A. Sadovski and B. I. Zhilinski, Hamiltonian systems with detuned $1$:$1$:$2$ resonance: Manifestation of bidromy, Ann. Physics, 322 (2007), 164-200.  doi: 10.1016/j.aop.2006.09.011. [21] J. A. Sanders, F. Verhulst and J. Murdock, Averaging methods in nonlinear dynamical systems. Second Edition., Applied Mathematical Sciences, , Vol. 59, Springer, New York, 2007. [22] S. Trillo and S. Wabnitz, Dynamics of the nonlinear modulational instability in optical fibers, Opt. Lett., 16 (1991), 986-988.  doi: 10.1364/OL.16.000986. [23] E. van der Aa, First order resonances in three-degrees-of-freedom systems, Celestial Mech., 31 (1983), 163-191.  doi: 10.1007/BF01686817. [24] E. van der Aa and J. A. Sanders, The $1$: $2$: $1$-resonance, its periodic orbits and integrals, in Asymptotic Analysis: From Theory to Application, Lecture Notes Math., Vol. 711, Springer, 1979,187–208. [25] E. van der Aa and F. Verhulst, Asymptotic integrability and periodic solutions of a Hamiltonian system in $1$ : $2$ : $2$-resonance, SIAM J. Math. Anal., 15 (1984), 890-911.  doi: 10.1137/0515067. [26] F. Verhulst, Integrability and non-integrability of Hamiltonian normal forms, Acta Appl. Math., 137 (2015), 253-272.  doi: 10.1007/s10440-014-9998-5. [27] L. Vivien and L. Pavesi, Handbook of Silicon Photonics. First Edition, CRC Press, Taylor & Francis Group, 2013. [28] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos. Second Edition, in Texts in Appl. Math., Springer-Verlag, New York, 2003.

show all references

##### References:
 [1] V. I. Arnold, V. V. Kozlov and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, in Dynamical Systems III, Encyc. Math. Sciences, Springer-Verlag, Berlin, 2006. [2] H. W. Broer, G. A. Lunter and G. Vegter, Equivariant singularity theory with distinguished parameters: Two case studies of resonant Hamiltonian systems, Phys. D, 112 (1998), 64-80.  doi: 10.1016/S0167-2789(97)00202-9. [3] H. Broer and F. Takens, Dynamical Systems and Chaos, Appl. Math. Sciences, Vol. 172, Springer, New York, 2011. doi: 10.1007/978-1-4419-6870-8. [4] R. Bruggeman and F. Verhulst, The inhomogeneous Fermi-Pasta-Ulam chain. A case study of the $1:2:3$ Resonance, Acta Appl. Math., 152 (2017), 111-145.  doi: 10.1007/s10440-017-0115-4. [5] G. Cappellini and S. Trillo, Third-order three-wave mixxing in single-mode fibers: Exact solutions and spatial instability effects, J. Opt. Soc. Am. B., 8 (1991), 824-838. [6] O. Christov, Non-integrability of first order resonances of Hamiltonian systems in three degrees of freedom, Celestial Mech. Dynam. Astronom., 112 (2012), 147-167.  doi: 10.1007/s10569-011-9389-4. [7] C. De Angelis, M. Santagiustina and S. Trillo, Four-photon homoclinic instabilities in nonlinear highly birefringent media, Phys. Rev. A., 51 (1995), 774-791.  doi: 10.1103/PhysRevA.51.774. [8] J. J. Duistermaat, Non-integrability of the $1$ : $2$ : $1$-resonance, Ergodic Theory Dynam. Systems, 4 (1984), 553-568.  doi: 10.1017/S0143385700002649. [9] J. Egea, S. Ferrer and J. C. van der Meer, Bifurcations of the Hamiltonian fourfold $1$ : $1$ resonance with toroidal symmetry, J. Nonlinear Sci., 21 (2011), 835-874.  doi: 10.1007/s00332-011-9102-5. [10] D. D. Holm and P. Lynch, Stepwise precession of the resonant swinging spring, SIAM J. Appl. Dyn. Syst., 1 (2002), 44-64.  doi: 10.1137/S1111111101388571. [11] G. Haller and S. Wiggins, Geometry and chaos near resonant equilibria of 3-DOF Hamiltonian systems, Physica D, 90 (1996), 319-365.  doi: 10.1016/0167-2789(95)00247-2. [12] H. Hanßmann, Local and Semi-Local Bifurcations in Hamiltonian Dynamical Systems. Results and Examples, Lecture Notes Math., 1893, Springer-Verlag, Berlin, Heidelberg, 2007. [13] H. Hanßmann, R. Mazrooei-Sebdani, F. Verhulst, The $1: 2: 4$ resonance in a particle chain, preprint, 2020, arXiv: 2002.01263. [14] G. Y. Kryuchkyan and K. V. Kheruntsyan, Four-wave mixing with non-degenerate pumps: Steady states and squeezing in the presence of phase modulation, Quantum Semiclass. Opt., 7 (1995), 529-539.  doi: 10.1088/1355-5111/7/4/010. [15] M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices, Cambridge University, Cambridge, 2008. doi: 10.1017/CBO9780511600265. [16] S. Medvedev and B. Bednyakova, Hamiltonian approach for optimization of phase-sensitive double-pumped parametric amplifiers, Opt. Express., 26 (2018), 15503. doi: 10.1364/OE.26.015503. [17] H. Pourbeyram and A. Mafi, Four-wave mixing of a laser and its frequency-doubled version in a multimode optical fiber, Photonics, 2 (2015), 906-915.  doi: 10.3390/photonics2030906. [18] J. R. Ott, H. Steffensen, K. Rottwitt and C. J. Mckinstrie, Geometric interpreation of four-wave mixing, Phys. Rev. A., 88 (2013), 043805. [19] A. A. Redyuk, A. E. Bednyakova, S. B. Medvedev, M. P. Fedoruk and S. K. Turitsyn, Simple Geometric interpreation of signal evolution in phase-sensitive fibre optic parametric amplifier, Opt. Express., 25 (2017), 223-231. [20] D. A. Sadovski and B. I. Zhilinski, Hamiltonian systems with detuned $1$:$1$:$2$ resonance: Manifestation of bidromy, Ann. Physics, 322 (2007), 164-200.  doi: 10.1016/j.aop.2006.09.011. [21] J. A. Sanders, F. Verhulst and J. Murdock, Averaging methods in nonlinear dynamical systems. Second Edition., Applied Mathematical Sciences, , Vol. 59, Springer, New York, 2007. [22] S. Trillo and S. Wabnitz, Dynamics of the nonlinear modulational instability in optical fibers, Opt. Lett., 16 (1991), 986-988.  doi: 10.1364/OL.16.000986. [23] E. van der Aa, First order resonances in three-degrees-of-freedom systems, Celestial Mech., 31 (1983), 163-191.  doi: 10.1007/BF01686817. [24] E. van der Aa and J. A. Sanders, The $1$: $2$: $1$-resonance, its periodic orbits and integrals, in Asymptotic Analysis: From Theory to Application, Lecture Notes Math., Vol. 711, Springer, 1979,187–208. [25] E. van der Aa and F. Verhulst, Asymptotic integrability and periodic solutions of a Hamiltonian system in $1$ : $2$ : $2$-resonance, SIAM J. Math. Anal., 15 (1984), 890-911.  doi: 10.1137/0515067. [26] F. Verhulst, Integrability and non-integrability of Hamiltonian normal forms, Acta Appl. Math., 137 (2015), 253-272.  doi: 10.1007/s10440-014-9998-5. [27] L. Vivien and L. Pavesi, Handbook of Silicon Photonics. First Edition, CRC Press, Taylor & Francis Group, 2013. [28] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos. Second Edition, in Texts in Appl. Math., Springer-Verlag, New York, 2003.
Sketch of the FWM model where a photon at $\omega_1$ and $\omega_4$ is annihilated while a photon at $\omega_2$ and $\omega_3$ is created
Changes of $\tilde{H}$ respect to initial conditions
Changes of $\tilde{H}$ respect to distance
$\pi_j(T)$ for $j = 1,k_ge 5,k_ge 6,k_ge 9,k_ge 10,k_ge 11,k_ge 12$ respect to $T$
$(\pi_j(T),\pi_{j+1}(T))$ for all $j = 5,k_ge 9,k_ge 11$
$(\pi_1(T),\pi_j(T))$ for all $j = 5,k_ge 6,k_ge 9,k_ge 10,k_ge 11,k_ge 12$
Changes of $\tilde{H}$ respect to $\pi_1(T)$
$(\pi_j(T),\pi_{j+1}(T))$ for all $j = 5,k_ge 9,k_ge 11$ near some relative equilibria for $\nu_1 = 1+\frac{1}{8},k_ge \nu_2 = 2+\frac{1}{2},k_ge \nu_3 = 1+\frac{1}{8},k_ge \nu_4 = 2+\frac{1}{2}$ and $\eta_1 = \eta_2 = \frac{3}{2}(\frac{\nu_2-2\nu_3}{9\gamma}) = \frac{1}{24}$, $\eta = \eta_1+\frac{1}{3}\eta_2 = \frac{1}{18}$
$(\pi_j(T),\pi_{j+1}(T))$ for all $j = 5,k_ge 9,k_ge 11$ near some relative equilibria for $\nu_1 = 1,k_ge \nu_2 = 2+\frac{1}{10},k_ge \nu_3 = 1,k_ge \nu_4 = 2$ and $\eta = 0.1118423612,k_ge \eta_1 = 0.07710541672,k_ge \eta_2 = 0.1042108334$
$(\pi_j(T),\pi_{j+1}(T))$ for all $j = 5,k_ge 9,k_ge 11$ near some relative equilibria for $\nu_1 = 1,k_ge \nu_2 = 2+\frac{1}{10},k_ge \nu_3 = 1,k_ge \nu_4 = 2$ and $\eta = 0.06174877145,k_ge \eta_1 = \frac{1}{20},k_ge \eta_2 = \frac{1}{40}$
$(\pi_j(T),\pi_{j+1}(T))$ for all $j = 5,k_ge 9,k_ge 11$ near some relative equilibria for $\nu_1 = 1,k_ge \nu_2 = 2+\frac{1}{10},k_ge \nu_3 = 1,k_ge \nu_4 = 2$ and $\eta = \frac{7}{160},k_ge \eta_1 = \frac{1}{60},k_ge \eta_2 = \frac{1}{20}$
First order genuine resonances table with $|\omega_j|<10, \; j = 1, \; 2, \; 3, \; 4$
 $1:2:3:4$ $1:2:3:5$ $1:2:3:6$ $1:2:3:7$ $1:2:3:8$ $1:2:3:9$ $1:2:4:5$ $1:2:4:6$ $1:2:4:7$ $1:2:4:8$ $1:2:4:9$ $1:2:5:6$ $1:2:5:7$ $1:2:6:7$ $1:2:6:8$ $1:2:7:8$ $1:2:7:9$ $1:2:8:9$ $1:3:4:5$ $1:3:4:6$ $1:3:4:7$ $1:3:4:8$ $1:3:5:6$ $1:3:6:7$ $1:3:6:9$ $1:4:5:6$ $1:4:5:8$ $1:4:5:9$ $1:4:7:8$ $1:4:8:9$ $1:5:6:7$ $1:6:7:8$ $1:7:8:9$ $1:2:2:3$ $1:2:2:4$ $1:2:2:5$ $1:2:2:6$ $1:2:2:7$ $1:2:2:8$ $1:2:2:9$ $1:3:3:2$ $1:3:3:4$ $1:3:3:6$ $1:4:4:2$ $1:4:4:3$ $1:4:4:5$ $1:4:4:8$ $1:5:5:4$ $1:5:5:6$ $1:6:6:3$ $1:6:6:5$ $1:6:6:7$ $1:7:7:6$ $1:7:7:8$ $1:8:8:4$ $1:8:8:7$ $1:8:8:9$ $1:9:9:8$ $1:2:2:2$ $1:1:2:3$ $1:1:2:4$ $1:1:2:5$ $1:1:2:6$ $1:1:2:7$ $1:1:2:8$ $1:1:2:9$ $1:1:3:4$ $1:1:4:5$ $1:1:5:6$ $1:1:6:7$ $1:1:7:8$ $1:1:8:9$ $1:2:1:2$ $1:1:1:2$ $2:3:4:5$ $2:3:4:6$ $2:3:4:7$ $2:3:4:8$ $2:3:5:6$ $2:3:5:7$ $2:3:5:8$ $2:3:6:8$ $2:3:6:9$ $2:4:5:6$ $2:4:5:7$ $2:4:5:8$ $2:4:5:9$ $2:4:6:7$ $2:4:6:9$ $2:4:7:8$ $2:4:7:9$ $2:4:8:9$ $2:5:7:9$ $2:3:3:5$ $2:3:3:6$ $2:4:4:3$ $2:4:4:5$ $2:4:4:7$ $2:4:4:9$ $2:5:5:3$ $2:5:5:7$ $2:6:6:3$ $2:7:7:5$ $2:7:7:9$ $2:2:3:4$ $2:2:3:5$ $2:2:4:5$ $2:2:4:7$ $2:2:4:9$ $2:2:5:7$ $2:2:7:9$ $3:4:6:7$ $3:4:6:8$ $3:4:6:9$ $3:4:7:8$ $3:5:6:8$ $3:5:6:9$ $3:6:7:9$ $3:6:8:9$ $3:4:4:7$ $3:4:4:8$ $3:5:5:8$ $3:6:6:7$ $3:6:6:8$ $3:3:4:6$ $3:3:4:7$ $3:3:5:6$ $3:3:5:8$ $3:3:6:7$ $3:3:6:8$ $4:5:8:9$ $4:5:5:9$ $4:8:8:9$ $4:4:5:8$ $4:4:5:9$ $4:4:7:8$ $4:4:8:9$
 $1:2:3:4$ $1:2:3:5$ $1:2:3:6$ $1:2:3:7$ $1:2:3:8$ $1:2:3:9$ $1:2:4:5$ $1:2:4:6$ $1:2:4:7$ $1:2:4:8$ $1:2:4:9$ $1:2:5:6$ $1:2:5:7$ $1:2:6:7$ $1:2:6:8$ $1:2:7:8$ $1:2:7:9$ $1:2:8:9$ $1:3:4:5$ $1:3:4:6$ $1:3:4:7$ $1:3:4:8$ $1:3:5:6$ $1:3:6:7$ $1:3:6:9$ $1:4:5:6$ $1:4:5:8$ $1:4:5:9$ $1:4:7:8$ $1:4:8:9$ $1:5:6:7$ $1:6:7:8$ $1:7:8:9$ $1:2:2:3$ $1:2:2:4$ $1:2:2:5$ $1:2:2:6$ $1:2:2:7$ $1:2:2:8$ $1:2:2:9$ $1:3:3:2$ $1:3:3:4$ $1:3:3:6$ $1:4:4:2$ $1:4:4:3$ $1:4:4:5$ $1:4:4:8$ $1:5:5:4$ $1:5:5:6$ $1:6:6:3$ $1:6:6:5$ $1:6:6:7$ $1:7:7:6$ $1:7:7:8$ $1:8:8:4$ $1:8:8:7$ $1:8:8:9$ $1:9:9:8$ $1:2:2:2$ $1:1:2:3$ $1:1:2:4$ $1:1:2:5$ $1:1:2:6$ $1:1:2:7$ $1:1:2:8$ $1:1:2:9$ $1:1:3:4$ $1:1:4:5$ $1:1:5:6$ $1:1:6:7$ $1:1:7:8$ $1:1:8:9$ $1:2:1:2$ $1:1:1:2$ $2:3:4:5$ $2:3:4:6$ $2:3:4:7$ $2:3:4:8$ $2:3:5:6$ $2:3:5:7$ $2:3:5:8$ $2:3:6:8$ $2:3:6:9$ $2:4:5:6$ $2:4:5:7$ $2:4:5:8$ $2:4:5:9$ $2:4:6:7$ $2:4:6:9$ $2:4:7:8$ $2:4:7:9$ $2:4:8:9$ $2:5:7:9$ $2:3:3:5$ $2:3:3:6$ $2:4:4:3$ $2:4:4:5$ $2:4:4:7$ $2:4:4:9$ $2:5:5:3$ $2:5:5:7$ $2:6:6:3$ $2:7:7:5$ $2:7:7:9$ $2:2:3:4$ $2:2:3:5$ $2:2:4:5$ $2:2:4:7$ $2:2:4:9$ $2:2:5:7$ $2:2:7:9$ $3:4:6:7$ $3:4:6:8$ $3:4:6:9$ $3:4:7:8$ $3:5:6:8$ $3:5:6:9$ $3:6:7:9$ $3:6:8:9$ $3:4:4:7$ $3:4:4:8$ $3:5:5:8$ $3:6:6:7$ $3:6:6:8$ $3:3:4:6$ $3:3:4:7$ $3:3:5:6$ $3:3:5:8$ $3:3:6:7$ $3:3:6:8$ $4:5:8:9$ $4:5:5:9$ $4:8:8:9$ $4:4:5:8$ $4:4:5:9$ $4:4:7:8$ $4:4:8:9$
Second order genuine resonances table with $|\omega_j|<10, \; j = 1, \; 2, \; 3, \; 4$
 $1:2:5:8$ $1:2:5:9$ $1:3:5:7$ $1:3:5:9$ $1:3:7:9$ $1:4:5:7$ $1:4:6:7$ $1:4:6:8$ $1:4:6:9$ $1:4:7:9$ $1:5:7:9$ $1:3:3:5$ $1:3:3:7$ $1:4:4:6$ $1:4:4:7$ $1:4:4:9$ $1:5:5:2$ $1:5:5:3$ $1:5:5:7$ $1:5:5:9$ $1:6:6:4$ $1:6:6:8$ $1:7:7:3$ $1:7:7:4$ $1:7:7:5$ $1:7:7:9$ $1:8:8:6$ $1:9:9:4$ $1:9:9:5$ $1:9:9:7$ $1:3:3:3$ $1:4:4:4$ $1:5:5:5$ $1:6:6:6$ $1:7:7:7$ $1:8:8:8$ $1:9:9:9$ $1:1:3:5$ $1:1:3:6$ $1:1:3:7$ $1:1:3:8$ $1:1:3:9$ $1:1:4:6$ $1:1:4:7$ $1:1:4:9$ $1:1:5:7$ $1:1:5:9$ $1:1:6:8$ $1:1:7:9$ $1:3:1:3$ $1:4:1:4$ $1:5:1:5$ $1:6:1:6$ $1:7:1:7$ $1:8:1:8$ $1:9:1:9$ $1:1:1:3$ $1:1:1:4$ $1:1:1:5$ $1:1:1:6$ $1:1:1:7$ $1:1:1:8$ $1:1:1:9$ $1:1:1:1$ $2:3:7:8$ $2:3:3:4$ $2:3:3:7$ $2:3:3:8$ $2:5:5:8$ $2:5:5:9$ $2:7:7:3$ $2:8:8:3$ $2:3:3:3$ $2:5:5:5$ $2:7:7:7$ $2:9:9:9$ $2:2:3:7$ $2:2:3:8$ $2:2:5:8$ $2:2:5:9$ $2:3:2:3$ $2:5:2:5$ $2:7:2:7$ $2:9:2:9$ $2:2:2:3$ $2:2:2:5$ $2:2:2:9$ $3:4:5:6$ $3:5:6:7$ $3:5:7:9$ $3:4:4:5$ $3:5:5:7$ $3:4:4:4$ $3:5:5:5$ $3:7:7:7$ $3:8:8:8$ $3:3:4:5$ $3:3:5:7$ $3:4:3:4$ $3:5:3:5$ $3:7:3:7$ $3:8:3:8$ $3:3:3:4$ $3:3:3:5$ $3:3:3:7$ $3:3:3:8$ $4:5:6:7$ $4:5:6:8$ $4:6:7:8$ $4:5:5:6$ $4:5:5:5$ $4:7:7:7$ $4:9:9:9$ $4:4:5:6$ $4:5:4:5$ $4:7:4:7$ $4:9:4:9$ $4:4:4:5$ $4:4:4:7$ $4:4:4:9$ $5:6:7:8$ $5:6:6:7$ $5:7:7:9$ $5:6:6:6$ $5:7:7:7$ $5:8:8:8$ $5:9:9:9$ $5:5:6:7$ $5:5:7:9$ $5:6:5:6$ $5:7:5:7$ $5:8:5:8$ $5:9:5:9$ $5:5:5:6$ $5:5:5:7$ $5:5:5:8$ $5:5:5:9$ $6:7:8:9$ $6:7:7:8$ $6:7:7:7$ $6:6:7:8$ $6:7:6:7$ $6:6:6:7$ $7:8:8:9$ $7:8:8:8$ $7:9:9:9$ $7:7:8:9$ $7:8:7:8$ $7:9:7:9$ $7:7:7:8$ $7:7:7:9$ $8:9:9:9$ $8:9:8:9$ $8:8:8:9$
 $1:2:5:8$ $1:2:5:9$ $1:3:5:7$ $1:3:5:9$ $1:3:7:9$ $1:4:5:7$ $1:4:6:7$ $1:4:6:8$ $1:4:6:9$ $1:4:7:9$ $1:5:7:9$ $1:3:3:5$ $1:3:3:7$ $1:4:4:6$ $1:4:4:7$ $1:4:4:9$ $1:5:5:2$ $1:5:5:3$ $1:5:5:7$ $1:5:5:9$ $1:6:6:4$ $1:6:6:8$ $1:7:7:3$ $1:7:7:4$ $1:7:7:5$ $1:7:7:9$ $1:8:8:6$ $1:9:9:4$ $1:9:9:5$ $1:9:9:7$ $1:3:3:3$ $1:4:4:4$ $1:5:5:5$ $1:6:6:6$ $1:7:7:7$ $1:8:8:8$ $1:9:9:9$ $1:1:3:5$ $1:1:3:6$ $1:1:3:7$ $1:1:3:8$ $1:1:3:9$ $1:1:4:6$ $1:1:4:7$ $1:1:4:9$ $1:1:5:7$ $1:1:5:9$ $1:1:6:8$ $1:1:7:9$ $1:3:1:3$ $1:4:1:4$ $1:5:1:5$ $1:6:1:6$ $1:7:1:7$ $1:8:1:8$ $1:9:1:9$ $1:1:1:3$ $1:1:1:4$ $1:1:1:5$ $1:1:1:6$ $1:1:1:7$ $1:1:1:8$ $1:1:1:9$ $1:1:1:1$ $2:3:7:8$ $2:3:3:4$ $2:3:3:7$ $2:3:3:8$ $2:5:5:8$ $2:5:5:9$ $2:7:7:3$ $2:8:8:3$ $2:3:3:3$ $2:5:5:5$ $2:7:7:7$ $2:9:9:9$ $2:2:3:7$ $2:2:3:8$ $2:2:5:8$ $2:2:5:9$ $2:3:2:3$ $2:5:2:5$ $2:7:2:7$ $2:9:2:9$ $2:2:2:3$ $2:2:2:5$ $2:2:2:9$ $3:4:5:6$ $3:5:6:7$ $3:5:7:9$ $3:4:4:5$ $3:5:5:7$ $3:4:4:4$ $3:5:5:5$ $3:7:7:7$ $3:8:8:8$ $3:3:4:5$ $3:3:5:7$ $3:4:3:4$ $3:5:3:5$ $3:7:3:7$ $3:8:3:8$ $3:3:3:4$ $3:3:3:5$ $3:3:3:7$ $3:3:3:8$ $4:5:6:7$ $4:5:6:8$ $4:6:7:8$ $4:5:5:6$ $4:5:5:5$ $4:7:7:7$ $4:9:9:9$ $4:4:5:6$ $4:5:4:5$ $4:7:4:7$ $4:9:4:9$ $4:4:4:5$ $4:4:4:7$ $4:4:4:9$ $5:6:7:8$ $5:6:6:7$ $5:7:7:9$ $5:6:6:6$ $5:7:7:7$ $5:8:8:8$ $5:9:9:9$ $5:5:6:7$ $5:5:7:9$ $5:6:5:6$ $5:7:5:7$ $5:8:5:8$ $5:9:5:9$ $5:5:5:6$ $5:5:5:7$ $5:5:5:8$ $5:5:5:9$ $6:7:8:9$ $6:7:7:8$ $6:7:7:7$ $6:6:7:8$ $6:7:6:7$ $6:6:6:7$ $7:8:8:9$ $7:8:8:8$ $7:9:9:9$ $7:7:8:9$ $7:8:7:8$ $7:9:7:9$ $7:7:7:8$ $7:7:7:9$ $8:9:9:9$ $8:9:8:9$ $8:8:8:9$
The bracket relations
 $\{ \downarrow , \rightarrow \}$ $\pi_1$ $\pi_2$ $\pi_3$ $\pi_4$ $\pi_5$ $\pi_6$ $\pi_7$ $\pi_8$ $\pi_1$ $0$ $0$ $0$ $0$ $\pi_6$ $-\pi_5$ $0$ $0$ $\pi_2$ $0$ $0$ $0$ $0$ $0$ $0$ $\pi_8$ $-\pi_7$ $\pi_3$ $0$ $0$ $0$ $0$ $-\pi_6$ $\pi_5$ $0$ $0$ $\pi_4$ $0$ $0$ $0$ $0$ $0$ $0$ $-\pi_8$ $\pi_7$ $\pi_5$ $-\pi_6$ $0$ $\pi_6$ $0$ $0$ $\frac{1}{2}(\pi_1-\pi_3)$ $0$ $0$ $\pi_6$ $\pi_5$ $0$ $-\pi_5$ $0$ $-\frac{1}{2}(\pi_1-\pi_3)$ $0$ $0$ $0$ $\pi_7$ $0$ $-\pi_8$ $0$ $\pi_8$ $0$ $0$ $0$ $\frac{1}{2}(\pi_2-\pi_4)$ $\pi_8$ $0$ $\pi_7$ $0$ $-\pi_7$ $0$ $0$ $-\frac{1}{2}(\pi_2-\pi_4)$ $0$ $\pi_{9}$ $-2\pi_{10}$ $\pi_{10}$ $0$ $0$ $-\frac{1}{2}\pi_{18}$ $-\frac{1}{2}\pi_{17}$ $\frac{1}{2}\pi_{12}$ $-\frac{1}{2}\pi_{11}$ $\pi_{10}$ $2\pi_9$ $-\pi_9$ $0$ $0$ $\frac{1}{2}\pi_{17}$ $-\frac{1}{2}\pi_{18}$ $-\frac{1}{2}\pi_{11}$ $-\frac{1}{2}\pi_{12}$ $\pi_{11}$ $-2\pi_{12}$ $0$ $0$ $\pi_{12}$ $-\frac{1}{2}\pi_{20}$ $-\frac{1}{2}\pi_{19}$ $\frac{1}{2}\pi_{10}$ $\frac{1}{2}\pi_{9}$ $\pi_{12}$ $2\pi_{11}$ $0$ $0$ $-\pi_{11}$ $\frac{1}{2}\pi_{19}$ $-\frac{1}{2}\pi_{20}$ $-\frac{1}{2}\pi_{9}$ $\frac{1}{2}\pi_{10}$ $\pi_{13}$ $0$ $\pi_{14}$ $-2\pi_{14}$ $0$ $-\frac{1}{2}\pi_{18}$ $\frac{1}{2}\pi_{17}$ $\frac{1}{2}\pi_{16}$ $-\frac{1}{2}\pi_{15}$ $\pi_{14}$ $0$ $-\pi_{13}$ $2\pi_{13}$ $0$ $\frac{1}{2}\pi_{17}$ $\frac{1}{2}\pi_{18}$ $-\frac{1}{2}\pi_{15}$ $-\frac{1}{2}\pi_{16}$ $\pi_{15}$ $0$ $0$ $-2\pi_{16}$ $\pi_{16}$ $-\frac{1}{2}\pi_{20}$ $\frac{1}{2}\pi_{19}$ $\frac{1}{2}\pi_{14}$ $\frac{1}{2}\pi_{13}$ $\pi_{16}$ $0$ $0$ $2\pi_{15}$ $-\pi_{15}$ $\frac{1}{2}\pi_{19}$ $\frac{1}{2}\pi_{20}$ $-\frac{1}{2}\pi_{13}$ $\frac{1}{2}\pi_{14}$ $\{ \downarrow , \rightarrow \}$ $\pi_9$ $\pi_{10}$ $\pi_{11}$ $\pi_{12}$ $\pi_{13}$ $\pi_{14}$ $\pi_{15}$ $\pi_{16}$ $\pi_1$ $2\pi_{10}$ $-2\pi_9$ $2\pi_{12}$ $-2\pi_{11}$ $0$ $0$ $0$ $0$ $\pi_2$ $-\pi_{10}$ $\pi_9$ $0$ $0$ $-\pi_{14}$ $\pi_{13}$ $0$ $0$ $\pi_3$ $0$ $0$ $0$ $0$ $2\pi_{14}$ $-2\pi_{13}$ $2\pi_{16}$ $-2\pi_{15}$ $\pi_4$ $0$ $0$ $-\pi_{12}$ $\pi_{11}$ $0$ $0$ $-\pi_{16}$ $\pi_{15}$ $\pi_5$ $\frac{1}{2}\pi_{18}$ $-\frac{1}{2}\pi_{17}$ $\frac{1}{2}\pi_{20}$ $-\frac{1}{2}\pi_{19}$ $\frac{1}{2}\pi_{18}$ $-\frac{1}{2}\pi_{17}$ $\frac{1}{2}\pi_{20}$ $-\frac{1}{2}\pi_{19}$ $\pi_6$ $\frac{1}{2}\pi_{17}$ $\frac{1}{2}\pi_{18}$ $\frac{1}{2}\pi_{19}$ $\frac{1}{2}\pi_{20}$ $-\frac{1}{2}\pi_{17}$ $-\frac{1}{2}\pi_{18}$ $-\frac{1}{2}\pi_{19}$ $-\frac{1}{2}\pi_{20}$ $\pi_7$ $-\frac{1}{2}\pi_{12}$ $\frac{1}{2}\pi_{11}$ $-\frac{1}{2}\pi_{10}$ $\frac{1}{2}\pi_{9}$ $-\frac{1}{2}\pi_{16}$ $\frac{1}{2}\pi_{17}$ $-\frac{1}{2}\pi_{14}$ $\frac{1}{2}\pi_{13}$ $\pi_8$ $\frac{1}{2}\pi_{11}$ $\frac{1}{2}\pi_{12}$ $-\frac{1}{2}\pi_{9}$ $-\frac{1}{2}\pi_{10}$ $\frac{1}{2}\pi_{15}$ $\frac{1}{2}\pi_{16}$ $-\frac{1}{2}\pi_{13}$ $-\frac{1}{2}\pi_{14}$ $\pi_{9}$ $0$ $\pi_1(\pi_1-4\pi_2)$ $4 \pi_1 \pi_8$ $-4 \pi_1 \pi_7$ $2 \pi_5 \pi_6$ $(\pi_5^{2}-\pi_6^{2})$ $0$ $0$ $\pi_{10}$ $-\pi_1(\pi_1-4\pi_2)$ $0$ $4 \pi_1 \pi_7$ $4 \pi_1 \pi_8$ $-(\pi_5^{2}-\pi_6^{2})$ $2 \pi_5 \pi_6$ $0$ $0$ $\pi_{11}$ $-4\pi_1 \pi_8$ $-4\pi_1 \pi_7$ $0$ $\pi_1(\pi_1-4\pi_4)$ $0$ $0$ $2 \pi_5 \pi_6$ $(\pi_5^{2}-\pi_6^{2})$ $\pi_{12}$ $4\pi_1 \pi_7$ $-4\pi_1 \pi_8$ $-\pi_1(\pi_1-4\pi_4)$ $0$ $0$ $0$ $-(\pi_5^{2}-\pi_6^{2})$ $2 \pi_5 \pi_6$ $\pi_{13}$ $-2 \pi_5 \pi_6$ $(\pi_5^{2}-\pi_6^{2})$ $0$ $0$ $0$ $-\pi_3(4\pi_2-\pi_3)$ $4\pi_3 \pi_8$ $-4\pi_3 \pi_7$ $\pi_{14}$ $-(\pi_5^{2}-\pi_6^{2})$ $-2 \pi_5 \pi_6$ $0$ $0$ $\pi_3(4\pi_2-\pi_3)$ $0$ $4\pi_3 \pi_7$ $4\pi_3 \pi_8$ $\pi_{15}$ $0$ $0$ $-2 \pi_5 \pi_6$ $(\pi_5^{2}-\pi_6^{2})$ $-4\pi_3 \pi_8$ $-4\pi_3 \pi_7$ $0$ $-\pi_3(4\pi_4-\pi_3)$ $\pi_{16}$ $0$ $0$ $-(\pi_5^{2}-\pi_6^{2})$ $-2 \pi_5 \pi_6$ $4\pi_3 \pi_7$ $-4\pi_3 \pi_8$ $\pi_3(4\pi_4-\pi_3)$ $0$
 $\{ \downarrow , \rightarrow \}$ $\pi_1$ $\pi_2$ $\pi_3$ $\pi_4$ $\pi_5$ $\pi_6$ $\pi_7$ $\pi_8$ $\pi_1$ $0$ $0$ $0$ $0$ $\pi_6$ $-\pi_5$ $0$ $0$ $\pi_2$ $0$ $0$ $0$ $0$ $0$ $0$ $\pi_8$ $-\pi_7$ $\pi_3$ $0$ $0$ $0$ $0$ $-\pi_6$ $\pi_5$ $0$ $0$ $\pi_4$ $0$ $0$ $0$ $0$ $0$ $0$ $-\pi_8$ $\pi_7$ $\pi_5$ $-\pi_6$ $0$ $\pi_6$ $0$ $0$ $\frac{1}{2}(\pi_1-\pi_3)$ $0$ $0$ $\pi_6$ $\pi_5$ $0$ $-\pi_5$ $0$ $-\frac{1}{2}(\pi_1-\pi_3)$ $0$ $0$ $0$ $\pi_7$ $0$ $-\pi_8$ $0$ $\pi_8$ $0$ $0$ $0$ $\frac{1}{2}(\pi_2-\pi_4)$ $\pi_8$ $0$ $\pi_7$ $0$ $-\pi_7$ $0$ $0$ $-\frac{1}{2}(\pi_2-\pi_4)$ $0$ $\pi_{9}$ $-2\pi_{10}$ $\pi_{10}$ $0$ $0$ $-\frac{1}{2}\pi_{18}$ $-\frac{1}{2}\pi_{17}$ $\frac{1}{2}\pi_{12}$ $-\frac{1}{2}\pi_{11}$ $\pi_{10}$ $2\pi_9$ $-\pi_9$ $0$ $0$ $\frac{1}{2}\pi_{17}$ $-\frac{1}{2}\pi_{18}$ $-\frac{1}{2}\pi_{11}$ $-\frac{1}{2}\pi_{12}$ $\pi_{11}$ $-2\pi_{12}$ $0$ $0$ $\pi_{12}$ $-\frac{1}{2}\pi_{20}$ $-\frac{1}{2}\pi_{19}$ $\frac{1}{2}\pi_{10}$ $\frac{1}{2}\pi_{9}$ $\pi_{12}$ $2\pi_{11}$ $0$ $0$ $-\pi_{11}$ $\frac{1}{2}\pi_{19}$ $-\frac{1}{2}\pi_{20}$ $-\frac{1}{2}\pi_{9}$ $\frac{1}{2}\pi_{10}$ $\pi_{13}$ $0$ $\pi_{14}$ $-2\pi_{14}$ $0$ $-\frac{1}{2}\pi_{18}$ $\frac{1}{2}\pi_{17}$ $\frac{1}{2}\pi_{16}$ $-\frac{1}{2}\pi_{15}$ $\pi_{14}$ $0$ $-\pi_{13}$ $2\pi_{13}$ $0$ $\frac{1}{2}\pi_{17}$ $\frac{1}{2}\pi_{18}$ $-\frac{1}{2}\pi_{15}$ $-\frac{1}{2}\pi_{16}$ $\pi_{15}$ $0$ $0$ $-2\pi_{16}$ $\pi_{16}$ $-\frac{1}{2}\pi_{20}$ $\frac{1}{2}\pi_{19}$ $\frac{1}{2}\pi_{14}$ $\frac{1}{2}\pi_{13}$ $\pi_{16}$ $0$ $0$ $2\pi_{15}$ $-\pi_{15}$ $\frac{1}{2}\pi_{19}$ $\frac{1}{2}\pi_{20}$ $-\frac{1}{2}\pi_{13}$ $\frac{1}{2}\pi_{14}$ $\{ \downarrow , \rightarrow \}$ $\pi_9$ $\pi_{10}$ $\pi_{11}$ $\pi_{12}$ $\pi_{13}$ $\pi_{14}$ $\pi_{15}$ $\pi_{16}$ $\pi_1$ $2\pi_{10}$ $-2\pi_9$ $2\pi_{12}$ $-2\pi_{11}$ $0$ $0$ $0$ $0$ $\pi_2$ $-\pi_{10}$ $\pi_9$ $0$ $0$ $-\pi_{14}$ $\pi_{13}$ $0$ $0$ $\pi_3$ $0$ $0$ $0$ $0$ $2\pi_{14}$ $-2\pi_{13}$ $2\pi_{16}$ $-2\pi_{15}$ $\pi_4$ $0$ $0$ $-\pi_{12}$ $\pi_{11}$ $0$ $0$ $-\pi_{16}$ $\pi_{15}$ $\pi_5$ $\frac{1}{2}\pi_{18}$ $-\frac{1}{2}\pi_{17}$ $\frac{1}{2}\pi_{20}$ $-\frac{1}{2}\pi_{19}$ $\frac{1}{2}\pi_{18}$ $-\frac{1}{2}\pi_{17}$ $\frac{1}{2}\pi_{20}$ $-\frac{1}{2}\pi_{19}$ $\pi_6$ $\frac{1}{2}\pi_{17}$ $\frac{1}{2}\pi_{18}$ $\frac{1}{2}\pi_{19}$ $\frac{1}{2}\pi_{20}$ $-\frac{1}{2}\pi_{17}$ $-\frac{1}{2}\pi_{18}$ $-\frac{1}{2}\pi_{19}$ $-\frac{1}{2}\pi_{20}$ $\pi_7$ $-\frac{1}{2}\pi_{12}$ $\frac{1}{2}\pi_{11}$ $-\frac{1}{2}\pi_{10}$ $\frac{1}{2}\pi_{9}$ $-\frac{1}{2}\pi_{16}$ $\frac{1}{2}\pi_{17}$ $-\frac{1}{2}\pi_{14}$ $\frac{1}{2}\pi_{13}$ $\pi_8$ $\frac{1}{2}\pi_{11}$ $\frac{1}{2}\pi_{12}$ $-\frac{1}{2}\pi_{9}$ $-\frac{1}{2}\pi_{10}$ $\frac{1}{2}\pi_{15}$ $\frac{1}{2}\pi_{16}$ $-\frac{1}{2}\pi_{13}$ $-\frac{1}{2}\pi_{14}$ $\pi_{9}$ $0$ $\pi_1(\pi_1-4\pi_2)$ $4 \pi_1 \pi_8$ $-4 \pi_1 \pi_7$ $2 \pi_5 \pi_6$ $(\pi_5^{2}-\pi_6^{2})$ $0$ $0$ $\pi_{10}$ $-\pi_1(\pi_1-4\pi_2)$ $0$ $4 \pi_1 \pi_7$ $4 \pi_1 \pi_8$ $-(\pi_5^{2}-\pi_6^{2})$ $2 \pi_5 \pi_6$ $0$ $0$ $\pi_{11}$ $-4\pi_1 \pi_8$ $-4\pi_1 \pi_7$ $0$ $\pi_1(\pi_1-4\pi_4)$ $0$ $0$ $2 \pi_5 \pi_6$ $(\pi_5^{2}-\pi_6^{2})$ $\pi_{12}$ $4\pi_1 \pi_7$ $-4\pi_1 \pi_8$ $-\pi_1(\pi_1-4\pi_4)$ $0$ $0$ $0$ $-(\pi_5^{2}-\pi_6^{2})$ $2 \pi_5 \pi_6$ $\pi_{13}$ $-2 \pi_5 \pi_6$ $(\pi_5^{2}-\pi_6^{2})$ $0$ $0$ $0$ $-\pi_3(4\pi_2-\pi_3)$ $4\pi_3 \pi_8$ $-4\pi_3 \pi_7$ $\pi_{14}$ $-(\pi_5^{2}-\pi_6^{2})$ $-2 \pi_5 \pi_6$ $0$ $0$ $\pi_3(4\pi_2-\pi_3)$ $0$ $4\pi_3 \pi_7$ $4\pi_3 \pi_8$ $\pi_{15}$ $0$ $0$ $-2 \pi_5 \pi_6$ $(\pi_5^{2}-\pi_6^{2})$ $-4\pi_3 \pi_8$ $-4\pi_3 \pi_7$ $0$ $-\pi_3(4\pi_4-\pi_3)$ $\pi_{16}$ $0$ $0$ $-(\pi_5^{2}-\pi_6^{2})$ $-2 \pi_5 \pi_6$ $4\pi_3 \pi_7$ $-4\pi_3 \pi_8$ $\pi_3(4\pi_4-\pi_3)$ $0$
The manifolds of equilibria of type OEE
 No. Relative Equilibria Features Conditions and Parameters ⅰ $\begin{array}{l}(\alpha, 0, \frac{\sqrt{a_3a_7}}{a_7}\alpha, \mp \frac{a_7}{a_5} \gamma, -\frac{a_7}{a_5}\beta, \pm \gamma, \beta), \\(\alpha, 0, - \frac{\sqrt{a_3a_7}}{a_7}\alpha, \mp \frac{a_7}{a_5} \gamma, -\frac{a_7}{a_5}\beta, \pm \gamma, \beta)\end{array}$ $\begin{array}{l}\pi_{10}\pi_{12}\neq0, \\ \pi_5=0, \\ \pi_6 \neq 0\end{array}$ $\begin{array}{l}a_3a_7>0, \\{(a_3a_5^2\alpha+2a_7^3)[2a_5^2a_7\alpha^2(2\eta-\alpha)-(a_3a_5^2\alpha+2a_7^3)\beta^2]}\geq0, \\ \gamma=\frac{\sqrt{(a_3a_5^2\alpha+2a_7^3)[2a_5^2a_7\alpha^2(2\eta-\alpha)-(a_3a_5^2\alpha+2a_7^3)\beta^2]}}{a_3a_5^2\alpha+2a_7^3}, \\ \forall~\alpha, ~\beta\end{array}$ ⅱ $\begin{array}{l}(\alpha, \frac{\sqrt{-a_3a_7}}{a_7}\alpha, 0, \mp \frac{a_7}{a_5} \gamma, -\frac{a_7}{a_5}\beta, \pm \gamma, \beta), \\(\alpha, - \frac{\sqrt{-a_3a_7}}{a_7}\alpha, 0, \mp \frac{a_7}{a_5} \gamma, -\frac{a_7}{a_5}\beta, \pm \gamma, \beta)\end{array}$ $\begin{array}{l}\pi_{10}\pi_{12}\neq0, \\ \pi_5 \neq 0, \\ \pi_6=0, \\ \pi_1 \neq \frac{-2a_7^3}{a_3a_5^2}, \\{(a_3a_5^2\alpha+2a_7^3)[2a_5^2a_7\alpha^2(2\eta-\alpha)-(a_3a_5^2\alpha+2a_7^3)\beta^2]}\geq0\end{array}$ $\begin{array}{l}a_3a_7<0, \\ \gamma=\frac{\sqrt{(a_3a_5^2\alpha+2a_7^3)[2a_5^2a_7\alpha^2(2\eta-\alpha)-(a_3a_5^2\alpha+2a_7^3)\beta^2]}}{a_3a_5^2\alpha+2a_7^3}, \\ \forall~\alpha, ~\beta\end{array}$ ⅲ $(\frac{-2a_7^3}{a_3a_5^2}, \pm 2a_7^2 \frac{\sqrt{-a_3a_7}}{a_3a_5^2}, 0, 0, -\frac{a_7}{a_5}\beta, 0, \beta)$ $\begin{array}{l}\pi_{10}\pi_{12}\neq0, \\ \pi_5 \neq 0, \\ \pi_6=0, \\ \pi_1 = \frac{-2a_7^3}{a_3a_5^2}\end{array}$ $\begin{array}{l}a_3a_7<0, \\ \forall~\beta\end{array}$ ⅵ $(\varrho, \gamma_1, \alpha, \gamma_2, -\frac{a_3}{a_1}\gamma_3, \gamma_4, \gamma_3)$ $\begin{array}{l}\pi_{10}\pi_{12}\neq0, \\ \pi_5 \neq 0, \\ \pi_6 \neq 0\end{array}$ $\begin{array}{l}|a_5\alpha|\leq|a_3|\varrho, \\ \varrho=\frac{4}{3}\frac{\eta a_5^2}{a_5^2+a_3^2}, \\ \gamma_1 = \pm \frac{\sqrt{a_3^2\varrho^2-a_5^2\alpha^2}}{a_5}, \\ \gamma_2 = \frac{2 a_5 \gamma_4 \pm \sqrt{2\varrho^3(a_5^2+a_7^2)}}{2 a_7}, \\ \gamma_3 = \mp \frac{a_5a_7 \sqrt{2} \gamma_1 \alpha}{a_3 \sqrt{\varrho(a_5^2+a_7^2)}}, \\ \gamma_4 = \pm \frac{2a_5a_7\alpha^2-a_3(a_5-a_1)\varrho^2}{a_3\sqrt{2\varrho(a_5^2+a_7^2)}}, \\ \forall~\alpha\end{array}$
 No. Relative Equilibria Features Conditions and Parameters ⅰ $\begin{array}{l}(\alpha, 0, \frac{\sqrt{a_3a_7}}{a_7}\alpha, \mp \frac{a_7}{a_5} \gamma, -\frac{a_7}{a_5}\beta, \pm \gamma, \beta), \\(\alpha, 0, - \frac{\sqrt{a_3a_7}}{a_7}\alpha, \mp \frac{a_7}{a_5} \gamma, -\frac{a_7}{a_5}\beta, \pm \gamma, \beta)\end{array}$ $\begin{array}{l}\pi_{10}\pi_{12}\neq0, \\ \pi_5=0, \\ \pi_6 \neq 0\end{array}$ $\begin{array}{l}a_3a_7>0, \\{(a_3a_5^2\alpha+2a_7^3)[2a_5^2a_7\alpha^2(2\eta-\alpha)-(a_3a_5^2\alpha+2a_7^3)\beta^2]}\geq0, \\ \gamma=\frac{\sqrt{(a_3a_5^2\alpha+2a_7^3)[2a_5^2a_7\alpha^2(2\eta-\alpha)-(a_3a_5^2\alpha+2a_7^3)\beta^2]}}{a_3a_5^2\alpha+2a_7^3}, \\ \forall~\alpha, ~\beta\end{array}$ ⅱ $\begin{array}{l}(\alpha, \frac{\sqrt{-a_3a_7}}{a_7}\alpha, 0, \mp \frac{a_7}{a_5} \gamma, -\frac{a_7}{a_5}\beta, \pm \gamma, \beta), \\(\alpha, - \frac{\sqrt{-a_3a_7}}{a_7}\alpha, 0, \mp \frac{a_7}{a_5} \gamma, -\frac{a_7}{a_5}\beta, \pm \gamma, \beta)\end{array}$ $\begin{array}{l}\pi_{10}\pi_{12}\neq0, \\ \pi_5 \neq 0, \\ \pi_6=0, \\ \pi_1 \neq \frac{-2a_7^3}{a_3a_5^2}, \\{(a_3a_5^2\alpha+2a_7^3)[2a_5^2a_7\alpha^2(2\eta-\alpha)-(a_3a_5^2\alpha+2a_7^3)\beta^2]}\geq0\end{array}$ $\begin{array}{l}a_3a_7<0, \\ \gamma=\frac{\sqrt{(a_3a_5^2\alpha+2a_7^3)[2a_5^2a_7\alpha^2(2\eta-\alpha)-(a_3a_5^2\alpha+2a_7^3)\beta^2]}}{a_3a_5^2\alpha+2a_7^3}, \\ \forall~\alpha, ~\beta\end{array}$ ⅲ $(\frac{-2a_7^3}{a_3a_5^2}, \pm 2a_7^2 \frac{\sqrt{-a_3a_7}}{a_3a_5^2}, 0, 0, -\frac{a_7}{a_5}\beta, 0, \beta)$ $\begin{array}{l}\pi_{10}\pi_{12}\neq0, \\ \pi_5 \neq 0, \\ \pi_6=0, \\ \pi_1 = \frac{-2a_7^3}{a_3a_5^2}\end{array}$ $\begin{array}{l}a_3a_7<0, \\ \forall~\beta\end{array}$ ⅵ $(\varrho, \gamma_1, \alpha, \gamma_2, -\frac{a_3}{a_1}\gamma_3, \gamma_4, \gamma_3)$ $\begin{array}{l}\pi_{10}\pi_{12}\neq0, \\ \pi_5 \neq 0, \\ \pi_6 \neq 0\end{array}$ $\begin{array}{l}|a_5\alpha|\leq|a_3|\varrho, \\ \varrho=\frac{4}{3}\frac{\eta a_5^2}{a_5^2+a_3^2}, \\ \gamma_1 = \pm \frac{\sqrt{a_3^2\varrho^2-a_5^2\alpha^2}}{a_5}, \\ \gamma_2 = \frac{2 a_5 \gamma_4 \pm \sqrt{2\varrho^3(a_5^2+a_7^2)}}{2 a_7}, \\ \gamma_3 = \mp \frac{a_5a_7 \sqrt{2} \gamma_1 \alpha}{a_3 \sqrt{\varrho(a_5^2+a_7^2)}}, \\ \gamma_4 = \pm \frac{2a_5a_7\alpha^2-a_3(a_5-a_1)\varrho^2}{a_3\sqrt{2\varrho(a_5^2+a_7^2)}}, \\ \forall~\alpha\end{array}$
Equilibria with π10 = π12 = 0
 No. Relative Equilibria Features Conditions and Parameters Types ⅰ $(\frac{4}{3}\eta, 0, 0, \pm\frac{4a_1 \eta\sqrt{6(a_1^2+a_3^2)\eta}}{9(a_1^2+a_3^2)}, 0, \pm\frac{4a_3 \sqrt{6} \eta^{2}}{9 \sqrt{(a_1^2+a_3^2) \eta}}, 0)$ $\begin{array}{l}\pi_5=\pi_6=0, \\\pi_{10}= \pi_{12}=0\end{array}$ − $\begin{array}{l}EEE, ~EEH, \\EEO\end{array}$ ⅱ $\begin{array}{l}e_j= \big( \frac{4}{3}\frac{\eta \alpha_1}{\beta_3}, \pm\frac{4}{3} \eta\frac{\sqrt{\alpha_1\alpha_2}}{\alpha_3} , 0, +\frac{4 \sqrt{6}}{9}\frac{(a_3-a_7)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0, -\frac{4 \sqrt{6}}{9}\frac{(a_1-a_5)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0\big), ~~ j = 1, 2\\e_j= \big( \frac{4}{3}\frac{\eta \alpha_1}{\alpha_3}, \pm\frac{4}{3} \eta\frac{\sqrt{\alpha_1\alpha_2}}{\alpha_3} , 0, -\frac{4 \sqrt{6}}{9}\frac{(a_3-a_7)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0, +\frac{4 \sqrt{6}}{9}\frac{(a_1-a_5)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0\big), ~~ j = 3, 4 \end{array}$ $\begin{array}{l}\pi_{10}= \pi_{12}=0, \\\pi_6=0, \\\pi_9(a_1-a_5)+\pi_{11}(a_3-a_7)=0\end{array}$ $\begin{array}{l}a_1 \neq a_5, \\a_3 \neq a_7, \\\alpha_1 = a_5^2+a_7^2\\-a_1a_5-a_3a_7\geq0, \\\alpha_2 = a_1^2+a_3^2\\-a_1a_5-a_3a_7\geq0, \\\alpha_3 = (a_1-a_5)^2\\+(a_3-a_7)^2>0\end{array}$ $\begin{array}{l}EHH, ~EEE, \\EHE, ~EOH, \\EOE, ~EOO, \\OOO\end{array}$ ⅲ $(\frac{4}{3}\frac{\eta a_7}{(a_7-a_3)}, \pm\frac{4}{3} \frac{\sqrt{-a_3a_7}\eta}{(a_7-a_3)}, 0, \pm\frac{4}{9}\frac{\sqrt{6 \eta a_7^2 }\eta}{ (a_7-a_3)}, 0, 0, 0)$ $\begin{array}{l}\pi_{10}= \pi_{12}=0, \\\pi_6=0, \\~\pi_9(a_1-a_5)+\pi_{11}(a_3-a_7)=0\end{array}$ $\begin{array}{l}a_1 = a_5, \\a_3 \neq a_7, \\a_3a_7<0\end{array}$ $EEH, ~EHE$ ⅳ $(\frac{4}{3}\frac{\eta a_5}{(a_5-a_1)}, \pm\frac{4}{3} \frac{\sqrt{-a_1a_5}\eta}{(a_5-a_1)}, 0, \pm\frac{4}{9}\frac{\sqrt{6 \eta a_5^2 }\eta}{ (a_5-a_1)}, 0, 0, 0)$ $\begin{array}{l}\pi_{10}= \pi_{12}=0, \\\pi_6=0, \\\pi_9(a_1-a_5)+\pi_{11}(a_3-a_7)=0\end{array}$ $\begin{array}{l}a_1 \neq a_5, \\a_3 =a_7, \\a_1a_5<0\end{array}$ $EEE, ~EHE$ ⅴ $\begin{array}{l}e_j= \big( \frac{4}{3}\frac{\eta \alpha_1}{\beta_3}, \pm\frac{4}{3} \eta\frac{\sqrt{\alpha_1\alpha_2}}{\alpha_3} , 0, +\frac{4 \sqrt{6}}{9}\frac{(a_3+a_7)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0, -\frac{4 \sqrt{6}}{9}\frac{(a_1+a_5)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0\big), ~~ j = 1, 2\\e_j= \big( \frac{4}{3}\frac{\eta \alpha_1}{\alpha_3}, \pm\frac{4}{3} \eta\frac{\sqrt{\alpha_1\alpha_2}}{\alpha_3} , 0, -\frac{4 \sqrt{6}}{9}\frac{(a_3+a_7)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0, +\frac{4 \sqrt{6}}{9}\frac{(a_1+a_5)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0\big), ~~ j = 3, 4\end{array}$ $\begin{array}{l}\pi_{10}= \pi_{12}=0, \\\pi_5=0, \\\pi_9(a_1+a_5)+\pi_{11}(a_3+a_7)=0\end{array}$ $\begin{array}{l}a_1 \neq -a_5, \\a_3 \neq -a_7, \\\alpha_1 = a_5^2+a_7^2\\+a_1a_5+a_3a_7 \geq 0, \\\alpha_2 = a_1^2+a_3^2\\+a_1a_5+a_3a_7 \geq 0, \\\alpha_3 = (a_1+a_5)^2\\+(a_3+a_7)^2 >0\end{array}$ $\begin{array}{l}EHH, ~EEE, \\EHE, ~EOH, \\EOE, ~EOO, \\OOO\end{array}$ ⅵ $(\frac{4}{3}\frac{\eta a_7}{(a_7+a_3)}, 0, \pm\frac{4}{3} \frac{\sqrt{a_3a_7}\eta}{(a_7+a_3)}, \pm\frac{4}{9}\frac{\sqrt{6 \eta a_7^2 }\eta}{ (a_7+a_3)}, 0, 0, 0)$ $\begin{array}{l}\pi_{10}= \pi_{12}=0, \\\pi_5=0, \\\pi_9(a_1+a_5)+\pi_{11}(a_3+a_7)=0\end{array}$ $\begin{array}{l}a_1 = -a_5, \\a_3 \neq -a_7, \\a_3a_7>0\end{array}$ $EHE, ~EEE$ ⅶ $(\frac{4}{3}\frac{\eta a_5}{(a_1+a_5)}, 0, \pm\frac{4}{3} \frac{\sqrt{a_1a_5}\eta}{(a_1+a_5)}, \pm\frac{4}{9}\frac{\sqrt{6 \eta a_5^2 }\eta}{ (a_5+a_1)}, 0, 0, 0)$ $\begin{array}{l}\pi_{10}= \pi_{12}=0, \\\pi_5=0, \\\pi_9(a_1+a_5)+\pi_{11}(a_3+a_7)=0\end{array}$ $\begin{array}{l}a_1 \neq -a_5, \\a_3=-a_7, \\a_1a_5>0\end{array}$ $EHE, ~EEE$ ⅷ $\begin{array}{l}(\frac{2\eta a_5}{(a_1+a_5)}, 0, \pm \frac{2\eta \sqrt{a_1a_5}}{(a_1+a_5)}, 0, 0, 0, 0), \\(-\frac{2\eta a_5}{(a_1-a_5)}, \pm \frac{2\eta \sqrt{-a_5a_1}}{(a_1-a_5)}, 0, 0, 0, 0, 0)\end{array}$ $\begin{array}{l}\pi_{10}= \pi_{12}=0, \\\pi_9(a_1+a_5)+\pi_{11}(a_3+a_7)=0, \\\pi_9(a_1-a_5)+\pi_{11}(a_3-a_7)=0\end{array}$ − $OEE$
 No. Relative Equilibria Features Conditions and Parameters Types ⅰ $(\frac{4}{3}\eta, 0, 0, \pm\frac{4a_1 \eta\sqrt{6(a_1^2+a_3^2)\eta}}{9(a_1^2+a_3^2)}, 0, \pm\frac{4a_3 \sqrt{6} \eta^{2}}{9 \sqrt{(a_1^2+a_3^2) \eta}}, 0)$ $\begin{array}{l}\pi_5=\pi_6=0, \\\pi_{10}= \pi_{12}=0\end{array}$ − $\begin{array}{l}EEE, ~EEH, \\EEO\end{array}$ ⅱ $\begin{array}{l}e_j= \big( \frac{4}{3}\frac{\eta \alpha_1}{\beta_3}, \pm\frac{4}{3} \eta\frac{\sqrt{\alpha_1\alpha_2}}{\alpha_3} , 0, +\frac{4 \sqrt{6}}{9}\frac{(a_3-a_7)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0, -\frac{4 \sqrt{6}}{9}\frac{(a_1-a_5)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0\big), ~~ j = 1, 2\\e_j= \big( \frac{4}{3}\frac{\eta \alpha_1}{\alpha_3}, \pm\frac{4}{3} \eta\frac{\sqrt{\alpha_1\alpha_2}}{\alpha_3} , 0, -\frac{4 \sqrt{6}}{9}\frac{(a_3-a_7)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0, +\frac{4 \sqrt{6}}{9}\frac{(a_1-a_5)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0\big), ~~ j = 3, 4 \end{array}$ $\begin{array}{l}\pi_{10}= \pi_{12}=0, \\\pi_6=0, \\\pi_9(a_1-a_5)+\pi_{11}(a_3-a_7)=0\end{array}$ $\begin{array}{l}a_1 \neq a_5, \\a_3 \neq a_7, \\\alpha_1 = a_5^2+a_7^2\\-a_1a_5-a_3a_7\geq0, \\\alpha_2 = a_1^2+a_3^2\\-a_1a_5-a_3a_7\geq0, \\\alpha_3 = (a_1-a_5)^2\\+(a_3-a_7)^2>0\end{array}$ $\begin{array}{l}EHH, ~EEE, \\EHE, ~EOH, \\EOE, ~EOO, \\OOO\end{array}$ ⅲ $(\frac{4}{3}\frac{\eta a_7}{(a_7-a_3)}, \pm\frac{4}{3} \frac{\sqrt{-a_3a_7}\eta}{(a_7-a_3)}, 0, \pm\frac{4}{9}\frac{\sqrt{6 \eta a_7^2 }\eta}{ (a_7-a_3)}, 0, 0, 0)$ $\begin{array}{l}\pi_{10}= \pi_{12}=0, \\\pi_6=0, \\~\pi_9(a_1-a_5)+\pi_{11}(a_3-a_7)=0\end{array}$ $\begin{array}{l}a_1 = a_5, \\a_3 \neq a_7, \\a_3a_7<0\end{array}$ $EEH, ~EHE$ ⅳ $(\frac{4}{3}\frac{\eta a_5}{(a_5-a_1)}, \pm\frac{4}{3} \frac{\sqrt{-a_1a_5}\eta}{(a_5-a_1)}, 0, \pm\frac{4}{9}\frac{\sqrt{6 \eta a_5^2 }\eta}{ (a_5-a_1)}, 0, 0, 0)$ $\begin{array}{l}\pi_{10}= \pi_{12}=0, \\\pi_6=0, \\\pi_9(a_1-a_5)+\pi_{11}(a_3-a_7)=0\end{array}$ $\begin{array}{l}a_1 \neq a_5, \\a_3 =a_7, \\a_1a_5<0\end{array}$ $EEE, ~EHE$ ⅴ $\begin{array}{l}e_j= \big( \frac{4}{3}\frac{\eta \alpha_1}{\beta_3}, \pm\frac{4}{3} \eta\frac{\sqrt{\alpha_1\alpha_2}}{\alpha_3} , 0, +\frac{4 \sqrt{6}}{9}\frac{(a_3+a_7)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0, -\frac{4 \sqrt{6}}{9}\frac{(a_1+a_5)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0\big), ~~ j = 1, 2\\e_j= \big( \frac{4}{3}\frac{\eta \alpha_1}{\alpha_3}, \pm\frac{4}{3} \eta\frac{\sqrt{\alpha_1\alpha_2}}{\alpha_3} , 0, -\frac{4 \sqrt{6}}{9}\frac{(a_3+a_7)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0, +\frac{4 \sqrt{6}}{9}\frac{(a_1+a_5)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0\big), ~~ j = 3, 4\end{array}$ $\begin{array}{l}\pi_{10}= \pi_{12}=0, \\\pi_5=0, \\\pi_9(a_1+a_5)+\pi_{11}(a_3+a_7)=0\end{array}$ $\begin{array}{l}a_1 \neq -a_5, \\a_3 \neq -a_7, \\\alpha_1 = a_5^2+a_7^2\\+a_1a_5+a_3a_7 \geq 0, \\\alpha_2 = a_1^2+a_3^2\\+a_1a_5+a_3a_7 \geq 0, \\\alpha_3 = (a_1+a_5)^2\\+(a_3+a_7)^2 >0\end{array}$ $\begin{array}{l}EHH, ~EEE, \\EHE, ~EOH, \\EOE, ~EOO, \\OOO\end{array}$ ⅵ $(\frac{4}{3}\frac{\eta a_7}{(a_7+a_3)}, 0, \pm\frac{4}{3} \frac{\sqrt{a_3a_7}\eta}{(a_7+a_3)}, \pm\frac{4}{9}\frac{\sqrt{6 \eta a_7^2 }\eta}{ (a_7+a_3)}, 0, 0, 0)$ $\begin{array}{l}\pi_{10}= \pi_{12}=0, \\\pi_5=0, \\\pi_9(a_1+a_5)+\pi_{11}(a_3+a_7)=0\end{array}$ $\begin{array}{l}a_1 = -a_5, \\a_3 \neq -a_7, \\a_3a_7>0\end{array}$ $EHE, ~EEE$ ⅶ $(\frac{4}{3}\frac{\eta a_5}{(a_1+a_5)}, 0, \pm\frac{4}{3} \frac{\sqrt{a_1a_5}\eta}{(a_1+a_5)}, \pm\frac{4}{9}\frac{\sqrt{6 \eta a_5^2 }\eta}{ (a_5+a_1)}, 0, 0, 0)$ $\begin{array}{l}\pi_{10}= \pi_{12}=0, \\\pi_5=0, \\\pi_9(a_1+a_5)+\pi_{11}(a_3+a_7)=0\end{array}$ $\begin{array}{l}a_1 \neq -a_5, \\a_3=-a_7, \\a_1a_5>0\end{array}$ $EHE, ~EEE$ ⅷ $\begin{array}{l}(\frac{2\eta a_5}{(a_1+a_5)}, 0, \pm \frac{2\eta \sqrt{a_1a_5}}{(a_1+a_5)}, 0, 0, 0, 0), \\(-\frac{2\eta a_5}{(a_1-a_5)}, \pm \frac{2\eta \sqrt{-a_5a_1}}{(a_1-a_5)}, 0, 0, 0, 0, 0)\end{array}$ $\begin{array}{l}\pi_{10}= \pi_{12}=0, \\\pi_9(a_1+a_5)+\pi_{11}(a_3+a_7)=0, \\\pi_9(a_1-a_5)+\pi_{11}(a_3-a_7)=0\end{array}$ − $OEE$
Equilibria of the reduced system
 Equilibria Conditions and Features $E_1=(\pi_1, 0, 0, 0, 0, 0, 0)$ $\begin{array}{l}\forall~\pi_1\end{array}$ $E_2=(\pi_1, 0, 0, 0, 0, \pi_{11}, \pi_{12})$ $\begin{array}{l}\forall~\pi_1, ~\pi_{11}, ~\pi_{12}~with\\3\gamma\tau+(2\nu_1-\nu_4)\pi_1^2=0\end{array}$ $E_3=(\pi_1, 0, 0, \pi_9, \pi_{10}, 0, 0)$ $\begin{array}{l}\forall~\pi_1, ~\pi_9, ~\pi_{10}~with\\3\gamma\sigma+(2\nu_1-\nu_2)\pi_1^2=0\end{array}$ $E_4=(\pi_1, \pi_5, \pi_6, 0, 0, 0, 0)$ $\begin{array}{l}\forall~\pi_1, ~\pi_5, ~\pi_6~with\\\sigma=0~and~\rho\neq0, ~2\gamma\rho+(\nu_1-\nu_3)\pi_1-2\gamma\pi_1^2=0\end{array}$ $E_5=(\frac{\nu_2-2\nu_3}{9\gamma}, \pi_5, \pi_6, \pi_9, \pi_{10}, \pi_{11}, \pi_{12})$ $\begin{array}{l} \forall~\pi_5, \pi_6, \pi_9, \pi_{10}, \pi_{11}, \pi_{12}~with\\\rho=\pi_1^2\neq0, ~\sigma\neq0~and\\ ~\pi_5\pi_9\pi_{12}-\pi_5\pi_{10}\pi_{11}+\pi_6\pi_9\pi_{11}+\pi_6\pi_{10}\pi_{12}=0\end{array}$ $E_6=(\pi_1, \pi_5, \pi_6, \pi_9, \pi_{10}, \pi_{11}, \pi_{12})$ $\begin{array}{*{20}{l}} {\forall {\pi _1},{\pi _9},{\pi _{10}},{\pi _{11}},{\pi _{12}}with}\\ {\rho = \pi _1^2 \ne 0 , \sigma \ne 0,2\gamma \tau - ({\nu _2} - 2{\nu _3})\pi _1^2 + \gamma \pi _1^3 = 0\;and}\\ {{\pi _5} = \frac{{{\pi _1}({\pi _9}{\pi _{11}} + {\pi _{10}}{\pi _{12}})[3\gamma \tau - ({\nu _4} - 2{\nu _3})\pi _1^2 + 6\gamma \pi _1^3]}}{{4\gamma \sigma (\pi _1^3 - \tau )}},}\\ {{\pi _6} = \frac{{{\pi _1}({\pi _9}{\pi _{12}} - {\pi _{10}}{\pi _{11}})[3\gamma \tau - ({\nu _4} - 2{\nu _3})\pi _1^2 + 6\gamma \pi _1^3]}}{{4\gamma \sigma (\pi _1^3 - \tau )}}} \end{array}$ $E_7=(\pi_1, \pi_5, \pi_6, \pi_9, \pi_{10}, \pi_{11}, \pi_{12})$ $\begin{array}{l}\forall~\pi_1, ~\pi_9, ~\pi_{10}, ~\pi_{11}, ~\pi_{12}~with~\rho=\pi_1^2\neq0, ~\sigma\neq0~and\\ \gamma(3\pi_1^3-\tau^2)\pi_9^4+[4\gamma\pi_1^6-(\nu_2-2\nu_3)\pi_1^5+6\gamma\pi_{10}^2\pi_1^3\\ +\tau(\nu_2-2\nu_3)\pi_1^2]\pi_9^2+4\gamma(\pi_{10}^2-\tau)\pi_1^6+[-(\nu_2-2\nu_3)\pi_{10}^2\\ -(2\nu_3-\nu_4)\tau]\pi_1^5+3\gamma(\pi_{10}^2-\tau)(\pi_{10}^2+\tau)\pi_1^3\\ +\pi_{10}^2\tau(\nu_2-\nu_4)\pi_1^2-\gamma\pi_{10}^2\tau(\pi_{10}^2-\tau)=0~and\\ \pi_5 = \frac{\pi_1(\pi_9\pi_{11}+\pi_{10}\pi_{12})[3\gamma\sigma+2\gamma\tau-(\nu_2-2\nu_3)\pi_1^2+4\gamma\pi_1^3]}{4\gamma\tau(\pi_1^3-\sigma)}, \\ \pi_6 = \frac{\pi_1(\pi_9\pi_{12}-\pi_{10}\pi_{12})[3\gamma\sigma+2\gamma\tau-(\nu_2-2\nu_3)\pi_1^2+4\gamma\pi_1^3]}{4\gamma(\pi_{11}^2+\pi_{12}^2)(\pi_1^3-\sigma)}\end{array}$ $E_8=(\pi_1, \pi_5, \pi_6, \pi_9, \pi_{10}, \pi_{11}, \pi_{12})$ $\begin{array}{l}\forall~\pi_1, ~\pi_9, ~\pi_{10}, ~\pi_{11}, ~\pi_{12}~with~\rho\neq\pi_1^2~and~\sigma\neq0~where\\12\rho\gamma^2\pi_1^8-8\gamma\rho(\nu_1-\nu_3)\pi_1^7+[-24\gamma^2\rho^2+2\gamma\sigma(2\nu_1-\nu_2)\\+\rho(\nu_1-\nu_3)^2]\pi_1^6+8\gamma\rho^2(\nu_1-\nu_3)\pi_1^5+[6(2\rho^3+\sigma^2)\\-4\gamma\rho\sigma(\nu_1-\nu_2+\nu_3)]\pi_1^4-[12\gamma^2\rho\sigma^2+2\gamma\rho^2\sigma(\nu_2-2\nu_3)]\pi_1^2\\+6\gamma^2\rho^2\sigma^2=0, \\72\gamma\rho^3\pi_1^{10}-108\gamma^2\rho(\nu_1-\nu_3)\pi_1^9+[-216\gamma^3\rho^2\\+24\gamma^2\sigma(2\nu_1-\nu_4)+54\gamma\rho(\nu_1-\nu_3)^2]\pi_1^8\\+[216\gamma^2\rho^2(\nu_1-\nu_3)-12\gamma\sigma(2\nu_1-\nu_4)]\pi_1^7\\+[72\gamma^3(3\rho^3+2\sigma^2)-24\gamma^2\rho\sigma(4\nu_1+2\nu_3-3\nu_4)\\-54\gamma\rho^2(\nu_1-\nu_3)^2]\pi_1^6+[-12\gamma^2(9\rho^3+2\sigma^2)\\+24\gamma\rho\sigma(\nu_1+\nu_3-\nu_4)](\nu_1-\nu_3)\pi_1^5\\+[-72\gamma^3(\rho^4+6\rho\sigma^2)-24\gamma^2\rho^2\sigma(2\nu_1+4\nu_3-3\nu_4)]\pi_1^4\\+[48\gamma^2\rho\sigma^2-12\gamma\rho^2\sigma(2\nu_3-\nu_4)](\nu_1-\nu_3)\pi_1^3\\+[432\gamma^3\rho^2\sigma^2-24\gamma^2\rho^3\sigma(2\nu_3-\nu_4)]\pi_1^2\\-24\gamma^2\rho^2\sigma^2(\nu_1-\nu_3)\pi_1-144\gamma^3\rho^3\sigma^2=0~and\\\pi_{11} = -\frac{\pi_1^2(\pi_5\pi_9+\pi_6\pi_{10})[2\gamma\pi_1^2-2\gamma\rho-(\nu_1-\nu_3)\pi_1]}{\gamma(\pi_1^2-\rho)\sigma}, \\\pi_{12} = -\frac{\pi_1^2(\pi_5\pi_{10}-\pi_6\pi_9)[2\gamma\pi_1^2-2\gamma\rho-(\nu_1-\nu_3)\pi_1]}{\gamma(\pi_1^2-\rho)\sigma} \end{array}$
 Equilibria Conditions and Features $E_1=(\pi_1, 0, 0, 0, 0, 0, 0)$ $\begin{array}{l}\forall~\pi_1\end{array}$ $E_2=(\pi_1, 0, 0, 0, 0, \pi_{11}, \pi_{12})$ $\begin{array}{l}\forall~\pi_1, ~\pi_{11}, ~\pi_{12}~with\\3\gamma\tau+(2\nu_1-\nu_4)\pi_1^2=0\end{array}$ $E_3=(\pi_1, 0, 0, \pi_9, \pi_{10}, 0, 0)$ $\begin{array}{l}\forall~\pi_1, ~\pi_9, ~\pi_{10}~with\\3\gamma\sigma+(2\nu_1-\nu_2)\pi_1^2=0\end{array}$ $E_4=(\pi_1, \pi_5, \pi_6, 0, 0, 0, 0)$ $\begin{array}{l}\forall~\pi_1, ~\pi_5, ~\pi_6~with\\\sigma=0~and~\rho\neq0, ~2\gamma\rho+(\nu_1-\nu_3)\pi_1-2\gamma\pi_1^2=0\end{array}$ $E_5=(\frac{\nu_2-2\nu_3}{9\gamma}, \pi_5, \pi_6, \pi_9, \pi_{10}, \pi_{11}, \pi_{12})$ $\begin{array}{l} \forall~\pi_5, \pi_6, \pi_9, \pi_{10}, \pi_{11}, \pi_{12}~with\\\rho=\pi_1^2\neq0, ~\sigma\neq0~and\\ ~\pi_5\pi_9\pi_{12}-\pi_5\pi_{10}\pi_{11}+\pi_6\pi_9\pi_{11}+\pi_6\pi_{10}\pi_{12}=0\end{array}$ $E_6=(\pi_1, \pi_5, \pi_6, \pi_9, \pi_{10}, \pi_{11}, \pi_{12})$ $\begin{array}{*{20}{l}} {\forall {\pi _1},{\pi _9},{\pi _{10}},{\pi _{11}},{\pi _{12}}with}\\ {\rho = \pi _1^2 \ne 0 , \sigma \ne 0,2\gamma \tau - ({\nu _2} - 2{\nu _3})\pi _1^2 + \gamma \pi _1^3 = 0\;and}\\ {{\pi _5} = \frac{{{\pi _1}({\pi _9}{\pi _{11}} + {\pi _{10}}{\pi _{12}})[3\gamma \tau - ({\nu _4} - 2{\nu _3})\pi _1^2 + 6\gamma \pi _1^3]}}{{4\gamma \sigma (\pi _1^3 - \tau )}},}\\ {{\pi _6} = \frac{{{\pi _1}({\pi _9}{\pi _{12}} - {\pi _{10}}{\pi _{11}})[3\gamma \tau - ({\nu _4} - 2{\nu _3})\pi _1^2 + 6\gamma \pi _1^3]}}{{4\gamma \sigma (\pi _1^3 - \tau )}}} \end{array}$ $E_7=(\pi_1, \pi_5, \pi_6, \pi_9, \pi_{10}, \pi_{11}, \pi_{12})$ $\begin{array}{l}\forall~\pi_1, ~\pi_9, ~\pi_{10}, ~\pi_{11}, ~\pi_{12}~with~\rho=\pi_1^2\neq0, ~\sigma\neq0~and\\ \gamma(3\pi_1^3-\tau^2)\pi_9^4+[4\gamma\pi_1^6-(\nu_2-2\nu_3)\pi_1^5+6\gamma\pi_{10}^2\pi_1^3\\ +\tau(\nu_2-2\nu_3)\pi_1^2]\pi_9^2+4\gamma(\pi_{10}^2-\tau)\pi_1^6+[-(\nu_2-2\nu_3)\pi_{10}^2\\ -(2\nu_3-\nu_4)\tau]\pi_1^5+3\gamma(\pi_{10}^2-\tau)(\pi_{10}^2+\tau)\pi_1^3\\ +\pi_{10}^2\tau(\nu_2-\nu_4)\pi_1^2-\gamma\pi_{10}^2\tau(\pi_{10}^2-\tau)=0~and\\ \pi_5 = \frac{\pi_1(\pi_9\pi_{11}+\pi_{10}\pi_{12})[3\gamma\sigma+2\gamma\tau-(\nu_2-2\nu_3)\pi_1^2+4\gamma\pi_1^3]}{4\gamma\tau(\pi_1^3-\sigma)}, \\ \pi_6 = \frac{\pi_1(\pi_9\pi_{12}-\pi_{10}\pi_{12})[3\gamma\sigma+2\gamma\tau-(\nu_2-2\nu_3)\pi_1^2+4\gamma\pi_1^3]}{4\gamma(\pi_{11}^2+\pi_{12}^2)(\pi_1^3-\sigma)}\end{array}$ $E_8=(\pi_1, \pi_5, \pi_6, \pi_9, \pi_{10}, \pi_{11}, \pi_{12})$ $\begin{array}{l}\forall~\pi_1, ~\pi_9, ~\pi_{10}, ~\pi_{11}, ~\pi_{12}~with~\rho\neq\pi_1^2~and~\sigma\neq0~where\\12\rho\gamma^2\pi_1^8-8\gamma\rho(\nu_1-\nu_3)\pi_1^7+[-24\gamma^2\rho^2+2\gamma\sigma(2\nu_1-\nu_2)\\+\rho(\nu_1-\nu_3)^2]\pi_1^6+8\gamma\rho^2(\nu_1-\nu_3)\pi_1^5+[6(2\rho^3+\sigma^2)\\-4\gamma\rho\sigma(\nu_1-\nu_2+\nu_3)]\pi_1^4-[12\gamma^2\rho\sigma^2+2\gamma\rho^2\sigma(\nu_2-2\nu_3)]\pi_1^2\\+6\gamma^2\rho^2\sigma^2=0, \\72\gamma\rho^3\pi_1^{10}-108\gamma^2\rho(\nu_1-\nu_3)\pi_1^9+[-216\gamma^3\rho^2\\+24\gamma^2\sigma(2\nu_1-\nu_4)+54\gamma\rho(\nu_1-\nu_3)^2]\pi_1^8\\+[216\gamma^2\rho^2(\nu_1-\nu_3)-12\gamma\sigma(2\nu_1-\nu_4)]\pi_1^7\\+[72\gamma^3(3\rho^3+2\sigma^2)-24\gamma^2\rho\sigma(4\nu_1+2\nu_3-3\nu_4)\\-54\gamma\rho^2(\nu_1-\nu_3)^2]\pi_1^6+[-12\gamma^2(9\rho^3+2\sigma^2)\\+24\gamma\rho\sigma(\nu_1+\nu_3-\nu_4)](\nu_1-\nu_3)\pi_1^5\\+[-72\gamma^3(\rho^4+6\rho\sigma^2)-24\gamma^2\rho^2\sigma(2\nu_1+4\nu_3-3\nu_4)]\pi_1^4\\+[48\gamma^2\rho\sigma^2-12\gamma\rho^2\sigma(2\nu_3-\nu_4)](\nu_1-\nu_3)\pi_1^3\\+[432\gamma^3\rho^2\sigma^2-24\gamma^2\rho^3\sigma(2\nu_3-\nu_4)]\pi_1^2\\-24\gamma^2\rho^2\sigma^2(\nu_1-\nu_3)\pi_1-144\gamma^3\rho^3\sigma^2=0~and\\\pi_{11} = -\frac{\pi_1^2(\pi_5\pi_9+\pi_6\pi_{10})[2\gamma\pi_1^2-2\gamma\rho-(\nu_1-\nu_3)\pi_1]}{\gamma(\pi_1^2-\rho)\sigma}, \\\pi_{12} = -\frac{\pi_1^2(\pi_5\pi_{10}-\pi_6\pi_9)[2\gamma\pi_1^2-2\gamma\rho-(\nu_1-\nu_3)\pi_1]}{\gamma(\pi_1^2-\rho)\sigma} \end{array}$
 [1] James Montaldi. Bifurcations of relative equilibria near zero momentum in Hamiltonian systems with spherical symmetry. Journal of Geometric Mechanics, 2014, 6 (2) : 237-260. doi: 10.3934/jgm.2014.6.237 [2] Jaume Llibre, Y. Paulina Martínez, Claudio Vidal. Phase portraits of linear type centers of polynomial Hamiltonian systems with Hamiltonian function of degree 5 of the form $H = H_1(x)+H_2(y)$. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 75-113. doi: 10.3934/dcds.2019004 [3] Rehana Naz, Fazal M. Mahomed. Characterization of partial Hamiltonian operators and related first integrals. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 723-734. doi: 10.3934/dcdss.2018045 [4] Rehana Naz, Fazal M Mahomed, Azam Chaudhry. First integrals of Hamiltonian systems: The inverse problem. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2829-2840. doi: 10.3934/dcdss.2020121 [5] Fanni M. Sélley. Symmetry breaking in a globally coupled map of four sites. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3707-3734. doi: 10.3934/dcds.2018161 [6] Lyudmila Grigoryeva, Juan-Pablo Ortega, Stanislav S. Zub. Stability of Hamiltonian relative equilibria in symmetric magnetically confined rigid bodies. Journal of Geometric Mechanics, 2014, 6 (3) : 373-415. doi: 10.3934/jgm.2014.6.373 [7] Miguel Rodríguez-Olmos. Continuous singularities in hamiltonian relative equilibria with abelian momentum isotropy. Journal of Geometric Mechanics, 2020, 12 (3) : 525-540. doi: 10.3934/jgm.2020019 [8] Stefan Siegmund. Normal form of Duffing-van der Pol oscillator under nonautonomous parametric perturbations. Conference Publications, 2001, 2001 (Special) : 357-361. doi: 10.3934/proc.2001.2001.357 [9] Agust Sverrir Egilsson. On embedding the $1:1:2$ resonance space in a Poisson manifold. Electronic Research Announcements, 1995, 1: 48-56. [10] Sanchit Chaturvedi, Jonathan Luk. Phase mixing for solutions to 1D transport equation in a confining potential. Kinetic and Related Models, 2022, 15 (3) : 403-416. doi: 10.3934/krm.2022002 [11] Dmitriy Yu. Volkov. The Hopf -- Hopf bifurcation with 2:1 resonance: Periodic solutions and invariant tori. Conference Publications, 2015, 2015 (special) : 1098-1104. doi: 10.3934/proc.2015.1098 [12] Adel Chala, Dahbia Hafayed. On stochastic maximum principle for risk-sensitive of fully coupled forward-backward stochastic control of mean-field type with application. Evolution Equations and Control Theory, 2020, 9 (3) : 817-843. doi: 10.3934/eect.2020035 [13] Sebastián Ferrer, Francisco Crespo. Parametric quartic Hamiltonian model. A unified treatment of classic integrable systems. Journal of Geometric Mechanics, 2014, 6 (4) : 479-502. doi: 10.3934/jgm.2014.6.479 [14] Ayache Benhadid, Fateh Merahi. Complexity analysis of an interior-point algorithm for linear optimization based on a new parametric kernel function with a double barrier term. Numerical Algebra, Control and Optimization, 2022  doi: 10.3934/naco.2022003 [15] Pedro Freitas. The linear damped wave equation, Hamiltonian symmetry, and the importance of being odd. Discrete and Continuous Dynamical Systems, 1998, 4 (4) : 635-640. doi: 10.3934/dcds.1998.4.635 [16] Ryo Ikehata, Shingo Kitazaki. Optimal energy decay rates for some wave equations with double damping terms. Evolution Equations and Control Theory, 2019, 8 (4) : 825-846. doi: 10.3934/eect.2019040 [17] Michal Fečkan, Michal Pospíšil. Discretization of dynamical systems with first integrals. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3543-3554. doi: 10.3934/dcds.2013.33.3543 [18] Sergiu Aizicovici, Nikolaos S. Papageorgiou, Vasile Staicu. Nonlinear Dirichlet problems with double resonance. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1147-1168. doi: 10.3934/cpaa.2017056 [19] Zhaosheng Feng, Goong Chen. Traveling wave solutions in parametric forms for a diffusion model with a nonlinear rate of growth. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 763-780. doi: 10.3934/dcds.2009.24.763 [20] Rehana Naz. On sufficiency issues, first integrals and exact solutions of Uzawa-Lucas model with unskilled labor. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2813-2828. doi: 10.3934/dcdss.2020170

2021 Impact Factor: 1.497

## Metrics

• HTML views (292)
• Cited by (1)

• on AIMS