• Previous Article
    Mean-square delay-distribution-dependent exponential synchronization of chaotic neural networks with mixed random time-varying delays and restricted disturbances
  • DCDS-B Home
  • This Issue
  • Next Article
    Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises
doi: 10.3934/dcdsb.2020255

The coupled 1:2 resonance in a symmetric case and parametric amplification model

Department of Mathematical Sciences, Isfahan University of Technology, Isfahan 84156-83111, Iran

* Corresponding author: Reza Mazrooei-Sebdani

Received  November 2019 Revised  June 2020 Published  August 2020

This paper deals with the coupled Hamiltonian $ 1 $:$ 2 $ resonance, i.e. the Hamiltonian $ 1 $:$ 2 $:$ 1 $:$ 2 $ resonance. This resonance is of the first order. We isolate several integrable cases. Our main focus is on two models. In the first part of the paper, we present a discrete symmetric normal form truncated to order three and we compute the relative equilibria for its corresponding system. In the second part, the paper is devoted to the study of the Hamiltonian describing the four-wave mixing (FWM) model. In addition to the Hamiltonian, the corresponding system possesses three more independent integrals. We use these integrals to obtain estimates for the phase space and total energy. Further, we compute the relative equilibria of the FWM system for the $ 1 $:$ 2 $:$ 1 $:$ 2 $ resonance. Finally, we carry out some numerical experiments for the detuned system.

Citation: Reza Mazrooei-Sebdani, Zahra Yousefi. The coupled 1:2 resonance in a symmetric case and parametric amplification model. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020255
References:
[1]

V. I. Arnold, V. V. Kozlov and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, in Dynamical Systems III, Encyc. Math. Sciences, Springer-Verlag, Berlin, 2006.  Google Scholar

[2]

H. W. BroerG. A. Lunter and G. Vegter, Equivariant singularity theory with distinguished parameters: Two case studies of resonant Hamiltonian systems, Phys. D, 112 (1998), 64-80.  doi: 10.1016/S0167-2789(97)00202-9.  Google Scholar

[3]

H. Broer and F. Takens, Dynamical Systems and Chaos, Appl. Math. Sciences, Vol. 172, Springer, New York, 2011. doi: 10.1007/978-1-4419-6870-8.  Google Scholar

[4]

R. Bruggeman and F. Verhulst, The inhomogeneous Fermi-Pasta-Ulam chain. A case study of the $1:2:3$ Resonance, Acta Appl. Math., 152 (2017), 111-145.  doi: 10.1007/s10440-017-0115-4.  Google Scholar

[5]

G. Cappellini and S. Trillo, Third-order three-wave mixxing in single-mode fibers: Exact solutions and spatial instability effects, J. Opt. Soc. Am. B., 8 (1991), 824-838.   Google Scholar

[6]

O. Christov, Non-integrability of first order resonances of Hamiltonian systems in three degrees of freedom, Celestial Mech. Dynam. Astronom., 112 (2012), 147-167.  doi: 10.1007/s10569-011-9389-4.  Google Scholar

[7]

C. De AngelisM. Santagiustina and S. Trillo, Four-photon homoclinic instabilities in nonlinear highly birefringent media, Phys. Rev. A., 51 (1995), 774-791.  doi: 10.1103/PhysRevA.51.774.  Google Scholar

[8]

J. J. Duistermaat, Non-integrability of the $1$ : $2$ : $1$-resonance, Ergodic Theory Dynam. Systems, 4 (1984), 553-568.  doi: 10.1017/S0143385700002649.  Google Scholar

[9]

J. EgeaS. Ferrer and J. C. van der Meer, Bifurcations of the Hamiltonian fourfold $1$ : $1$ resonance with toroidal symmetry, J. Nonlinear Sci., 21 (2011), 835-874.  doi: 10.1007/s00332-011-9102-5.  Google Scholar

[10]

D. D. Holm and P. Lynch, Stepwise precession of the resonant swinging spring, SIAM J. Appl. Dyn. Syst., 1 (2002), 44-64.  doi: 10.1137/S1111111101388571.  Google Scholar

[11]

G. Haller and S. Wiggins, Geometry and chaos near resonant equilibria of 3-DOF Hamiltonian systems, Physica D, 90 (1996), 319-365.  doi: 10.1016/0167-2789(95)00247-2.  Google Scholar

[12]

H. Hanßmann, Local and Semi-Local Bifurcations in Hamiltonian Dynamical Systems. Results and Examples, Lecture Notes Math., 1893, Springer-Verlag, Berlin, Heidelberg, 2007. Google Scholar

[13]

H. Hanßmann, R. Mazrooei-Sebdani, F. Verhulst, The $1: 2: 4$ resonance in a particle chain, preprint, 2020, arXiv: 2002.01263. Google Scholar

[14]

G. Y. Kryuchkyan and K. V. Kheruntsyan, Four-wave mixing with non-degenerate pumps: Steady states and squeezing in the presence of phase modulation, Quantum Semiclass. Opt., 7 (1995), 529-539.  doi: 10.1088/1355-5111/7/4/010.  Google Scholar

[15]

M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices, Cambridge University, Cambridge, 2008. doi: 10.1017/CBO9780511600265.  Google Scholar

[16]

S. Medvedev and B. Bednyakova, Hamiltonian approach for optimization of phase-sensitive double-pumped parametric amplifiers, Opt. Express., 26 (2018), 15503. doi: 10.1364/OE.26.015503.  Google Scholar

[17]

H. Pourbeyram and A. Mafi, Four-wave mixing of a laser and its frequency-doubled version in a multimode optical fiber, Photonics, 2 (2015), 906-915.  doi: 10.3390/photonics2030906.  Google Scholar

[18]

J. R. Ott, H. Steffensen, K. Rottwitt and C. J. Mckinstrie, Geometric interpreation of four-wave mixing, Phys. Rev. A., 88 (2013), 043805. Google Scholar

[19]

A. A. RedyukA. E. BednyakovaS. B. MedvedevM. P. Fedoruk and S. K. Turitsyn, Simple Geometric interpreation of signal evolution in phase-sensitive fibre optic parametric amplifier, Opt. Express., 25 (2017), 223-231.   Google Scholar

[20]

D. A. Sadovski and B. I. Zhilinski, Hamiltonian systems with detuned $1$:$1$:$2$ resonance: Manifestation of bidromy, Ann. Physics, 322 (2007), 164-200.  doi: 10.1016/j.aop.2006.09.011.  Google Scholar

[21]

J. A. Sanders, F. Verhulst and J. Murdock, Averaging methods in nonlinear dynamical systems. Second Edition., Applied Mathematical Sciences, , Vol. 59, Springer, New York, 2007.  Google Scholar

[22]

S. Trillo and S. Wabnitz, Dynamics of the nonlinear modulational instability in optical fibers, Opt. Lett., 16 (1991), 986-988.  doi: 10.1364/OL.16.000986.  Google Scholar

[23]

E. van der Aa, First order resonances in three-degrees-of-freedom systems, Celestial Mech., 31 (1983), 163-191.  doi: 10.1007/BF01686817.  Google Scholar

[24]

E. van der Aa and J. A. Sanders, The $1$: $2$: $1$-resonance, its periodic orbits and integrals, in Asymptotic Analysis: From Theory to Application, Lecture Notes Math., Vol. 711, Springer, 1979,187–208. Google Scholar

[25]

E. van der Aa and F. Verhulst, Asymptotic integrability and periodic solutions of a Hamiltonian system in $1$ : $2$ : $2$-resonance, SIAM J. Math. Anal., 15 (1984), 890-911.  doi: 10.1137/0515067.  Google Scholar

[26]

F. Verhulst, Integrability and non-integrability of Hamiltonian normal forms, Acta Appl. Math., 137 (2015), 253-272.  doi: 10.1007/s10440-014-9998-5.  Google Scholar

[27] L. Vivien and L. Pavesi, Handbook of Silicon Photonics. First Edition, CRC Press, Taylor & Francis Group, 2013.   Google Scholar
[28]

S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos. Second Edition, in Texts in Appl. Math., Springer-Verlag, New York, 2003.  Google Scholar

show all references

References:
[1]

V. I. Arnold, V. V. Kozlov and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, in Dynamical Systems III, Encyc. Math. Sciences, Springer-Verlag, Berlin, 2006.  Google Scholar

[2]

H. W. BroerG. A. Lunter and G. Vegter, Equivariant singularity theory with distinguished parameters: Two case studies of resonant Hamiltonian systems, Phys. D, 112 (1998), 64-80.  doi: 10.1016/S0167-2789(97)00202-9.  Google Scholar

[3]

H. Broer and F. Takens, Dynamical Systems and Chaos, Appl. Math. Sciences, Vol. 172, Springer, New York, 2011. doi: 10.1007/978-1-4419-6870-8.  Google Scholar

[4]

R. Bruggeman and F. Verhulst, The inhomogeneous Fermi-Pasta-Ulam chain. A case study of the $1:2:3$ Resonance, Acta Appl. Math., 152 (2017), 111-145.  doi: 10.1007/s10440-017-0115-4.  Google Scholar

[5]

G. Cappellini and S. Trillo, Third-order three-wave mixxing in single-mode fibers: Exact solutions and spatial instability effects, J. Opt. Soc. Am. B., 8 (1991), 824-838.   Google Scholar

[6]

O. Christov, Non-integrability of first order resonances of Hamiltonian systems in three degrees of freedom, Celestial Mech. Dynam. Astronom., 112 (2012), 147-167.  doi: 10.1007/s10569-011-9389-4.  Google Scholar

[7]

C. De AngelisM. Santagiustina and S. Trillo, Four-photon homoclinic instabilities in nonlinear highly birefringent media, Phys. Rev. A., 51 (1995), 774-791.  doi: 10.1103/PhysRevA.51.774.  Google Scholar

[8]

J. J. Duistermaat, Non-integrability of the $1$ : $2$ : $1$-resonance, Ergodic Theory Dynam. Systems, 4 (1984), 553-568.  doi: 10.1017/S0143385700002649.  Google Scholar

[9]

J. EgeaS. Ferrer and J. C. van der Meer, Bifurcations of the Hamiltonian fourfold $1$ : $1$ resonance with toroidal symmetry, J. Nonlinear Sci., 21 (2011), 835-874.  doi: 10.1007/s00332-011-9102-5.  Google Scholar

[10]

D. D. Holm and P. Lynch, Stepwise precession of the resonant swinging spring, SIAM J. Appl. Dyn. Syst., 1 (2002), 44-64.  doi: 10.1137/S1111111101388571.  Google Scholar

[11]

G. Haller and S. Wiggins, Geometry and chaos near resonant equilibria of 3-DOF Hamiltonian systems, Physica D, 90 (1996), 319-365.  doi: 10.1016/0167-2789(95)00247-2.  Google Scholar

[12]

H. Hanßmann, Local and Semi-Local Bifurcations in Hamiltonian Dynamical Systems. Results and Examples, Lecture Notes Math., 1893, Springer-Verlag, Berlin, Heidelberg, 2007. Google Scholar

[13]

H. Hanßmann, R. Mazrooei-Sebdani, F. Verhulst, The $1: 2: 4$ resonance in a particle chain, preprint, 2020, arXiv: 2002.01263. Google Scholar

[14]

G. Y. Kryuchkyan and K. V. Kheruntsyan, Four-wave mixing with non-degenerate pumps: Steady states and squeezing in the presence of phase modulation, Quantum Semiclass. Opt., 7 (1995), 529-539.  doi: 10.1088/1355-5111/7/4/010.  Google Scholar

[15]

M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices, Cambridge University, Cambridge, 2008. doi: 10.1017/CBO9780511600265.  Google Scholar

[16]

S. Medvedev and B. Bednyakova, Hamiltonian approach for optimization of phase-sensitive double-pumped parametric amplifiers, Opt. Express., 26 (2018), 15503. doi: 10.1364/OE.26.015503.  Google Scholar

[17]

H. Pourbeyram and A. Mafi, Four-wave mixing of a laser and its frequency-doubled version in a multimode optical fiber, Photonics, 2 (2015), 906-915.  doi: 10.3390/photonics2030906.  Google Scholar

[18]

J. R. Ott, H. Steffensen, K. Rottwitt and C. J. Mckinstrie, Geometric interpreation of four-wave mixing, Phys. Rev. A., 88 (2013), 043805. Google Scholar

[19]

A. A. RedyukA. E. BednyakovaS. B. MedvedevM. P. Fedoruk and S. K. Turitsyn, Simple Geometric interpreation of signal evolution in phase-sensitive fibre optic parametric amplifier, Opt. Express., 25 (2017), 223-231.   Google Scholar

[20]

D. A. Sadovski and B. I. Zhilinski, Hamiltonian systems with detuned $1$:$1$:$2$ resonance: Manifestation of bidromy, Ann. Physics, 322 (2007), 164-200.  doi: 10.1016/j.aop.2006.09.011.  Google Scholar

[21]

J. A. Sanders, F. Verhulst and J. Murdock, Averaging methods in nonlinear dynamical systems. Second Edition., Applied Mathematical Sciences, , Vol. 59, Springer, New York, 2007.  Google Scholar

[22]

S. Trillo and S. Wabnitz, Dynamics of the nonlinear modulational instability in optical fibers, Opt. Lett., 16 (1991), 986-988.  doi: 10.1364/OL.16.000986.  Google Scholar

[23]

E. van der Aa, First order resonances in three-degrees-of-freedom systems, Celestial Mech., 31 (1983), 163-191.  doi: 10.1007/BF01686817.  Google Scholar

[24]

E. van der Aa and J. A. Sanders, The $1$: $2$: $1$-resonance, its periodic orbits and integrals, in Asymptotic Analysis: From Theory to Application, Lecture Notes Math., Vol. 711, Springer, 1979,187–208. Google Scholar

[25]

E. van der Aa and F. Verhulst, Asymptotic integrability and periodic solutions of a Hamiltonian system in $1$ : $2$ : $2$-resonance, SIAM J. Math. Anal., 15 (1984), 890-911.  doi: 10.1137/0515067.  Google Scholar

[26]

F. Verhulst, Integrability and non-integrability of Hamiltonian normal forms, Acta Appl. Math., 137 (2015), 253-272.  doi: 10.1007/s10440-014-9998-5.  Google Scholar

[27] L. Vivien and L. Pavesi, Handbook of Silicon Photonics. First Edition, CRC Press, Taylor & Francis Group, 2013.   Google Scholar
[28]

S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos. Second Edition, in Texts in Appl. Math., Springer-Verlag, New York, 2003.  Google Scholar

Figure 1.  Sketch of the FWM model where a photon at $ \omega_1 $ and $ \omega_4 $ is annihilated while a photon at $ \omega_2 $ and $ \omega_3 $ is created
Figure 2.  Changes of $ \tilde{H} $ respect to initial conditions
Figure 3.  Changes of $ \tilde{H} $ respect to distance
Figure 4.  $ \pi_j(T) $ for $ j = 1,k_ge 5,k_ge 6,k_ge 9,k_ge 10,k_ge 11,k_ge 12 $ respect to $ T $
Figure 5.  $ (\pi_j(T),\pi_{j+1}(T)) $ for all $ j = 5,k_ge 9,k_ge 11 $
Figure 6.  $ (\pi_1(T),\pi_j(T)) $ for all $ j = 5,k_ge 6,k_ge 9,k_ge 10,k_ge 11,k_ge 12 $
Figure 7.  Changes of $ \tilde{H} $ respect to $ \pi_1(T) $
Figure 8.  $ (\pi_j(T),\pi_{j+1}(T)) $ for all $ j = 5,k_ge 9,k_ge 11 $ near some relative equilibria for $ \nu_1 = 1+\frac{1}{8},k_ge \nu_2 = 2+\frac{1}{2},k_ge \nu_3 = 1+\frac{1}{8},k_ge \nu_4 = 2+\frac{1}{2} $ and $ \eta_1 = \eta_2 = \frac{3}{2}(\frac{\nu_2-2\nu_3}{9\gamma}) = \frac{1}{24} $, $ \eta = \eta_1+\frac{1}{3}\eta_2 = \frac{1}{18} $
Figure 9.  $ (\pi_j(T),\pi_{j+1}(T)) $ for all $ j = 5,k_ge 9,k_ge 11 $ near some relative equilibria for $ \nu_1 = 1,k_ge \nu_2 = 2+\frac{1}{10},k_ge \nu_3 = 1,k_ge \nu_4 = 2 $ and $ \eta = 0.1118423612,k_ge \eta_1 = 0.07710541672,k_ge \eta_2 = 0.1042108334 $
Figure 10.  $ (\pi_j(T),\pi_{j+1}(T)) $ for all $ j = 5,k_ge 9,k_ge 11 $ near some relative equilibria for $ \nu_1 = 1,k_ge \nu_2 = 2+\frac{1}{10},k_ge \nu_3 = 1,k_ge \nu_4 = 2 $ and $ \eta = 0.06174877145,k_ge \eta_1 = \frac{1}{20},k_ge \eta_2 = \frac{1}{40} $
Figure 11.  $ (\pi_j(T),\pi_{j+1}(T)) $ for all $ j = 5,k_ge 9,k_ge 11 $ near some relative equilibria for $ \nu_1 = 1,k_ge \nu_2 = 2+\frac{1}{10},k_ge \nu_3 = 1,k_ge \nu_4 = 2 $ and $ \eta = \frac{7}{160},k_ge \eta_1 = \frac{1}{60},k_ge \eta_2 = \frac{1}{20} $
Table 1.  First order genuine resonances table with $ |\omega_j|<10, \; j = 1, \; 2, \; 3, \; 4 $
$ 1:2:3:4 $ $ 1:2:3:5 $ $ 1:2:3:6 $ $ 1:2:3:7 $ $ 1:2:3:8 $ $ 1:2:3:9 $ $ 1:2:4:5 $
$ 1:2:4:6 $ $ 1:2:4:7 $ $ 1:2:4:8 $ $ 1:2:4:9 $ $ 1:2:5:6 $ $ 1:2:5:7 $ $ 1:2:6:7 $
$ 1:2:6:8 $ $ 1:2:7:8 $ $ 1:2:7:9 $ $ 1:2:8:9 $ $ 1:3:4:5 $ $ 1:3:4:6 $ $ 1:3:4:7 $
$ 1:3:4:8 $ $ 1:3:5:6 $ $ 1:3:6:7 $ $ 1:3:6:9 $ $ 1:4:5:6 $ $ 1:4:5:8 $ $ 1:4:5:9 $
$ 1:4:7:8 $ $ 1:4:8:9 $ $ 1:5:6:7 $ $ 1:6:7:8 $ $ 1:7:8:9 $ $ 1:2:2:3 $ $ 1:2:2:4 $
$ 1:2:2:5 $ $ 1:2:2:6 $ $ 1:2:2:7 $ $ 1:2:2:8 $ $ 1:2:2:9 $ $ 1:3:3:2 $ $ 1:3:3:4 $
$ 1:3:3:6 $ $ 1:4:4:2 $ $ 1:4:4:3 $ $ 1:4:4:5 $ $ 1:4:4:8 $ $ 1:5:5:4 $ $ 1:5:5:6 $
$ 1:6:6:3 $ $ 1:6:6:5 $ $ 1:6:6:7 $ $ 1:7:7:6 $ $ 1:7:7:8 $ $ 1:8:8:4 $ $ 1:8:8:7 $
$ 1:8:8:9 $ $ 1:9:9:8 $ $ 1:2:2:2 $ $ 1:1:2:3 $ $ 1:1:2:4 $ $ 1:1:2:5 $ $ 1:1:2:6 $
$ 1:1:2:7 $ $ 1:1:2:8 $ $ 1:1:2:9 $ $ 1:1:3:4 $ $ 1:1:4:5 $ $ 1:1:5:6 $ $ 1:1:6:7 $
$ 1:1:7:8 $ $ 1:1:8:9 $ $ 1:2:1:2 $ $ 1:1:1:2 $ $ 2:3:4:5 $ $ 2:3:4:6 $ $ 2:3:4:7 $
$ 2:3:4:8 $ $ 2:3:5:6 $ $ 2:3:5:7 $ $ 2:3:5:8 $ $ 2:3:6:8 $ $ 2:3:6:9 $ $ 2:4:5:6 $
$ 2:4:5:7 $ $ 2:4:5:8 $ $ 2:4:5:9 $ $ 2:4:6:7 $ $ 2:4:6:9 $ $ 2:4:7:8 $ $ 2:4:7:9 $
$ 2:4:8:9 $ $ 2:5:7:9 $ $ 2:3:3:5 $ $ 2:3:3:6 $ $ 2:4:4:3 $ $ 2:4:4:5 $ $ 2:4:4:7 $
$ 2:4:4:9 $ $ 2:5:5:3 $ $ 2:5:5:7 $ $ 2:6:6:3 $ $ 2:7:7:5 $ $ 2:7:7:9 $ $ 2:2:3:4 $
$ 2:2:3:5 $ $ 2:2:4:5 $ $ 2:2:4:7 $ $ 2:2:4:9 $ $ 2:2:5:7 $ $ 2:2:7:9 $ $ 3:4:6:7 $
$ 3:4:6:8 $ $ 3:4:6:9 $ $ 3:4:7:8 $ $ 3:5:6:8 $ $ 3:5:6:9 $ $ 3:6:7:9 $ $ 3:6:8:9 $
$ 3:4:4:7 $ $ 3:4:4:8 $ $ 3:5:5:8 $ $ 3:6:6:7 $ $ 3:6:6:8 $ $ 3:3:4:6 $ $ 3:3:4:7 $
$ 3:3:5:6 $ $ 3:3:5:8 $ $ 3:3:6:7 $ $ 3:3:6:8 $ $ 4:5:8:9 $ $ 4:5:5:9 $ $ 4:8:8:9 $
$ 4:4:5:8 $ $ 4:4:5:9 $ $ 4:4:7:8 $ $ 4:4:8:9 $
$ 1:2:3:4 $ $ 1:2:3:5 $ $ 1:2:3:6 $ $ 1:2:3:7 $ $ 1:2:3:8 $ $ 1:2:3:9 $ $ 1:2:4:5 $
$ 1:2:4:6 $ $ 1:2:4:7 $ $ 1:2:4:8 $ $ 1:2:4:9 $ $ 1:2:5:6 $ $ 1:2:5:7 $ $ 1:2:6:7 $
$ 1:2:6:8 $ $ 1:2:7:8 $ $ 1:2:7:9 $ $ 1:2:8:9 $ $ 1:3:4:5 $ $ 1:3:4:6 $ $ 1:3:4:7 $
$ 1:3:4:8 $ $ 1:3:5:6 $ $ 1:3:6:7 $ $ 1:3:6:9 $ $ 1:4:5:6 $ $ 1:4:5:8 $ $ 1:4:5:9 $
$ 1:4:7:8 $ $ 1:4:8:9 $ $ 1:5:6:7 $ $ 1:6:7:8 $ $ 1:7:8:9 $ $ 1:2:2:3 $ $ 1:2:2:4 $
$ 1:2:2:5 $ $ 1:2:2:6 $ $ 1:2:2:7 $ $ 1:2:2:8 $ $ 1:2:2:9 $ $ 1:3:3:2 $ $ 1:3:3:4 $
$ 1:3:3:6 $ $ 1:4:4:2 $ $ 1:4:4:3 $ $ 1:4:4:5 $ $ 1:4:4:8 $ $ 1:5:5:4 $ $ 1:5:5:6 $
$ 1:6:6:3 $ $ 1:6:6:5 $ $ 1:6:6:7 $ $ 1:7:7:6 $ $ 1:7:7:8 $ $ 1:8:8:4 $ $ 1:8:8:7 $
$ 1:8:8:9 $ $ 1:9:9:8 $ $ 1:2:2:2 $ $ 1:1:2:3 $ $ 1:1:2:4 $ $ 1:1:2:5 $ $ 1:1:2:6 $
$ 1:1:2:7 $ $ 1:1:2:8 $ $ 1:1:2:9 $ $ 1:1:3:4 $ $ 1:1:4:5 $ $ 1:1:5:6 $ $ 1:1:6:7 $
$ 1:1:7:8 $ $ 1:1:8:9 $ $ 1:2:1:2 $ $ 1:1:1:2 $ $ 2:3:4:5 $ $ 2:3:4:6 $ $ 2:3:4:7 $
$ 2:3:4:8 $ $ 2:3:5:6 $ $ 2:3:5:7 $ $ 2:3:5:8 $ $ 2:3:6:8 $ $ 2:3:6:9 $ $ 2:4:5:6 $
$ 2:4:5:7 $ $ 2:4:5:8 $ $ 2:4:5:9 $ $ 2:4:6:7 $ $ 2:4:6:9 $ $ 2:4:7:8 $ $ 2:4:7:9 $
$ 2:4:8:9 $ $ 2:5:7:9 $ $ 2:3:3:5 $ $ 2:3:3:6 $ $ 2:4:4:3 $ $ 2:4:4:5 $ $ 2:4:4:7 $
$ 2:4:4:9 $ $ 2:5:5:3 $ $ 2:5:5:7 $ $ 2:6:6:3 $ $ 2:7:7:5 $ $ 2:7:7:9 $ $ 2:2:3:4 $
$ 2:2:3:5 $ $ 2:2:4:5 $ $ 2:2:4:7 $ $ 2:2:4:9 $ $ 2:2:5:7 $ $ 2:2:7:9 $ $ 3:4:6:7 $
$ 3:4:6:8 $ $ 3:4:6:9 $ $ 3:4:7:8 $ $ 3:5:6:8 $ $ 3:5:6:9 $ $ 3:6:7:9 $ $ 3:6:8:9 $
$ 3:4:4:7 $ $ 3:4:4:8 $ $ 3:5:5:8 $ $ 3:6:6:7 $ $ 3:6:6:8 $ $ 3:3:4:6 $ $ 3:3:4:7 $
$ 3:3:5:6 $ $ 3:3:5:8 $ $ 3:3:6:7 $ $ 3:3:6:8 $ $ 4:5:8:9 $ $ 4:5:5:9 $ $ 4:8:8:9 $
$ 4:4:5:8 $ $ 4:4:5:9 $ $ 4:4:7:8 $ $ 4:4:8:9 $
Table 2.  Second order genuine resonances table with $ |\omega_j|<10, \; j = 1, \; 2, \; 3, \; 4 $
$ 1:2:5:8 $ $ 1:2:5:9 $ $ 1:3:5:7 $ $ 1:3:5:9 $ $ 1:3:7:9 $ $ 1:4:5:7 $ $ 1:4:6:7 $
$ 1:4:6:8 $ $ 1:4:6:9 $ $ 1:4:7:9 $ $ 1:5:7:9 $ $ 1:3:3:5 $ $ 1:3:3:7 $ $ 1:4:4:6 $
$ 1:4:4:7 $ $ 1:4:4:9 $ $ 1:5:5:2 $ $ 1:5:5:3 $ $ 1:5:5:7 $ $ 1:5:5:9 $ $ 1:6:6:4 $
$ 1:6:6:8 $ $ 1:7:7:3 $ $ 1:7:7:4 $ $ 1:7:7:5 $ $ 1:7:7:9 $ $ 1:8:8:6 $ $ 1:9:9:4 $
$ 1:9:9:5 $ $ 1:9:9:7 $ $ 1:3:3:3 $ $ 1:4:4:4 $ $ 1:5:5:5 $ $ 1:6:6:6 $ $ 1:7:7:7 $
$ 1:8:8:8 $ $ 1:9:9:9 $ $ 1:1:3:5 $ $ 1:1:3:6 $ $ 1:1:3:7 $ $ 1:1:3:8 $ $ 1:1:3:9 $
$ 1:1:4:6 $ $ 1:1:4:7 $ $ 1:1:4:9 $ $ 1:1:5:7 $ $ 1:1:5:9 $ $ 1:1:6:8 $ $ 1:1:7:9 $
$ 1:3:1:3 $ $ 1:4:1:4 $ $ 1:5:1:5 $ $ 1:6:1:6 $ $ 1:7:1:7 $ $ 1:8:1:8 $ $ 1:9:1:9 $
$ 1:1:1:3 $ $ 1:1:1:4 $ $ 1:1:1:5 $ $ 1:1:1:6 $ $ 1:1:1:7 $ $ 1:1:1:8 $ $ 1:1:1:9 $
$ 1:1:1:1 $ $ 2:3:7:8 $ $ 2:3:3:4 $ $ 2:3:3:7 $ $ 2:3:3:8 $ $ 2:5:5:8 $ $ 2:5:5:9 $
$ 2:7:7:3 $ $ 2:8:8:3 $ $ 2:3:3:3 $ $ 2:5:5:5 $ $ 2:7:7:7 $ $ 2:9:9:9 $ $ 2:2:3:7 $
$ 2:2:3:8 $ $ 2:2:5:8 $ $ 2:2:5:9 $ $ 2:3:2:3 $ $ 2:5:2:5 $ $ 2:7:2:7 $ $ 2:9:2:9 $
$ 2:2:2:3 $ $ 2:2:2:5 $ $ 2:2:2:9 $ $ 3:4:5:6 $ $ 3:5:6:7 $ $ 3:5:7:9 $ $ 3:4:4:5 $
$ 3:5:5:7 $ $ 3:4:4:4 $ $ 3:5:5:5 $ $ 3:7:7:7 $ $ 3:8:8:8 $ $ 3:3:4:5 $ $ 3:3:5:7 $
$ 3:4:3:4 $ $ 3:5:3:5 $ $ 3:7:3:7 $ $ 3:8:3:8 $ $ 3:3:3:4 $ $ 3:3:3:5 $ $ 3:3:3:7 $
$ 3:3:3:8 $ $ 4:5:6:7 $ $ 4:5:6:8 $ $ 4:6:7:8 $ $ 4:5:5:6 $ $ 4:5:5:5 $ $ 4:7:7:7 $
$ 4:9:9:9 $ $ 4:4:5:6 $ $ 4:5:4:5 $ $ 4:7:4:7 $ $ 4:9:4:9 $ $ 4:4:4:5 $ $ 4:4:4:7 $
$ 4:4:4:9 $ $ 5:6:7:8 $ $ 5:6:6:7 $ $ 5:7:7:9 $ $ 5:6:6:6 $ $ 5:7:7:7 $ $ 5:8:8:8 $
$ 5:9:9:9 $ $ 5:5:6:7 $ $ 5:5:7:9 $ $ 5:6:5:6 $ $ 5:7:5:7 $ $ 5:8:5:8 $ $ 5:9:5:9 $
$ 5:5:5:6 $ $ 5:5:5:7 $ $ 5:5:5:8 $ $ 5:5:5:9 $ $ 6:7:8:9 $ $ 6:7:7:8 $ $ 6:7:7:7 $
$ 6:6:7:8 $ $ 6:7:6:7 $ $ 6:6:6:7 $ $ 7:8:8:9 $ $ 7:8:8:8 $ $ 7:9:9:9 $ $ 7:7:8:9 $
$ 7:8:7:8 $ $ 7:9:7:9 $ $ 7:7:7:8 $ $ 7:7:7:9 $ $ 8:9:9:9 $ $ 8:9:8:9 $ $ 8:8:8:9 $
$ 1:2:5:8 $ $ 1:2:5:9 $ $ 1:3:5:7 $ $ 1:3:5:9 $ $ 1:3:7:9 $ $ 1:4:5:7 $ $ 1:4:6:7 $
$ 1:4:6:8 $ $ 1:4:6:9 $ $ 1:4:7:9 $ $ 1:5:7:9 $ $ 1:3:3:5 $ $ 1:3:3:7 $ $ 1:4:4:6 $
$ 1:4:4:7 $ $ 1:4:4:9 $ $ 1:5:5:2 $ $ 1:5:5:3 $ $ 1:5:5:7 $ $ 1:5:5:9 $ $ 1:6:6:4 $
$ 1:6:6:8 $ $ 1:7:7:3 $ $ 1:7:7:4 $ $ 1:7:7:5 $ $ 1:7:7:9 $ $ 1:8:8:6 $ $ 1:9:9:4 $
$ 1:9:9:5 $ $ 1:9:9:7 $ $ 1:3:3:3 $ $ 1:4:4:4 $ $ 1:5:5:5 $ $ 1:6:6:6 $ $ 1:7:7:7 $
$ 1:8:8:8 $ $ 1:9:9:9 $ $ 1:1:3:5 $ $ 1:1:3:6 $ $ 1:1:3:7 $ $ 1:1:3:8 $ $ 1:1:3:9 $
$ 1:1:4:6 $ $ 1:1:4:7 $ $ 1:1:4:9 $ $ 1:1:5:7 $ $ 1:1:5:9 $ $ 1:1:6:8 $ $ 1:1:7:9 $
$ 1:3:1:3 $ $ 1:4:1:4 $ $ 1:5:1:5 $ $ 1:6:1:6 $ $ 1:7:1:7 $ $ 1:8:1:8 $ $ 1:9:1:9 $
$ 1:1:1:3 $ $ 1:1:1:4 $ $ 1:1:1:5 $ $ 1:1:1:6 $ $ 1:1:1:7 $ $ 1:1:1:8 $ $ 1:1:1:9 $
$ 1:1:1:1 $ $ 2:3:7:8 $ $ 2:3:3:4 $ $ 2:3:3:7 $ $ 2:3:3:8 $ $ 2:5:5:8 $ $ 2:5:5:9 $
$ 2:7:7:3 $ $ 2:8:8:3 $ $ 2:3:3:3 $ $ 2:5:5:5 $ $ 2:7:7:7 $ $ 2:9:9:9 $ $ 2:2:3:7 $
$ 2:2:3:8 $ $ 2:2:5:8 $ $ 2:2:5:9 $ $ 2:3:2:3 $ $ 2:5:2:5 $ $ 2:7:2:7 $ $ 2:9:2:9 $
$ 2:2:2:3 $ $ 2:2:2:5 $ $ 2:2:2:9 $ $ 3:4:5:6 $ $ 3:5:6:7 $ $ 3:5:7:9 $ $ 3:4:4:5 $
$ 3:5:5:7 $ $ 3:4:4:4 $ $ 3:5:5:5 $ $ 3:7:7:7 $ $ 3:8:8:8 $ $ 3:3:4:5 $ $ 3:3:5:7 $
$ 3:4:3:4 $ $ 3:5:3:5 $ $ 3:7:3:7 $ $ 3:8:3:8 $ $ 3:3:3:4 $ $ 3:3:3:5 $ $ 3:3:3:7 $
$ 3:3:3:8 $ $ 4:5:6:7 $ $ 4:5:6:8 $ $ 4:6:7:8 $ $ 4:5:5:6 $ $ 4:5:5:5 $ $ 4:7:7:7 $
$ 4:9:9:9 $ $ 4:4:5:6 $ $ 4:5:4:5 $ $ 4:7:4:7 $ $ 4:9:4:9 $ $ 4:4:4:5 $ $ 4:4:4:7 $
$ 4:4:4:9 $ $ 5:6:7:8 $ $ 5:6:6:7 $ $ 5:7:7:9 $ $ 5:6:6:6 $ $ 5:7:7:7 $ $ 5:8:8:8 $
$ 5:9:9:9 $ $ 5:5:6:7 $ $ 5:5:7:9 $ $ 5:6:5:6 $ $ 5:7:5:7 $ $ 5:8:5:8 $ $ 5:9:5:9 $
$ 5:5:5:6 $ $ 5:5:5:7 $ $ 5:5:5:8 $ $ 5:5:5:9 $ $ 6:7:8:9 $ $ 6:7:7:8 $ $ 6:7:7:7 $
$ 6:6:7:8 $ $ 6:7:6:7 $ $ 6:6:6:7 $ $ 7:8:8:9 $ $ 7:8:8:8 $ $ 7:9:9:9 $ $ 7:7:8:9 $
$ 7:8:7:8 $ $ 7:9:7:9 $ $ 7:7:7:8 $ $ 7:7:7:9 $ $ 8:9:9:9 $ $ 8:9:8:9 $ $ 8:8:8:9 $
Table 3.  The bracket relations
$\{ \downarrow , \rightarrow \}$ $\pi_1$ $\pi_2$ $\pi_3$ $\pi_4$ $\pi_5$ $\pi_6$ $\pi_7$ $\pi_8$
$\pi_1$ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $\pi_6$ $-\pi_5$ $0$ $0$
$\pi_2$ $0$ $0$ $0$ $0$ $0$ $0$ $\pi_8$ $-\pi_7$
$\pi_3$ $0$ $0$ $0$ $0$ $-\pi_6$ $\pi_5$ $0$ $0$
$\pi_4$ $0$ $0$ $0$ $0$ $0$ $0$ $-\pi_8$ $\pi_7$
$\pi_5$ $-\pi_6$ $0$ $\pi_6$ $0$ $0$ $\frac{1}{2}(\pi_1-\pi_3)$ $0$ $0$
$\pi_6$ $\pi_5$ $0$ $-\pi_5$ $0$ $-\frac{1}{2}(\pi_1-\pi_3)$ $0$ $0$ $0$
$\pi_7$ $0$ $-\pi_8$ $0$ $\pi_8$ $0$ $0$ $0$ $\frac{1}{2}(\pi_2-\pi_4)$
$\pi_8$ $0$ $\pi_7$ $0$ $-\pi_7$ $0$ $0$ $-\frac{1}{2}(\pi_2-\pi_4)$ $0$
$\pi_{9}$ $-2\pi_{10}$ $\pi_{10}$ $0$ $0$ $-\frac{1}{2}\pi_{18}$ $-\frac{1}{2}\pi_{17}$ $\frac{1}{2}\pi_{12}$ $-\frac{1}{2}\pi_{11}$
$\pi_{10}$ $2\pi_9$ $-\pi_9$ $0$ $0$ $\frac{1}{2}\pi_{17}$ $-\frac{1}{2}\pi_{18}$ $-\frac{1}{2}\pi_{11}$ $-\frac{1}{2}\pi_{12}$
$\pi_{11}$ $-2\pi_{12}$ $0$ $0$ $\pi_{12}$ $-\frac{1}{2}\pi_{20}$ $-\frac{1}{2}\pi_{19}$ $\frac{1}{2}\pi_{10}$ $\frac{1}{2}\pi_{9}$
$\pi_{12}$ $2\pi_{11}$ $0$ $0$ $-\pi_{11}$ $\frac{1}{2}\pi_{19}$ $-\frac{1}{2}\pi_{20}$ $-\frac{1}{2}\pi_{9}$ $\frac{1}{2}\pi_{10}$
$\pi_{13}$ $0$ $\pi_{14}$ $-2\pi_{14}$ $0$ $-\frac{1}{2}\pi_{18}$ $\frac{1}{2}\pi_{17}$ $\frac{1}{2}\pi_{16}$ $-\frac{1}{2}\pi_{15}$
$\pi_{14}$ $0$ $-\pi_{13}$ $2\pi_{13}$ $0$ $\frac{1}{2}\pi_{17}$ $\frac{1}{2}\pi_{18}$ $-\frac{1}{2}\pi_{15}$ $-\frac{1}{2}\pi_{16}$
$\pi_{15}$ $0$ $0$ $-2\pi_{16}$ $\pi_{16}$ $-\frac{1}{2}\pi_{20}$ $\frac{1}{2}\pi_{19}$ $\frac{1}{2}\pi_{14}$ $\frac{1}{2}\pi_{13}$
$\pi_{16}$ $0$ $0$ $2\pi_{15}$ $-\pi_{15}$ $\frac{1}{2}\pi_{19}$ $\frac{1}{2}\pi_{20}$ $-\frac{1}{2}\pi_{13}$ $\frac{1}{2}\pi_{14}$
$\{ \downarrow , \rightarrow \}$ $\pi_9$ $\pi_{10}$ $\pi_{11}$ $\pi_{12}$ $\pi_{13}$ $\pi_{14}$ $\pi_{15}$ $\pi_{16}$
$\pi_1$ $2\pi_{10}$ $-2\pi_9$ $2\pi_{12}$ $-2\pi_{11}$ $0$ $0$ $0$ $0$
$\pi_2$ $-\pi_{10}$ $\pi_9$ $0$ $0$ $-\pi_{14}$ $\pi_{13}$ $0$ $0$
$\pi_3$ $0$ $0$ $0$ $0$ $2\pi_{14}$ $-2\pi_{13}$ $2\pi_{16}$ $-2\pi_{15}$
$\pi_4$ $0$ $0$ $-\pi_{12}$ $\pi_{11}$ $0$ $0$ $-\pi_{16}$ $\pi_{15}$
$\pi_5$ $\frac{1}{2}\pi_{18}$ $-\frac{1}{2}\pi_{17}$ $\frac{1}{2}\pi_{20}$ $-\frac{1}{2}\pi_{19}$ $\frac{1}{2}\pi_{18}$ $-\frac{1}{2}\pi_{17}$ $\frac{1}{2}\pi_{20}$ $-\frac{1}{2}\pi_{19}$
$\pi_6$ $\frac{1}{2}\pi_{17}$ $\frac{1}{2}\pi_{18}$ $\frac{1}{2}\pi_{19}$ $\frac{1}{2}\pi_{20}$ $-\frac{1}{2}\pi_{17}$ $-\frac{1}{2}\pi_{18}$ $-\frac{1}{2}\pi_{19}$ $-\frac{1}{2}\pi_{20}$
$\pi_7$ $-\frac{1}{2}\pi_{12}$ $\frac{1}{2}\pi_{11}$ $-\frac{1}{2}\pi_{10}$ $\frac{1}{2}\pi_{9}$ $-\frac{1}{2}\pi_{16}$ $\frac{1}{2}\pi_{17}$ $-\frac{1}{2}\pi_{14}$ $\frac{1}{2}\pi_{13}$
$\pi_8$ $\frac{1}{2}\pi_{11}$ $\frac{1}{2}\pi_{12}$ $-\frac{1}{2}\pi_{9}$ $-\frac{1}{2}\pi_{10}$ $\frac{1}{2}\pi_{15}$ $\frac{1}{2}\pi_{16}$ $-\frac{1}{2}\pi_{13}$ $-\frac{1}{2}\pi_{14}$
$\pi_{9}$ $0$ $\pi_1(\pi_1-4\pi_2)$ $4 \pi_1 \pi_8$ $-4 \pi_1 \pi_7$ $2 \pi_5 \pi_6$ $(\pi_5^{2}-\pi_6^{2})$ $0$ $0$
$\pi_{10}$ $-\pi_1(\pi_1-4\pi_2)$ $0$ $4 \pi_1 \pi_7$ $4 \pi_1 \pi_8$ $-(\pi_5^{2}-\pi_6^{2})$ $2 \pi_5 \pi_6$ $0$ $0$
$\pi_{11}$ $-4\pi_1 \pi_8$ $-4\pi_1 \pi_7$ $0$ $\pi_1(\pi_1-4\pi_4)$ $0$ $0$ $2 \pi_5 \pi_6$ $(\pi_5^{2}-\pi_6^{2})$
$\pi_{12}$ $4\pi_1 \pi_7$ $-4\pi_1 \pi_8$ $-\pi_1(\pi_1-4\pi_4)$ $0$ $0$ $0$ $-(\pi_5^{2}-\pi_6^{2})$ $2 \pi_5 \pi_6$
$\pi_{13}$ $-2 \pi_5 \pi_6$ $(\pi_5^{2}-\pi_6^{2})$ $0$ $0$ $0$ $-\pi_3(4\pi_2-\pi_3)$ $4\pi_3 \pi_8$ $-4\pi_3 \pi_7$
$\pi_{14}$ $-(\pi_5^{2}-\pi_6^{2})$ $-2 \pi_5 \pi_6$ $0$ $0$ $\pi_3(4\pi_2-\pi_3)$ $0$ $4\pi_3 \pi_7$ $4\pi_3 \pi_8$
$\pi_{15}$ $0$ $0$ $-2 \pi_5 \pi_6$ $(\pi_5^{2}-\pi_6^{2})$ $-4\pi_3 \pi_8$ $-4\pi_3 \pi_7$ $0$ $-\pi_3(4\pi_4-\pi_3)$
$\pi_{16}$ $0$ $0$ $-(\pi_5^{2}-\pi_6^{2})$ $-2 \pi_5 \pi_6$ $4\pi_3 \pi_7$ $-4\pi_3 \pi_8$ $\pi_3(4\pi_4-\pi_3)$ $0$
$\{ \downarrow , \rightarrow \}$ $\pi_1$ $\pi_2$ $\pi_3$ $\pi_4$ $\pi_5$ $\pi_6$ $\pi_7$ $\pi_8$
$\pi_1$ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $\pi_6$ $-\pi_5$ $0$ $0$
$\pi_2$ $0$ $0$ $0$ $0$ $0$ $0$ $\pi_8$ $-\pi_7$
$\pi_3$ $0$ $0$ $0$ $0$ $-\pi_6$ $\pi_5$ $0$ $0$
$\pi_4$ $0$ $0$ $0$ $0$ $0$ $0$ $-\pi_8$ $\pi_7$
$\pi_5$ $-\pi_6$ $0$ $\pi_6$ $0$ $0$ $\frac{1}{2}(\pi_1-\pi_3)$ $0$ $0$
$\pi_6$ $\pi_5$ $0$ $-\pi_5$ $0$ $-\frac{1}{2}(\pi_1-\pi_3)$ $0$ $0$ $0$
$\pi_7$ $0$ $-\pi_8$ $0$ $\pi_8$ $0$ $0$ $0$ $\frac{1}{2}(\pi_2-\pi_4)$
$\pi_8$ $0$ $\pi_7$ $0$ $-\pi_7$ $0$ $0$ $-\frac{1}{2}(\pi_2-\pi_4)$ $0$
$\pi_{9}$ $-2\pi_{10}$ $\pi_{10}$ $0$ $0$ $-\frac{1}{2}\pi_{18}$ $-\frac{1}{2}\pi_{17}$ $\frac{1}{2}\pi_{12}$ $-\frac{1}{2}\pi_{11}$
$\pi_{10}$ $2\pi_9$ $-\pi_9$ $0$ $0$ $\frac{1}{2}\pi_{17}$ $-\frac{1}{2}\pi_{18}$ $-\frac{1}{2}\pi_{11}$ $-\frac{1}{2}\pi_{12}$
$\pi_{11}$ $-2\pi_{12}$ $0$ $0$ $\pi_{12}$ $-\frac{1}{2}\pi_{20}$ $-\frac{1}{2}\pi_{19}$ $\frac{1}{2}\pi_{10}$ $\frac{1}{2}\pi_{9}$
$\pi_{12}$ $2\pi_{11}$ $0$ $0$ $-\pi_{11}$ $\frac{1}{2}\pi_{19}$ $-\frac{1}{2}\pi_{20}$ $-\frac{1}{2}\pi_{9}$ $\frac{1}{2}\pi_{10}$
$\pi_{13}$ $0$ $\pi_{14}$ $-2\pi_{14}$ $0$ $-\frac{1}{2}\pi_{18}$ $\frac{1}{2}\pi_{17}$ $\frac{1}{2}\pi_{16}$ $-\frac{1}{2}\pi_{15}$
$\pi_{14}$ $0$ $-\pi_{13}$ $2\pi_{13}$ $0$ $\frac{1}{2}\pi_{17}$ $\frac{1}{2}\pi_{18}$ $-\frac{1}{2}\pi_{15}$ $-\frac{1}{2}\pi_{16}$
$\pi_{15}$ $0$ $0$ $-2\pi_{16}$ $\pi_{16}$ $-\frac{1}{2}\pi_{20}$ $\frac{1}{2}\pi_{19}$ $\frac{1}{2}\pi_{14}$ $\frac{1}{2}\pi_{13}$
$\pi_{16}$ $0$ $0$ $2\pi_{15}$ $-\pi_{15}$ $\frac{1}{2}\pi_{19}$ $\frac{1}{2}\pi_{20}$ $-\frac{1}{2}\pi_{13}$ $\frac{1}{2}\pi_{14}$
$\{ \downarrow , \rightarrow \}$ $\pi_9$ $\pi_{10}$ $\pi_{11}$ $\pi_{12}$ $\pi_{13}$ $\pi_{14}$ $\pi_{15}$ $\pi_{16}$
$\pi_1$ $2\pi_{10}$ $-2\pi_9$ $2\pi_{12}$ $-2\pi_{11}$ $0$ $0$ $0$ $0$
$\pi_2$ $-\pi_{10}$ $\pi_9$ $0$ $0$ $-\pi_{14}$ $\pi_{13}$ $0$ $0$
$\pi_3$ $0$ $0$ $0$ $0$ $2\pi_{14}$ $-2\pi_{13}$ $2\pi_{16}$ $-2\pi_{15}$
$\pi_4$ $0$ $0$ $-\pi_{12}$ $\pi_{11}$ $0$ $0$ $-\pi_{16}$ $\pi_{15}$
$\pi_5$ $\frac{1}{2}\pi_{18}$ $-\frac{1}{2}\pi_{17}$ $\frac{1}{2}\pi_{20}$ $-\frac{1}{2}\pi_{19}$ $\frac{1}{2}\pi_{18}$ $-\frac{1}{2}\pi_{17}$ $\frac{1}{2}\pi_{20}$ $-\frac{1}{2}\pi_{19}$
$\pi_6$ $\frac{1}{2}\pi_{17}$ $\frac{1}{2}\pi_{18}$ $\frac{1}{2}\pi_{19}$ $\frac{1}{2}\pi_{20}$ $-\frac{1}{2}\pi_{17}$ $-\frac{1}{2}\pi_{18}$ $-\frac{1}{2}\pi_{19}$ $-\frac{1}{2}\pi_{20}$
$\pi_7$ $-\frac{1}{2}\pi_{12}$ $\frac{1}{2}\pi_{11}$ $-\frac{1}{2}\pi_{10}$ $\frac{1}{2}\pi_{9}$ $-\frac{1}{2}\pi_{16}$ $\frac{1}{2}\pi_{17}$ $-\frac{1}{2}\pi_{14}$ $\frac{1}{2}\pi_{13}$
$\pi_8$ $\frac{1}{2}\pi_{11}$ $\frac{1}{2}\pi_{12}$ $-\frac{1}{2}\pi_{9}$ $-\frac{1}{2}\pi_{10}$ $\frac{1}{2}\pi_{15}$ $\frac{1}{2}\pi_{16}$ $-\frac{1}{2}\pi_{13}$ $-\frac{1}{2}\pi_{14}$
$\pi_{9}$ $0$ $\pi_1(\pi_1-4\pi_2)$ $4 \pi_1 \pi_8$ $-4 \pi_1 \pi_7$ $2 \pi_5 \pi_6$ $(\pi_5^{2}-\pi_6^{2})$ $0$ $0$
$\pi_{10}$ $-\pi_1(\pi_1-4\pi_2)$ $0$ $4 \pi_1 \pi_7$ $4 \pi_1 \pi_8$ $-(\pi_5^{2}-\pi_6^{2})$ $2 \pi_5 \pi_6$ $0$ $0$
$\pi_{11}$ $-4\pi_1 \pi_8$ $-4\pi_1 \pi_7$ $0$ $\pi_1(\pi_1-4\pi_4)$ $0$ $0$ $2 \pi_5 \pi_6$ $(\pi_5^{2}-\pi_6^{2})$
$\pi_{12}$ $4\pi_1 \pi_7$ $-4\pi_1 \pi_8$ $-\pi_1(\pi_1-4\pi_4)$ $0$ $0$ $0$ $-(\pi_5^{2}-\pi_6^{2})$ $2 \pi_5 \pi_6$
$\pi_{13}$ $-2 \pi_5 \pi_6$ $(\pi_5^{2}-\pi_6^{2})$ $0$ $0$ $0$ $-\pi_3(4\pi_2-\pi_3)$ $4\pi_3 \pi_8$ $-4\pi_3 \pi_7$
$\pi_{14}$ $-(\pi_5^{2}-\pi_6^{2})$ $-2 \pi_5 \pi_6$ $0$ $0$ $\pi_3(4\pi_2-\pi_3)$ $0$ $4\pi_3 \pi_7$ $4\pi_3 \pi_8$
$\pi_{15}$ $0$ $0$ $-2 \pi_5 \pi_6$ $(\pi_5^{2}-\pi_6^{2})$ $-4\pi_3 \pi_8$ $-4\pi_3 \pi_7$ $0$ $-\pi_3(4\pi_4-\pi_3)$
$\pi_{16}$ $0$ $0$ $-(\pi_5^{2}-\pi_6^{2})$ $-2 \pi_5 \pi_6$ $4\pi_3 \pi_7$ $-4\pi_3 \pi_8$ $\pi_3(4\pi_4-\pi_3)$ $0$
Table 4.  The manifolds of equilibria of type OEE
No. Relative Equilibria Features Conditions and Parameters
$\begin{array}{l}(\alpha, 0, \frac{\sqrt{a_3a_7}}{a_7}\alpha, \mp \frac{a_7}{a_5} \gamma, -\frac{a_7}{a_5}\beta, \pm \gamma, \beta), \\(\alpha, 0, - \frac{\sqrt{a_3a_7}}{a_7}\alpha, \mp \frac{a_7}{a_5} \gamma, -\frac{a_7}{a_5}\beta, \pm \gamma, \beta)\end{array}$ $\begin{array}{l}\pi_{10}\pi_{12}\neq0, \\ \pi_5=0, \\ \pi_6 \neq 0\end{array}$ $\begin{array}{l}a_3a_7>0, \\{(a_3a_5^2\alpha+2a_7^3)[2a_5^2a_7\alpha^2(2\eta-\alpha)-(a_3a_5^2\alpha+2a_7^3)\beta^2]}\geq0, \\ \gamma=\frac{\sqrt{(a_3a_5^2\alpha+2a_7^3)[2a_5^2a_7\alpha^2(2\eta-\alpha)-(a_3a_5^2\alpha+2a_7^3)\beta^2]}}{a_3a_5^2\alpha+2a_7^3}, \\ \forall~\alpha, ~\beta\end{array}$
$\begin{array}{l}(\alpha, \frac{\sqrt{-a_3a_7}}{a_7}\alpha, 0, \mp \frac{a_7}{a_5} \gamma, -\frac{a_7}{a_5}\beta, \pm \gamma, \beta), \\(\alpha, - \frac{\sqrt{-a_3a_7}}{a_7}\alpha, 0, \mp \frac{a_7}{a_5} \gamma, -\frac{a_7}{a_5}\beta, \pm \gamma, \beta)\end{array}$ $\begin{array}{l}\pi_{10}\pi_{12}\neq0, \\ \pi_5 \neq 0, \\ \pi_6=0, \\ \pi_1 \neq \frac{-2a_7^3}{a_3a_5^2}, \\{(a_3a_5^2\alpha+2a_7^3)[2a_5^2a_7\alpha^2(2\eta-\alpha)-(a_3a_5^2\alpha+2a_7^3)\beta^2]}\geq0\end{array}$ $\begin{array}{l}a_3a_7<0, \\ \gamma=\frac{\sqrt{(a_3a_5^2\alpha+2a_7^3)[2a_5^2a_7\alpha^2(2\eta-\alpha)-(a_3a_5^2\alpha+2a_7^3)\beta^2]}}{a_3a_5^2\alpha+2a_7^3}, \\ \forall~\alpha, ~\beta\end{array}$
$(\frac{-2a_7^3}{a_3a_5^2}, \pm 2a_7^2 \frac{\sqrt{-a_3a_7}}{a_3a_5^2}, 0, 0, -\frac{a_7}{a_5}\beta, 0, \beta)$ $\begin{array}{l}\pi_{10}\pi_{12}\neq0, \\ \pi_5 \neq 0, \\ \pi_6=0, \\ \pi_1 = \frac{-2a_7^3}{a_3a_5^2}\end{array}$ $\begin{array}{l}a_3a_7<0, \\ \forall~\beta\end{array}$
$(\varrho, \gamma_1, \alpha, \gamma_2, -\frac{a_3}{a_1}\gamma_3, \gamma_4, \gamma_3)$ $\begin{array}{l}\pi_{10}\pi_{12}\neq0, \\ \pi_5 \neq 0, \\ \pi_6 \neq 0\end{array}$ $\begin{array}{l}|a_5\alpha|\leq|a_3|\varrho, \\ \varrho=\frac{4}{3}\frac{\eta a_5^2}{a_5^2+a_3^2}, \\ \gamma_1 = \pm \frac{\sqrt{a_3^2\varrho^2-a_5^2\alpha^2}}{a_5}, \\ \gamma_2 = \frac{2 a_5 \gamma_4 \pm \sqrt{2\varrho^3(a_5^2+a_7^2)}}{2 a_7}, \\ \gamma_3 = \mp \frac{a_5a_7 \sqrt{2} \gamma_1 \alpha}{a_3 \sqrt{\varrho(a_5^2+a_7^2)}}, \\ \gamma_4 = \pm \frac{2a_5a_7\alpha^2-a_3(a_5-a_1)\varrho^2}{a_3\sqrt{2\varrho(a_5^2+a_7^2)}}, \\ \forall~\alpha\end{array}$
No. Relative Equilibria Features Conditions and Parameters
$\begin{array}{l}(\alpha, 0, \frac{\sqrt{a_3a_7}}{a_7}\alpha, \mp \frac{a_7}{a_5} \gamma, -\frac{a_7}{a_5}\beta, \pm \gamma, \beta), \\(\alpha, 0, - \frac{\sqrt{a_3a_7}}{a_7}\alpha, \mp \frac{a_7}{a_5} \gamma, -\frac{a_7}{a_5}\beta, \pm \gamma, \beta)\end{array}$ $\begin{array}{l}\pi_{10}\pi_{12}\neq0, \\ \pi_5=0, \\ \pi_6 \neq 0\end{array}$ $\begin{array}{l}a_3a_7>0, \\{(a_3a_5^2\alpha+2a_7^3)[2a_5^2a_7\alpha^2(2\eta-\alpha)-(a_3a_5^2\alpha+2a_7^3)\beta^2]}\geq0, \\ \gamma=\frac{\sqrt{(a_3a_5^2\alpha+2a_7^3)[2a_5^2a_7\alpha^2(2\eta-\alpha)-(a_3a_5^2\alpha+2a_7^3)\beta^2]}}{a_3a_5^2\alpha+2a_7^3}, \\ \forall~\alpha, ~\beta\end{array}$
$\begin{array}{l}(\alpha, \frac{\sqrt{-a_3a_7}}{a_7}\alpha, 0, \mp \frac{a_7}{a_5} \gamma, -\frac{a_7}{a_5}\beta, \pm \gamma, \beta), \\(\alpha, - \frac{\sqrt{-a_3a_7}}{a_7}\alpha, 0, \mp \frac{a_7}{a_5} \gamma, -\frac{a_7}{a_5}\beta, \pm \gamma, \beta)\end{array}$ $\begin{array}{l}\pi_{10}\pi_{12}\neq0, \\ \pi_5 \neq 0, \\ \pi_6=0, \\ \pi_1 \neq \frac{-2a_7^3}{a_3a_5^2}, \\{(a_3a_5^2\alpha+2a_7^3)[2a_5^2a_7\alpha^2(2\eta-\alpha)-(a_3a_5^2\alpha+2a_7^3)\beta^2]}\geq0\end{array}$ $\begin{array}{l}a_3a_7<0, \\ \gamma=\frac{\sqrt{(a_3a_5^2\alpha+2a_7^3)[2a_5^2a_7\alpha^2(2\eta-\alpha)-(a_3a_5^2\alpha+2a_7^3)\beta^2]}}{a_3a_5^2\alpha+2a_7^3}, \\ \forall~\alpha, ~\beta\end{array}$
$(\frac{-2a_7^3}{a_3a_5^2}, \pm 2a_7^2 \frac{\sqrt{-a_3a_7}}{a_3a_5^2}, 0, 0, -\frac{a_7}{a_5}\beta, 0, \beta)$ $\begin{array}{l}\pi_{10}\pi_{12}\neq0, \\ \pi_5 \neq 0, \\ \pi_6=0, \\ \pi_1 = \frac{-2a_7^3}{a_3a_5^2}\end{array}$ $\begin{array}{l}a_3a_7<0, \\ \forall~\beta\end{array}$
$(\varrho, \gamma_1, \alpha, \gamma_2, -\frac{a_3}{a_1}\gamma_3, \gamma_4, \gamma_3)$ $\begin{array}{l}\pi_{10}\pi_{12}\neq0, \\ \pi_5 \neq 0, \\ \pi_6 \neq 0\end{array}$ $\begin{array}{l}|a_5\alpha|\leq|a_3|\varrho, \\ \varrho=\frac{4}{3}\frac{\eta a_5^2}{a_5^2+a_3^2}, \\ \gamma_1 = \pm \frac{\sqrt{a_3^2\varrho^2-a_5^2\alpha^2}}{a_5}, \\ \gamma_2 = \frac{2 a_5 \gamma_4 \pm \sqrt{2\varrho^3(a_5^2+a_7^2)}}{2 a_7}, \\ \gamma_3 = \mp \frac{a_5a_7 \sqrt{2} \gamma_1 \alpha}{a_3 \sqrt{\varrho(a_5^2+a_7^2)}}, \\ \gamma_4 = \pm \frac{2a_5a_7\alpha^2-a_3(a_5-a_1)\varrho^2}{a_3\sqrt{2\varrho(a_5^2+a_7^2)}}, \\ \forall~\alpha\end{array}$
Table 5.  Equilibria with π10 = π12 = 0
No. Relative Equilibria Features Conditions and Parameters Types
$(\frac{4}{3}\eta, 0, 0, \pm\frac{4a_1 \eta\sqrt{6(a_1^2+a_3^2)\eta}}{9(a_1^2+a_3^2)}, 0, \pm\frac{4a_3 \sqrt{6} \eta^{2}}{9 \sqrt{(a_1^2+a_3^2) \eta}}, 0)$ $\begin{array}{l}\pi_5=\pi_6=0, \\\pi_{10}= \pi_{12}=0\end{array}$ $\begin{array}{l}EEE, ~EEH, \\EEO\end{array}$
$\begin{array}{l}e_j= \big( \frac{4}{3}\frac{\eta \alpha_1}{\beta_3}, \pm\frac{4}{3} \eta\frac{\sqrt{\alpha_1\alpha_2}}{\alpha_3} , 0, +\frac{4 \sqrt{6}}{9}\frac{(a_3-a_7)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0, -\frac{4 \sqrt{6}}{9}\frac{(a_1-a_5)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0\big), ~~ j = 1, 2\\e_j= \big( \frac{4}{3}\frac{\eta \alpha_1}{\alpha_3}, \pm\frac{4}{3} \eta\frac{\sqrt{\alpha_1\alpha_2}}{\alpha_3} , 0, -\frac{4 \sqrt{6}}{9}\frac{(a_3-a_7)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0, +\frac{4 \sqrt{6}}{9}\frac{(a_1-a_5)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0\big), ~~ j = 3, 4 \end{array}$ $\begin{array}{l}\pi_{10}= \pi_{12}=0, \\\pi_6=0, \\\pi_9(a_1-a_5)+\pi_{11}(a_3-a_7)=0\end{array}$ $\begin{array}{l}a_1 \neq a_5, \\a_3 \neq a_7, \\\alpha_1 = a_5^2+a_7^2\\-a_1a_5-a_3a_7\geq0, \\\alpha_2 = a_1^2+a_3^2\\-a_1a_5-a_3a_7\geq0, \\\alpha_3 = (a_1-a_5)^2\\+(a_3-a_7)^2>0\end{array}$ $\begin{array}{l}EHH, ~EEE, \\EHE, ~EOH, \\EOE, ~EOO, \\OOO\end{array}$
$(\frac{4}{3}\frac{\eta a_7}{(a_7-a_3)}, \pm\frac{4}{3} \frac{\sqrt{-a_3a_7}\eta}{(a_7-a_3)}, 0, \pm\frac{4}{9}\frac{\sqrt{6 \eta a_7^2 }\eta}{ (a_7-a_3)}, 0, 0, 0)$ $\begin{array}{l}\pi_{10}= \pi_{12}=0, \\\pi_6=0, \\~\pi_9(a_1-a_5)+\pi_{11}(a_3-a_7)=0\end{array}$ $\begin{array}{l}a_1 = a_5, \\a_3 \neq a_7, \\a_3a_7<0\end{array}$ $EEH, ~EHE$
$(\frac{4}{3}\frac{\eta a_5}{(a_5-a_1)}, \pm\frac{4}{3} \frac{\sqrt{-a_1a_5}\eta}{(a_5-a_1)}, 0, \pm\frac{4}{9}\frac{\sqrt{6 \eta a_5^2 }\eta}{ (a_5-a_1)}, 0, 0, 0)$ $\begin{array}{l}\pi_{10}= \pi_{12}=0, \\\pi_6=0, \\\pi_9(a_1-a_5)+\pi_{11}(a_3-a_7)=0\end{array}$ $\begin{array}{l}a_1 \neq a_5, \\a_3 =a_7, \\a_1a_5<0\end{array}$ $EEE, ~EHE$
$\begin{array}{l}e_j= \big( \frac{4}{3}\frac{\eta \alpha_1}{\beta_3}, \pm\frac{4}{3} \eta\frac{\sqrt{\alpha_1\alpha_2}}{\alpha_3} , 0, +\frac{4 \sqrt{6}}{9}\frac{(a_3+a_7)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0, -\frac{4 \sqrt{6}}{9}\frac{(a_1+a_5)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0\big), ~~ j = 1, 2\\e_j= \big( \frac{4}{3}\frac{\eta \alpha_1}{\alpha_3}, \pm\frac{4}{3} \eta\frac{\sqrt{\alpha_1\alpha_2}}{\alpha_3} , 0, -\frac{4 \sqrt{6}}{9}\frac{(a_3+a_7)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0, +\frac{4 \sqrt{6}}{9}\frac{(a_1+a_5)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0\big), ~~ j = 3, 4\end{array}$ $\begin{array}{l}\pi_{10}= \pi_{12}=0, \\\pi_5=0, \\\pi_9(a_1+a_5)+\pi_{11}(a_3+a_7)=0\end{array}$ $\begin{array}{l}a_1 \neq -a_5, \\a_3 \neq -a_7, \\\alpha_1 = a_5^2+a_7^2\\+a_1a_5+a_3a_7 \geq 0, \\\alpha_2 = a_1^2+a_3^2\\+a_1a_5+a_3a_7 \geq 0, \\\alpha_3 = (a_1+a_5)^2\\+(a_3+a_7)^2 >0\end{array}$ $\begin{array}{l}EHH, ~EEE, \\EHE, ~EOH, \\EOE, ~EOO, \\OOO\end{array}$
$(\frac{4}{3}\frac{\eta a_7}{(a_7+a_3)}, 0, \pm\frac{4}{3} \frac{\sqrt{a_3a_7}\eta}{(a_7+a_3)}, \pm\frac{4}{9}\frac{\sqrt{6 \eta a_7^2 }\eta}{ (a_7+a_3)}, 0, 0, 0)$ $\begin{array}{l}\pi_{10}= \pi_{12}=0, \\\pi_5=0, \\\pi_9(a_1+a_5)+\pi_{11}(a_3+a_7)=0\end{array}$ $\begin{array}{l}a_1 = -a_5, \\a_3 \neq -a_7, \\a_3a_7>0\end{array}$ $EHE, ~EEE$
$(\frac{4}{3}\frac{\eta a_5}{(a_1+a_5)}, 0, \pm\frac{4}{3} \frac{\sqrt{a_1a_5}\eta}{(a_1+a_5)}, \pm\frac{4}{9}\frac{\sqrt{6 \eta a_5^2 }\eta}{ (a_5+a_1)}, 0, 0, 0)$ $\begin{array}{l}\pi_{10}= \pi_{12}=0, \\\pi_5=0, \\\pi_9(a_1+a_5)+\pi_{11}(a_3+a_7)=0\end{array}$ $\begin{array}{l}a_1 \neq -a_5, \\a_3=-a_7, \\a_1a_5>0\end{array}$ $EHE, ~EEE$
$\begin{array}{l}(\frac{2\eta a_5}{(a_1+a_5)}, 0, \pm \frac{2\eta \sqrt{a_1a_5}}{(a_1+a_5)}, 0, 0, 0, 0), \\(-\frac{2\eta a_5}{(a_1-a_5)}, \pm \frac{2\eta \sqrt{-a_5a_1}}{(a_1-a_5)}, 0, 0, 0, 0, 0)\end{array}$ $\begin{array}{l}\pi_{10}= \pi_{12}=0, \\\pi_9(a_1+a_5)+\pi_{11}(a_3+a_7)=0, \\\pi_9(a_1-a_5)+\pi_{11}(a_3-a_7)=0\end{array}$ $OEE$
No. Relative Equilibria Features Conditions and Parameters Types
$(\frac{4}{3}\eta, 0, 0, \pm\frac{4a_1 \eta\sqrt{6(a_1^2+a_3^2)\eta}}{9(a_1^2+a_3^2)}, 0, \pm\frac{4a_3 \sqrt{6} \eta^{2}}{9 \sqrt{(a_1^2+a_3^2) \eta}}, 0)$ $\begin{array}{l}\pi_5=\pi_6=0, \\\pi_{10}= \pi_{12}=0\end{array}$ $\begin{array}{l}EEE, ~EEH, \\EEO\end{array}$
$\begin{array}{l}e_j= \big( \frac{4}{3}\frac{\eta \alpha_1}{\beta_3}, \pm\frac{4}{3} \eta\frac{\sqrt{\alpha_1\alpha_2}}{\alpha_3} , 0, +\frac{4 \sqrt{6}}{9}\frac{(a_3-a_7)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0, -\frac{4 \sqrt{6}}{9}\frac{(a_1-a_5)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0\big), ~~ j = 1, 2\\e_j= \big( \frac{4}{3}\frac{\eta \alpha_1}{\alpha_3}, \pm\frac{4}{3} \eta\frac{\sqrt{\alpha_1\alpha_2}}{\alpha_3} , 0, -\frac{4 \sqrt{6}}{9}\frac{(a_3-a_7)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0, +\frac{4 \sqrt{6}}{9}\frac{(a_1-a_5)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0\big), ~~ j = 3, 4 \end{array}$ $\begin{array}{l}\pi_{10}= \pi_{12}=0, \\\pi_6=0, \\\pi_9(a_1-a_5)+\pi_{11}(a_3-a_7)=0\end{array}$ $\begin{array}{l}a_1 \neq a_5, \\a_3 \neq a_7, \\\alpha_1 = a_5^2+a_7^2\\-a_1a_5-a_3a_7\geq0, \\\alpha_2 = a_1^2+a_3^2\\-a_1a_5-a_3a_7\geq0, \\\alpha_3 = (a_1-a_5)^2\\+(a_3-a_7)^2>0\end{array}$ $\begin{array}{l}EHH, ~EEE, \\EHE, ~EOH, \\EOE, ~EOO, \\OOO\end{array}$
$(\frac{4}{3}\frac{\eta a_7}{(a_7-a_3)}, \pm\frac{4}{3} \frac{\sqrt{-a_3a_7}\eta}{(a_7-a_3)}, 0, \pm\frac{4}{9}\frac{\sqrt{6 \eta a_7^2 }\eta}{ (a_7-a_3)}, 0, 0, 0)$ $\begin{array}{l}\pi_{10}= \pi_{12}=0, \\\pi_6=0, \\~\pi_9(a_1-a_5)+\pi_{11}(a_3-a_7)=0\end{array}$ $\begin{array}{l}a_1 = a_5, \\a_3 \neq a_7, \\a_3a_7<0\end{array}$ $EEH, ~EHE$
$(\frac{4}{3}\frac{\eta a_5}{(a_5-a_1)}, \pm\frac{4}{3} \frac{\sqrt{-a_1a_5}\eta}{(a_5-a_1)}, 0, \pm\frac{4}{9}\frac{\sqrt{6 \eta a_5^2 }\eta}{ (a_5-a_1)}, 0, 0, 0)$ $\begin{array}{l}\pi_{10}= \pi_{12}=0, \\\pi_6=0, \\\pi_9(a_1-a_5)+\pi_{11}(a_3-a_7)=0\end{array}$ $\begin{array}{l}a_1 \neq a_5, \\a_3 =a_7, \\a_1a_5<0\end{array}$ $EEE, ~EHE$
$\begin{array}{l}e_j= \big( \frac{4}{3}\frac{\eta \alpha_1}{\beta_3}, \pm\frac{4}{3} \eta\frac{\sqrt{\alpha_1\alpha_2}}{\alpha_3} , 0, +\frac{4 \sqrt{6}}{9}\frac{(a_3+a_7)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0, -\frac{4 \sqrt{6}}{9}\frac{(a_1+a_5)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0\big), ~~ j = 1, 2\\e_j= \big( \frac{4}{3}\frac{\eta \alpha_1}{\alpha_3}, \pm\frac{4}{3} \eta\frac{\sqrt{\alpha_1\alpha_2}}{\alpha_3} , 0, -\frac{4 \sqrt{6}}{9}\frac{(a_3+a_7)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0, +\frac{4 \sqrt{6}}{9}\frac{(a_1+a_5)\alpha_1 \eta }{\alpha_3\sqrt{\alpha_3}}, 0\big), ~~ j = 3, 4\end{array}$ $\begin{array}{l}\pi_{10}= \pi_{12}=0, \\\pi_5=0, \\\pi_9(a_1+a_5)+\pi_{11}(a_3+a_7)=0\end{array}$ $\begin{array}{l}a_1 \neq -a_5, \\a_3 \neq -a_7, \\\alpha_1 = a_5^2+a_7^2\\+a_1a_5+a_3a_7 \geq 0, \\\alpha_2 = a_1^2+a_3^2\\+a_1a_5+a_3a_7 \geq 0, \\\alpha_3 = (a_1+a_5)^2\\+(a_3+a_7)^2 >0\end{array}$ $\begin{array}{l}EHH, ~EEE, \\EHE, ~EOH, \\EOE, ~EOO, \\OOO\end{array}$
$(\frac{4}{3}\frac{\eta a_7}{(a_7+a_3)}, 0, \pm\frac{4}{3} \frac{\sqrt{a_3a_7}\eta}{(a_7+a_3)}, \pm\frac{4}{9}\frac{\sqrt{6 \eta a_7^2 }\eta}{ (a_7+a_3)}, 0, 0, 0)$ $\begin{array}{l}\pi_{10}= \pi_{12}=0, \\\pi_5=0, \\\pi_9(a_1+a_5)+\pi_{11}(a_3+a_7)=0\end{array}$ $\begin{array}{l}a_1 = -a_5, \\a_3 \neq -a_7, \\a_3a_7>0\end{array}$ $EHE, ~EEE$
$(\frac{4}{3}\frac{\eta a_5}{(a_1+a_5)}, 0, \pm\frac{4}{3} \frac{\sqrt{a_1a_5}\eta}{(a_1+a_5)}, \pm\frac{4}{9}\frac{\sqrt{6 \eta a_5^2 }\eta}{ (a_5+a_1)}, 0, 0, 0)$ $\begin{array}{l}\pi_{10}= \pi_{12}=0, \\\pi_5=0, \\\pi_9(a_1+a_5)+\pi_{11}(a_3+a_7)=0\end{array}$ $\begin{array}{l}a_1 \neq -a_5, \\a_3=-a_7, \\a_1a_5>0\end{array}$ $EHE, ~EEE$
$\begin{array}{l}(\frac{2\eta a_5}{(a_1+a_5)}, 0, \pm \frac{2\eta \sqrt{a_1a_5}}{(a_1+a_5)}, 0, 0, 0, 0), \\(-\frac{2\eta a_5}{(a_1-a_5)}, \pm \frac{2\eta \sqrt{-a_5a_1}}{(a_1-a_5)}, 0, 0, 0, 0, 0)\end{array}$ $\begin{array}{l}\pi_{10}= \pi_{12}=0, \\\pi_9(a_1+a_5)+\pi_{11}(a_3+a_7)=0, \\\pi_9(a_1-a_5)+\pi_{11}(a_3-a_7)=0\end{array}$ $OEE$
Table 6.  Equilibria of the reduced system
Equilibria Conditions and Features
$E_1=(\pi_1, 0, 0, 0, 0, 0, 0)$ $\begin{array}{l}\forall~\pi_1\end{array}$
$E_2=(\pi_1, 0, 0, 0, 0, \pi_{11}, \pi_{12})$ $\begin{array}{l}\forall~\pi_1, ~\pi_{11}, ~\pi_{12}~with\\3\gamma\tau+(2\nu_1-\nu_4)\pi_1^2=0\end{array}$
$E_3=(\pi_1, 0, 0, \pi_9, \pi_{10}, 0, 0)$ $\begin{array}{l}\forall~\pi_1, ~\pi_9, ~\pi_{10}~with\\3\gamma\sigma+(2\nu_1-\nu_2)\pi_1^2=0\end{array}$
$E_4=(\pi_1, \pi_5, \pi_6, 0, 0, 0, 0)$ $\begin{array}{l}\forall~\pi_1, ~\pi_5, ~\pi_6~with\\\sigma=0~and~\rho\neq0, ~2\gamma\rho+(\nu_1-\nu_3)\pi_1-2\gamma\pi_1^2=0\end{array}$
$E_5=(\frac{\nu_2-2\nu_3}{9\gamma}, \pi_5, \pi_6, \pi_9, \pi_{10}, \pi_{11}, \pi_{12})$ $\begin{array}{l} \forall~\pi_5, \pi_6, \pi_9, \pi_{10}, \pi_{11}, \pi_{12}~with\\\rho=\pi_1^2\neq0, ~\sigma\neq0~and\\ ~\pi_5\pi_9\pi_{12}-\pi_5\pi_{10}\pi_{11}+\pi_6\pi_9\pi_{11}+\pi_6\pi_{10}\pi_{12}=0\end{array}$
$E_6=(\pi_1, \pi_5, \pi_6, \pi_9, \pi_{10}, \pi_{11}, \pi_{12})$ $\begin{array}{*{20}{l}} {\forall {\pi _1},{\pi _9},{\pi _{10}},{\pi _{11}},{\pi _{12}}with}\\ {\rho = \pi _1^2 \ne 0 , \sigma \ne 0,2\gamma \tau - ({\nu _2} - 2{\nu _3})\pi _1^2 + \gamma \pi _1^3 = 0\;and}\\ {{\pi _5} = \frac{{{\pi _1}({\pi _9}{\pi _{11}} + {\pi _{10}}{\pi _{12}})[3\gamma \tau - ({\nu _4} - 2{\nu _3})\pi _1^2 + 6\gamma \pi _1^3]}}{{4\gamma \sigma (\pi _1^3 - \tau )}},}\\ {{\pi _6} = \frac{{{\pi _1}({\pi _9}{\pi _{12}} - {\pi _{10}}{\pi _{11}})[3\gamma \tau - ({\nu _4} - 2{\nu _3})\pi _1^2 + 6\gamma \pi _1^3]}}{{4\gamma \sigma (\pi _1^3 - \tau )}}} \end{array}$
$E_7=(\pi_1, \pi_5, \pi_6, \pi_9, \pi_{10}, \pi_{11}, \pi_{12})$ $\begin{array}{l}\forall~\pi_1, ~\pi_9, ~\pi_{10}, ~\pi_{11}, ~\pi_{12}~with~\rho=\pi_1^2\neq0, ~\sigma\neq0~and\\ \gamma(3\pi_1^3-\tau^2)\pi_9^4+[4\gamma\pi_1^6-(\nu_2-2\nu_3)\pi_1^5+6\gamma\pi_{10}^2\pi_1^3\\ +\tau(\nu_2-2\nu_3)\pi_1^2]\pi_9^2+4\gamma(\pi_{10}^2-\tau)\pi_1^6+[-(\nu_2-2\nu_3)\pi_{10}^2\\ -(2\nu_3-\nu_4)\tau]\pi_1^5+3\gamma(\pi_{10}^2-\tau)(\pi_{10}^2+\tau)\pi_1^3\\ +\pi_{10}^2\tau(\nu_2-\nu_4)\pi_1^2-\gamma\pi_{10}^2\tau(\pi_{10}^2-\tau)=0~and\\ \pi_5 = \frac{\pi_1(\pi_9\pi_{11}+\pi_{10}\pi_{12})[3\gamma\sigma+2\gamma\tau-(\nu_2-2\nu_3)\pi_1^2+4\gamma\pi_1^3]}{4\gamma\tau(\pi_1^3-\sigma)}, \\ \pi_6 = \frac{\pi_1(\pi_9\pi_{12}-\pi_{10}\pi_{12})[3\gamma\sigma+2\gamma\tau-(\nu_2-2\nu_3)\pi_1^2+4\gamma\pi_1^3]}{4\gamma(\pi_{11}^2+\pi_{12}^2)(\pi_1^3-\sigma)}\end{array}$
$E_8=(\pi_1, \pi_5, \pi_6, \pi_9, \pi_{10}, \pi_{11}, \pi_{12})$ $\begin{array}{l}\forall~\pi_1, ~\pi_9, ~\pi_{10}, ~\pi_{11}, ~\pi_{12}~with~\rho\neq\pi_1^2~and~\sigma\neq0~where\\12\rho\gamma^2\pi_1^8-8\gamma\rho(\nu_1-\nu_3)\pi_1^7+[-24\gamma^2\rho^2+2\gamma\sigma(2\nu_1-\nu_2)\\+\rho(\nu_1-\nu_3)^2]\pi_1^6+8\gamma\rho^2(\nu_1-\nu_3)\pi_1^5+[6(2\rho^3+\sigma^2)\\-4\gamma\rho\sigma(\nu_1-\nu_2+\nu_3)]\pi_1^4-[12\gamma^2\rho\sigma^2+2\gamma\rho^2\sigma(\nu_2-2\nu_3)]\pi_1^2\\+6\gamma^2\rho^2\sigma^2=0, \\72\gamma\rho^3\pi_1^{10}-108\gamma^2\rho(\nu_1-\nu_3)\pi_1^9+[-216\gamma^3\rho^2\\+24\gamma^2\sigma(2\nu_1-\nu_4)+54\gamma\rho(\nu_1-\nu_3)^2]\pi_1^8\\+[216\gamma^2\rho^2(\nu_1-\nu_3)-12\gamma\sigma(2\nu_1-\nu_4)]\pi_1^7\\+[72\gamma^3(3\rho^3+2\sigma^2)-24\gamma^2\rho\sigma(4\nu_1+2\nu_3-3\nu_4)\\-54\gamma\rho^2(\nu_1-\nu_3)^2]\pi_1^6+[-12\gamma^2(9\rho^3+2\sigma^2)\\+24\gamma\rho\sigma(\nu_1+\nu_3-\nu_4)](\nu_1-\nu_3)\pi_1^5\\+[-72\gamma^3(\rho^4+6\rho\sigma^2)-24\gamma^2\rho^2\sigma(2\nu_1+4\nu_3-3\nu_4)]\pi_1^4\\+[48\gamma^2\rho\sigma^2-12\gamma\rho^2\sigma(2\nu_3-\nu_4)](\nu_1-\nu_3)\pi_1^3\\+[432\gamma^3\rho^2\sigma^2-24\gamma^2\rho^3\sigma(2\nu_3-\nu_4)]\pi_1^2\\-24\gamma^2\rho^2\sigma^2(\nu_1-\nu_3)\pi_1-144\gamma^3\rho^3\sigma^2=0~and\\\pi_{11} = -\frac{\pi_1^2(\pi_5\pi_9+\pi_6\pi_{10})[2\gamma\pi_1^2-2\gamma\rho-(\nu_1-\nu_3)\pi_1]}{\gamma(\pi_1^2-\rho)\sigma}, \\\pi_{12} = -\frac{\pi_1^2(\pi_5\pi_{10}-\pi_6\pi_9)[2\gamma\pi_1^2-2\gamma\rho-(\nu_1-\nu_3)\pi_1]}{\gamma(\pi_1^2-\rho)\sigma} \end{array}$
Equilibria Conditions and Features
$E_1=(\pi_1, 0, 0, 0, 0, 0, 0)$ $\begin{array}{l}\forall~\pi_1\end{array}$
$E_2=(\pi_1, 0, 0, 0, 0, \pi_{11}, \pi_{12})$ $\begin{array}{l}\forall~\pi_1, ~\pi_{11}, ~\pi_{12}~with\\3\gamma\tau+(2\nu_1-\nu_4)\pi_1^2=0\end{array}$
$E_3=(\pi_1, 0, 0, \pi_9, \pi_{10}, 0, 0)$ $\begin{array}{l}\forall~\pi_1, ~\pi_9, ~\pi_{10}~with\\3\gamma\sigma+(2\nu_1-\nu_2)\pi_1^2=0\end{array}$
$E_4=(\pi_1, \pi_5, \pi_6, 0, 0, 0, 0)$ $\begin{array}{l}\forall~\pi_1, ~\pi_5, ~\pi_6~with\\\sigma=0~and~\rho\neq0, ~2\gamma\rho+(\nu_1-\nu_3)\pi_1-2\gamma\pi_1^2=0\end{array}$
$E_5=(\frac{\nu_2-2\nu_3}{9\gamma}, \pi_5, \pi_6, \pi_9, \pi_{10}, \pi_{11}, \pi_{12})$ $\begin{array}{l} \forall~\pi_5, \pi_6, \pi_9, \pi_{10}, \pi_{11}, \pi_{12}~with\\\rho=\pi_1^2\neq0, ~\sigma\neq0~and\\ ~\pi_5\pi_9\pi_{12}-\pi_5\pi_{10}\pi_{11}+\pi_6\pi_9\pi_{11}+\pi_6\pi_{10}\pi_{12}=0\end{array}$
$E_6=(\pi_1, \pi_5, \pi_6, \pi_9, \pi_{10}, \pi_{11}, \pi_{12})$ $\begin{array}{*{20}{l}} {\forall {\pi _1},{\pi _9},{\pi _{10}},{\pi _{11}},{\pi _{12}}with}\\ {\rho = \pi _1^2 \ne 0 , \sigma \ne 0,2\gamma \tau - ({\nu _2} - 2{\nu _3})\pi _1^2 + \gamma \pi _1^3 = 0\;and}\\ {{\pi _5} = \frac{{{\pi _1}({\pi _9}{\pi _{11}} + {\pi _{10}}{\pi _{12}})[3\gamma \tau - ({\nu _4} - 2{\nu _3})\pi _1^2 + 6\gamma \pi _1^3]}}{{4\gamma \sigma (\pi _1^3 - \tau )}},}\\ {{\pi _6} = \frac{{{\pi _1}({\pi _9}{\pi _{12}} - {\pi _{10}}{\pi _{11}})[3\gamma \tau - ({\nu _4} - 2{\nu _3})\pi _1^2 + 6\gamma \pi _1^3]}}{{4\gamma \sigma (\pi _1^3 - \tau )}}} \end{array}$
$E_7=(\pi_1, \pi_5, \pi_6, \pi_9, \pi_{10}, \pi_{11}, \pi_{12})$ $\begin{array}{l}\forall~\pi_1, ~\pi_9, ~\pi_{10}, ~\pi_{11}, ~\pi_{12}~with~\rho=\pi_1^2\neq0, ~\sigma\neq0~and\\ \gamma(3\pi_1^3-\tau^2)\pi_9^4+[4\gamma\pi_1^6-(\nu_2-2\nu_3)\pi_1^5+6\gamma\pi_{10}^2\pi_1^3\\ +\tau(\nu_2-2\nu_3)\pi_1^2]\pi_9^2+4\gamma(\pi_{10}^2-\tau)\pi_1^6+[-(\nu_2-2\nu_3)\pi_{10}^2\\ -(2\nu_3-\nu_4)\tau]\pi_1^5+3\gamma(\pi_{10}^2-\tau)(\pi_{10}^2+\tau)\pi_1^3\\ +\pi_{10}^2\tau(\nu_2-\nu_4)\pi_1^2-\gamma\pi_{10}^2\tau(\pi_{10}^2-\tau)=0~and\\ \pi_5 = \frac{\pi_1(\pi_9\pi_{11}+\pi_{10}\pi_{12})[3\gamma\sigma+2\gamma\tau-(\nu_2-2\nu_3)\pi_1^2+4\gamma\pi_1^3]}{4\gamma\tau(\pi_1^3-\sigma)}, \\ \pi_6 = \frac{\pi_1(\pi_9\pi_{12}-\pi_{10}\pi_{12})[3\gamma\sigma+2\gamma\tau-(\nu_2-2\nu_3)\pi_1^2+4\gamma\pi_1^3]}{4\gamma(\pi_{11}^2+\pi_{12}^2)(\pi_1^3-\sigma)}\end{array}$
$E_8=(\pi_1, \pi_5, \pi_6, \pi_9, \pi_{10}, \pi_{11}, \pi_{12})$ $\begin{array}{l}\forall~\pi_1, ~\pi_9, ~\pi_{10}, ~\pi_{11}, ~\pi_{12}~with~\rho\neq\pi_1^2~and~\sigma\neq0~where\\12\rho\gamma^2\pi_1^8-8\gamma\rho(\nu_1-\nu_3)\pi_1^7+[-24\gamma^2\rho^2+2\gamma\sigma(2\nu_1-\nu_2)\\+\rho(\nu_1-\nu_3)^2]\pi_1^6+8\gamma\rho^2(\nu_1-\nu_3)\pi_1^5+[6(2\rho^3+\sigma^2)\\-4\gamma\rho\sigma(\nu_1-\nu_2+\nu_3)]\pi_1^4-[12\gamma^2\rho\sigma^2+2\gamma\rho^2\sigma(\nu_2-2\nu_3)]\pi_1^2\\+6\gamma^2\rho^2\sigma^2=0, \\72\gamma\rho^3\pi_1^{10}-108\gamma^2\rho(\nu_1-\nu_3)\pi_1^9+[-216\gamma^3\rho^2\\+24\gamma^2\sigma(2\nu_1-\nu_4)+54\gamma\rho(\nu_1-\nu_3)^2]\pi_1^8\\+[216\gamma^2\rho^2(\nu_1-\nu_3)-12\gamma\sigma(2\nu_1-\nu_4)]\pi_1^7\\+[72\gamma^3(3\rho^3+2\sigma^2)-24\gamma^2\rho\sigma(4\nu_1+2\nu_3-3\nu_4)\\-54\gamma\rho^2(\nu_1-\nu_3)^2]\pi_1^6+[-12\gamma^2(9\rho^3+2\sigma^2)\\+24\gamma\rho\sigma(\nu_1+\nu_3-\nu_4)](\nu_1-\nu_3)\pi_1^5\\+[-72\gamma^3(\rho^4+6\rho\sigma^2)-24\gamma^2\rho^2\sigma(2\nu_1+4\nu_3-3\nu_4)]\pi_1^4\\+[48\gamma^2\rho\sigma^2-12\gamma\rho^2\sigma(2\nu_3-\nu_4)](\nu_1-\nu_3)\pi_1^3\\+[432\gamma^3\rho^2\sigma^2-24\gamma^2\rho^3\sigma(2\nu_3-\nu_4)]\pi_1^2\\-24\gamma^2\rho^2\sigma^2(\nu_1-\nu_3)\pi_1-144\gamma^3\rho^3\sigma^2=0~and\\\pi_{11} = -\frac{\pi_1^2(\pi_5\pi_9+\pi_6\pi_{10})[2\gamma\pi_1^2-2\gamma\rho-(\nu_1-\nu_3)\pi_1]}{\gamma(\pi_1^2-\rho)\sigma}, \\\pi_{12} = -\frac{\pi_1^2(\pi_5\pi_{10}-\pi_6\pi_9)[2\gamma\pi_1^2-2\gamma\rho-(\nu_1-\nu_3)\pi_1]}{\gamma(\pi_1^2-\rho)\sigma} \end{array}$
[1]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[2]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[3]

Marcello D'Abbicco, Giovanni Girardi, Giséle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Equipartition of energy for nonautonomous damped wave equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 597-613. doi: 10.3934/dcdss.2020364

[4]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

[5]

Luis Caffarelli, Fanghua Lin. Nonlocal heat flows preserving the L2 energy. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 49-64. doi: 10.3934/dcds.2009.23.49

[6]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[7]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[8]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[9]

Tianwen Luo, Tao Tao, Liqun Zhang. Finite energy weak solutions of 2d Boussinesq equations with diffusive temperature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3737-3765. doi: 10.3934/dcds.2019230

[10]

Ludovick Gagnon, José M. Urquiza. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. Evolution Equations & Control Theory, 2021, 10 (1) : 129-153. doi: 10.3934/eect.2020054

[11]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[12]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021004

[13]

Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021002

[14]

Zhihua Liu, Yayun Wu, Xiangming Zhang. Existence of periodic wave trains for an age-structured model with diffusion. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021009

[15]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

[16]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[17]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[18]

Xianbo Sun, Zhanbo Chen, Pei Yu. Parameter identification on Abelian integrals to achieve Chebyshev property. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020375

[19]

Elvio Accinelli, Humberto Muñiz. A dynamic for production economies with multiple equilibria. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021002

[20]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (57)
  • HTML views (162)
  • Cited by (0)

Other articles
by authors

[Back to Top]