
-
Previous Article
Viral dynamics of HIV-1 with CTL immune response
- DCDS-B Home
- This Issue
-
Next Article
Dynamics of the food-chain population in a polluted environment with impulsive input of toxicant
Evolutionary de Rham-Hodge method
1. | Department of Mathematics, Michigan State University, MI 48824, USA |
2. | Department of Computer Science and Engineering, Michigan State University, MI 48824, USA |
3. | Department of Mathematics, Department of Biochemistry and Molecular Biology, Department of Electrical and Computer Engineering, Michigan State University, MI 48824, USA |
The de Rham-Hodge theory is a landmark of the 20$ ^\text{th} $ Century's mathematics and has had a great impact on mathematics, physics, computer science, and engineering. This work introduces an evolutionary de Rham-Hodge method to provide a unified paradigm for the multiscale geometric and topological analysis of evolving manifolds constructed from a filtration, which induces a family of evolutionary de Rham complexes. While the present method can be easily applied to close manifolds, the emphasis is given to more challenging compact manifolds with 2-manifold boundaries, which require appropriate analysis and treatment of boundary conditions on differential forms to maintain proper topological properties. Three sets of unique evolutionary Hodge Laplacians are proposed to generate three sets of topology-preserving singular spectra, for which the multiplicities of zero eigenvalues correspond to exactly the persistent Betti numbers of dimensions 0, 1 and 2. Additionally, three sets of non-zero eigenvalues further reveal both topological persistence and geometric progression during the manifold evolution. Extensive numerical experiments are carried out via the discrete exterior calculus to demonstrate the potential of the proposed paradigm for data representation and shape analysis of both point cloud data and density maps. To demonstrate the utility of the proposed method, the application is considered to the protein B-factor predictions of a few challenging cases for which existing biophysical models break down.
References:
[1] |
M. Akram and V. Michel,
Regularisation of the Helmholtz decomposition and its application to geomagnetic field modelling, GEM-International Journal on Geomathematics, 1 (2010), 101-120.
doi: 10.1007/s13137-010-0001-y. |
[2] |
D. N. Arnold, R. S. Falk and R. Winther,
Finite element exterior calculus, homological techniques and applications, Acta Numerica, 15 (2006), 1-155.
doi: 10.1017/S0962492906210018. |
[3] |
A. R. Atilgan, S. Durell, R. L. Jernigan, M. C. Demirel, O. Keskin and I. Bahar,
Anisotropy of fluctuation dynamics of proteins with an elastic network model, Biophysical Journal, 80 (2001), 505-515.
doi: 10.1016/S0006-3495(01)76033-X. |
[4] |
I. Bahar, A. R. Atilgan and B. Erman,
Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential, Folding and Design, 2 (1997), 173-181.
doi: 10.1016/S1359-0278(97)00024-2. |
[5] |
P. W. Bates, G.-W. Wei and S. Zhao,
Minimal molecular surfaces and their applications, Journal of Computational Chemistry, 29 (2007), 380-391.
doi: 10.1002/jcc.20796. |
[6] |
P. Bendich, H. Edelsbrunner and M. Kerber,
Computing robustness and persistence for images, IEEE Transactions on Visualization and Computer Graphics, 16 (2010), 1251-1260.
doi: 10.1109/TVCG.2010.139. |
[7] |
D. Bramer and G.-W. Wei, Multiscale weighted colored graphs for protein flexibility and rigidity analysis, The Journal of Chemical Physics, 148 (2018), 054103.
doi: 10.1063/1.5016562. |
[8] |
Z. Cang, L. Mu and G.-W. Wei, Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening, PLOS Computational Biology, 14 (2018), e1005929.
doi: 10.1371/journal.pcbi.1005929. |
[9] |
Z. Cang, L. Mu, K. Wu, K. Opron, K. Xia and G.-W. Wei, A topological approach for protein classification, Computational and Mathematical Biophysics, 1 (2015).
doi: 10.1515/mlbmb-2015-0009. |
[10] |
Z. Cang, E. Munch and G.-W. Wei, Evolutionary homology on coupled dynamical systems with applications to protein flexibility analysis, Journal of Applied and Computational Topology, (2020), 1–27. Google Scholar |
[11] |
Z. Cang and G.-W. Wei, TopologyNet: Topology based deep convolutional and multi-task neural networks for biomolecular property predictions, PLOS Computational Biology, 13 (2017), 1005690.
doi: 10.1371/journal.pcbi.1005690. |
[12] |
Z. Cang and G.-W. Wei, Integration of element specific persistent homology and machine learning for protein-ligand binding affinity prediction, International Journal for Numerical Methods in Biomedical Engineering, 34 (2018), e2914.
doi: 10.1002/cnm.2914. |
[13] |
G. Carlsson, V. De Silva and D. Morozov, Zigzag persistent homology and real-valued functions, Proceedings of the Twenty-Fifth Annual Symposium on Computational Geometry, ACM, 2009, 247–256.
doi: 10.1145/1542362.1542408. |
[14] |
G. Carlsson, T. Ishkhanov, V. De Silva and A. Zomorodian,
On the local behavior of spaces of natural images, International Journal of Computer Vision, 76 (2008), 1-12.
doi: 10.1007/s11263-007-0056-x. |
[15] |
T. Cecil,
A numerical method for computing minimal surfaces in arbitrary dimension, Journal of Computational Physics, 206 (2005), 650-660.
doi: 10.1016/j.jcp.2004.12.022. |
[16] |
Z. Chen, N. A. Baker and G.-W. Wei,
Differential geometry based solvation model Ⅱ: Lagrangian formulation, Journal of Mathematical Biology, 63 (2011), 1139-1200.
doi: 10.1007/s00285-011-0402-z. |
[17] |
S. Chowdhury and F. Mémoli, Persistent path homology of directed networks, Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadephia, PA, 2018, 1152–1169.
doi: 10.1137/1.9781611975031.75. |
[18] |
V. De Silva, R. Ghrist and A. Muhammad, Blind swarms for coverage in 2-D, Robotics: Science and Systems, 2005, 335–342.
doi: 10.15607/RSS.2005.I.044. |
[19] |
M. Desbrun, E. Kanso and Y. Tong, Discrete differential forms for computational modeling, in Discrete Differential Geometry, Birkhäuser, Basel, 2008, 287–324.
doi: 10.1007/978-3-7643-8621-4_16. |
[20] |
B. Di Fabio and C. Landi,
A Mayer-Vietoris formula for persistent homology with an application to shape recognition in the presence of occlusions, Foundations of Computational Mathematics, 11 (2011), 499-527.
doi: 10.1007/s10208-011-9100-x. |
[21] |
Q. Du, C. Liu and X. Wang,
A phase field approach in the numerical study of the elastic bending energy for vesicle membranes, Journal of Computational Physics, 198 (2004), 450-468.
doi: 10.1016/j.jcp.2004.01.029. |
[22] |
H. Edelsbrunner and J. Harer, Computational Topology: An Introduction, American Mathematical Society, Providence, RI, 2010. |
[23] |
H. Edelsbrunner, D. Letscher and A. Zomorodian, Topological persistence and simplification, in ![]() ![]() |
[24] |
N. Foster and D. Metaxas,
Realistic animation of liquids, Graphical Models and Image Processing, 58 (1996), 471-483.
doi: 10.1006/gmip.1996.0039. |
[25] |
K. O. Friedrichs,
Differential forms on Riemannian manifolds, Communications on Pure and Applied Mathematics, 8 (1955), 551-590.
doi: 10.1002/cpa.3160080408. |
[26] |
P. Frosini and C. Landi, Size theory as a topological tool for computer vision, Pattern Recognition and Image Analysis, 9 (1999), 596-603. Google Scholar |
[27] |
P. Frosini and C. Landi, Persistent Betti numbers for a noise tolerant shape-based approach to image retrieval, in Computer Analysis of Images and Patterns, Springer, Heidelberg, 2011, 294–301.
doi: 10.1007/978-3-642-23672-3_36. |
[28] |
M. Gameiro, Y. Hiraoka, S. Izumi, M. Kramar, K. Mischaikow and V. Nanda,
A topological measurement of protein compressibility, Japan Journal of Industrial and Applied Mathematics, 32 (2015), 1-17.
doi: 10.1007/s13160-014-0153-5. |
[29] |
H. Gao, M. K. Mandal, G. Guo and J. Wan, Singular point detection using discrete Hodge Helmholtz decomposition in fingerprint images, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, Dallas, TX, 2010, 1094–1097.
doi: 10.1109/ICASSP.2010.5495348. |
[30] |
J. Gomes and O. Faugeras, Using the vector distance functions to evolve manifolds of arbitrary codimension, International Conference on Scale-Space Theories in Computer Vision, Springer, 2001, 1–13. Google Scholar |
[31] |
T. Hazra, S. A. Ullah, S. Wang, E. Alexov and S. Zhao,
A super-Gaussian Poisson–Boltzmann model for electrostatic free energy calculation: Smooth dielectric distribution for protein cavities and in both water and vacuum states, Journal of Mathematical Biology, 79 (2019), 631-672.
doi: 10.1007/s00285-019-01372-1. |
[32] |
W. V. D. Hodge, The Theory and Applications of Harmonic Integrals, Cambridge University Press, Cambridge, 1989.
![]() |
[33] |
W. Humphrey, A. Dalke and K. Schulten,
VMD: visual molecular dynamics, Journal of Molecular Graphics, 14 (1996), 33-38.
doi: 10.1016/0263-7855(96)00018-5. |
[34] |
D. Horak, S. Maletić and M. Rajković, Persistent homology of complex networks, Journal of Statistical Mechanics: Theory and Experiment, (2009), no. 3, P03034, 24 pp.
doi: 10.1088/1742-5468/2009/03/p03034. |
[35] |
M. Kac,
Can one hear the shape of a drum?, The American Mathematical Monthly, 73 (1966), 1-23.
doi: 10.1080/00029890.1966.11970915. |
[36] |
T. Kaczynski, K. Mischaikow and M. Mrozek, Computational Homology, Volume 157, Springer-Verlag, New York, NY, 2004.
doi: 10.1007/b97315. |
[37] |
V. Kovacev-Nikolic, P. Bubenik, D. Nikolić and G. Heo,
Using persistent homology and dynamical distances to analyze protein binding, Statistical Applications in Genetics and Molecular Biology, 15 (2016), 19-38.
doi: 10.1515/sagmb-2015-0057. |
[38] |
H. Lee, H. Kang, M. K. Chung, B.-N. Kim and D. S. Lee, Persistent brain network homology from the perspective of dendrogram, IEEE Transactions on Medical Imaging, 31 (2012), 2267-2277. Google Scholar |
[39] |
A. Leis, B. Rockel, L. Andrees and W. Baumeister,
Visualizing cells at the nanoscale, Trends in Biochemical Sciences, 34 (2009), 60-70.
doi: 10.1016/j.tibs.2008.10.011. |
[40] |
N. N. Mansour, A. Kosovichev, D. Georgobiani, A. Wray and M. Miesch, Turbulence convection and oscillations in the sun, SOHO 14 Helio- and Asteroseismology: Towards a Golden Future, volume 559, 2004, 164 pp. Google Scholar |
[41] |
Z. Meng, D. V. Anand, Y. Lu, J. Wu and K. Xia, Weighted persistent homology for biomolecular data analysis, Scientific reports, 10 2020, 1–15. Google Scholar |
[42] |
K. Mikula and D. Sevcovic,
A direct method for solving an anisotropic mean curvature flow of plane curves with an external force, Mathematical Methods in the Applied Sciences, 27 (2004), 1545-1565.
doi: 10.1002/mma.514. |
[43] |
K. Mischaikow, M. Mrozek, J. Reiss and A. Szymczak, Construction of symbolic dynamics from experimental time series, Physical Review Letters, 82 (1999), 1144.
doi: 10.1103/PhysRevLett.82.1144. |
[44] |
Y. Mochizuki and A. Imiya, Spatial reasoning for robot navigation using the Helmholtz-Hodge decomposition of omnidirectional optical flow, 2009 24th International Conference Image and Vision Computing New Zealand, Wellington, New Zealand, 2009, 1–6.
doi: 10.1109/IVCNZ.2009.5378430. |
[45] |
D. D. Nguyen and G.-W. Wei, AGL-score: Algebraic graph learning score for protein-ligand binding scoring, ranking, docking and screening, Journal of Chemical Information and Modeling, 59 2019, 3291–3304.
doi: 10.1021/acs.jcim.9b00334. |
[46] |
D. D. Nguyen, Z. Cang, K. Wu, M. Wang, Y. Cao and G.-W. Wei,
Mathematical deep learning for pose and binding affinity prediction and ranking in D3R Grand Challenges, Journal of Computer-Aided Molecular Design, 33 (2019), 71-82.
doi: 10.1007/s10822-018-0146-6. |
[47] |
D. D. Nguyen, K. Gao, M. Wang and G.-W. Wei,
MathDL: Mathematical deep learning for D3R Grand Challenge 4, Journal of Computer-Aided Molecular Design, 34 (2019), 1-17.
doi: 10.1007/s10822-019-00237-5. |
[48] |
D. D. Nguyen and G.-W. Wei, DG-GL: Differential geometry-based geometric learning of molecular datasets, International Journal for Numerical Methods in Biomedical Engineering, 35 (2019), e3179.
doi: 10.1002/cnm.3179. |
[49] |
D. D. Nguyen, K. Xia and G.-W. Wei, Generalized flexibility-rigidity index, The Journal of Chemical Physics, 144 (2016), 234106.
doi: 10.1063/1.4953851. |
[50] |
S. Nickell, C. Kofler, A. P. Leis and W. Baumeister,
A visual approach to proteomics, Nature Reviews Molecular Cell Biology, 7 (2006), 225-230.
doi: 10.1038/nrm1861. |
[51] |
P. Niyogi, S. Smale and S. Weinberger,
A topological view of unsupervised learning from noisy data, SIAM Journal on Computing, 40 (2011), 646-663.
doi: 10.1137/090762932. |
[52] |
K. Opron, K. Xia and G.-W. Wei, Communication: Capturing protein multiscale thermal fluctuations, Journal of Chemical Physics, 142 (2015), 211101.
doi: 10.1063/1.4922045. |
[53] |
S. Osher and J. A. Sethian,
Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, 79 (1988), 12-49.
doi: 10.1016/0021-9991(88)90002-2. |
[54] |
J. Peschek, N. Braun, T. M. Franzmann, Y. Georgalis, M. Haslbeck, S. Weinkauf and J. Buchner, The eye lens chaperone $\alpha$-crystallin forms defined globular assemblies, Proceedings of the National Academy of Sciences, 106 (2009), 13272-13277. Google Scholar |
[55] |
D. Pachauri, C. Hinrichs, M. K. Chung, S. C. Johnson and V. Singh,
Topology-based kernels with application to inference problems in Alzheimer's disease, IEEE Transactions on Medical Imaging, 30 (2011), 1760-1770.
doi: 10.1109/TMI.2011.2147327. |
[56] |
D. B. Ray and I. M. Singer,
R-torsion and the Laplacian on Riemannian manifolds, Advances in Mathematics, 7 (1971), 145-210.
doi: 10.1016/0001-8708(71)90045-4. |
[57] |
C. V. Robinson, A Sali and W. Baumeister,
The molecular sociology of the cell, Nature, 450 (2007), 973-982.
doi: 10.1038/nature06523. |
[58] |
V. Robins, Towards computing homology from finite approximations, Topology Proceedings, Volume 24, Brookville, NY, 1999, 503–532. |
[59] |
C. Shonkwiler, Poincaré duality angles for riemannian manifolds with boundary, Ph.D. thesis, University of Pennsylvania, 2009, arXiv: 0909.1967. |
[60] |
G. Singh, F. Memoli, T. Ishkhanov, G. Sapiro, G. Carlsson and D. L. Ringach, Topological analysis of population activity in visual cortex, Journal of Vision, 8 (2008), 11 pp. Google Scholar |
[61] |
C. Sormani, How Riemannian manifolds converge, in Metric and Differential Geometry, Birkháuser/Springer, Basel, 2012, 91–117.
doi: 10.1007/978-3-0348-0257-4_4. |
[62] |
L. E.-J. Spruck,
Motion of level sets by mean curvature I, Journal of Differential Geometry, 33 (1991), 635-681.
doi: 10.4310/jdg/1214446559. |
[63] |
Y. Tong, S. Lombeyda, A. N. Hirani and M. Desbrun, Discrete multiscale vector field decomposition, ACM Transactions on Graphics (TOG), volume 22, ACM, 2003, 445–452.
doi: 10.1145/1201775.882290. |
[64] |
B. Wang, B. Summa, V. Pascucci and M. Vejdemo-Johansson, Branching and circular features in high dimensional data, IEEE Transactions on Visualization and Computer Graphics, 17 (2011), 1902-1911. Google Scholar |
[65] |
L. Wang, L. Li and E. Alexov, pKa predictions for proteins, RNAs and DNAs with the Gaussian dielectric function using DelPhi pKa, Proteins: Structure, Function and Bioinformatics, 83 (2015), 2186-2197. Google Scholar |
[66] |
B. Wang and G.-W. Wei,
Object-oriented persistent homology, Journal of Computational Physics, 305 (2016), 276-299.
doi: 10.1016/j.jcp.2015.10.036. |
[67] |
R. Wang, D. D. Nguyen and G.-W. Wei, Persistent spectral graph, International Journal for Numerical Methods in Biomedical Engineering, (2020), e3376.
doi: 10.1002/cnm.3376. |
[68] |
G.-W. Wei,
Differential geometry based multiscale models, Bulletin of Mathematical Biology, 72 (2010), 1562-1622.
doi: 10.1007/s11538-010-9511-x. |
[69] |
T. J. Willmore, An Introduction to Differential Geometry, Clarendon Press, Oxford, 2013.
![]() |
[70] |
K. Xia, X. Feng, Z. Chen, Y. Tong and G.-W. Wei,
Multiscale geometric modeling of macromolecules Ⅰ: Cartesian representation, Journal of Computational Physics, 257 (2014), 912-936.
doi: 10.1016/j.jcp.2013.09.034. |
[71] |
K. Xia, X. Feng, Y. Tong and G. W. Wei,
Persistent homology for the quantitative prediction of fullerene stability, Journal of Computational Chemistry, 36 (2015), 408-422.
doi: 10.1002/jcc.23816. |
[72] |
K. Xia and G.-W. Wei,
Persistent homology analysis of protein structure, flexibility and folding, International Journal for Numerical Methods in Biomedical Engineering, 30 (2014), 814-844.
doi: 10.1002/cnm.2655. |
[73] |
K. Xia and G.-W. Wei,
Multidimensional persistence in biomolecular data, Journal of Computational Chemistry, 36 (2015), 1502-1520.
doi: 10.1002/jcc.23953. |
[74] |
Y. Yao, J. Sun, X. Huang, G. R. Bowman, G. Singh, M. Lesnick, L. J. Guibas, V. S. Pande and G. Carlsson, Topological methods for exploring low-density states in biomolecular folding pathways, The Journal of Chemical Physics, 130 (2009), 144115.
doi: 10.1063/1.3103496. |
[75] |
S. Zelditch,
Spectral determination of analytic bi-axisymmetric plane domains, Geometric & Functional Analysis GAFA, 10 (2000), 628-677.
doi: 10.1007/PL00001633. |
[76] |
R. Zhao, M. Desbrun, G.-W. Wei and Y. Tong, 3D Hodge decompositions of edge- and face-based vector fields, ACM Transactions on Graphics (TOG), 38 (2019), 181 pp.
doi: 10.1145/3355089.3356546. |
[77] |
R. Zhao, M. Wang, J. Chen, Y. Tong and G.-W. Wei, The de Rham-Hodge analysis and modeling of biomolecules, Bull. Math. Biol., 82 (2020), 108.
doi: 10.1007/s11538-020-00783-2. |
[78] |
A. Zomorodian and G. Carlsson,
Computing persistent homology, Discrete & Computational Geometry, 33 (2005), 249-274.
doi: 10.1007/s00454-004-1146-y. |
show all references
References:
[1] |
M. Akram and V. Michel,
Regularisation of the Helmholtz decomposition and its application to geomagnetic field modelling, GEM-International Journal on Geomathematics, 1 (2010), 101-120.
doi: 10.1007/s13137-010-0001-y. |
[2] |
D. N. Arnold, R. S. Falk and R. Winther,
Finite element exterior calculus, homological techniques and applications, Acta Numerica, 15 (2006), 1-155.
doi: 10.1017/S0962492906210018. |
[3] |
A. R. Atilgan, S. Durell, R. L. Jernigan, M. C. Demirel, O. Keskin and I. Bahar,
Anisotropy of fluctuation dynamics of proteins with an elastic network model, Biophysical Journal, 80 (2001), 505-515.
doi: 10.1016/S0006-3495(01)76033-X. |
[4] |
I. Bahar, A. R. Atilgan and B. Erman,
Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential, Folding and Design, 2 (1997), 173-181.
doi: 10.1016/S1359-0278(97)00024-2. |
[5] |
P. W. Bates, G.-W. Wei and S. Zhao,
Minimal molecular surfaces and their applications, Journal of Computational Chemistry, 29 (2007), 380-391.
doi: 10.1002/jcc.20796. |
[6] |
P. Bendich, H. Edelsbrunner and M. Kerber,
Computing robustness and persistence for images, IEEE Transactions on Visualization and Computer Graphics, 16 (2010), 1251-1260.
doi: 10.1109/TVCG.2010.139. |
[7] |
D. Bramer and G.-W. Wei, Multiscale weighted colored graphs for protein flexibility and rigidity analysis, The Journal of Chemical Physics, 148 (2018), 054103.
doi: 10.1063/1.5016562. |
[8] |
Z. Cang, L. Mu and G.-W. Wei, Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening, PLOS Computational Biology, 14 (2018), e1005929.
doi: 10.1371/journal.pcbi.1005929. |
[9] |
Z. Cang, L. Mu, K. Wu, K. Opron, K. Xia and G.-W. Wei, A topological approach for protein classification, Computational and Mathematical Biophysics, 1 (2015).
doi: 10.1515/mlbmb-2015-0009. |
[10] |
Z. Cang, E. Munch and G.-W. Wei, Evolutionary homology on coupled dynamical systems with applications to protein flexibility analysis, Journal of Applied and Computational Topology, (2020), 1–27. Google Scholar |
[11] |
Z. Cang and G.-W. Wei, TopologyNet: Topology based deep convolutional and multi-task neural networks for biomolecular property predictions, PLOS Computational Biology, 13 (2017), 1005690.
doi: 10.1371/journal.pcbi.1005690. |
[12] |
Z. Cang and G.-W. Wei, Integration of element specific persistent homology and machine learning for protein-ligand binding affinity prediction, International Journal for Numerical Methods in Biomedical Engineering, 34 (2018), e2914.
doi: 10.1002/cnm.2914. |
[13] |
G. Carlsson, V. De Silva and D. Morozov, Zigzag persistent homology and real-valued functions, Proceedings of the Twenty-Fifth Annual Symposium on Computational Geometry, ACM, 2009, 247–256.
doi: 10.1145/1542362.1542408. |
[14] |
G. Carlsson, T. Ishkhanov, V. De Silva and A. Zomorodian,
On the local behavior of spaces of natural images, International Journal of Computer Vision, 76 (2008), 1-12.
doi: 10.1007/s11263-007-0056-x. |
[15] |
T. Cecil,
A numerical method for computing minimal surfaces in arbitrary dimension, Journal of Computational Physics, 206 (2005), 650-660.
doi: 10.1016/j.jcp.2004.12.022. |
[16] |
Z. Chen, N. A. Baker and G.-W. Wei,
Differential geometry based solvation model Ⅱ: Lagrangian formulation, Journal of Mathematical Biology, 63 (2011), 1139-1200.
doi: 10.1007/s00285-011-0402-z. |
[17] |
S. Chowdhury and F. Mémoli, Persistent path homology of directed networks, Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadephia, PA, 2018, 1152–1169.
doi: 10.1137/1.9781611975031.75. |
[18] |
V. De Silva, R. Ghrist and A. Muhammad, Blind swarms for coverage in 2-D, Robotics: Science and Systems, 2005, 335–342.
doi: 10.15607/RSS.2005.I.044. |
[19] |
M. Desbrun, E. Kanso and Y. Tong, Discrete differential forms for computational modeling, in Discrete Differential Geometry, Birkhäuser, Basel, 2008, 287–324.
doi: 10.1007/978-3-7643-8621-4_16. |
[20] |
B. Di Fabio and C. Landi,
A Mayer-Vietoris formula for persistent homology with an application to shape recognition in the presence of occlusions, Foundations of Computational Mathematics, 11 (2011), 499-527.
doi: 10.1007/s10208-011-9100-x. |
[21] |
Q. Du, C. Liu and X. Wang,
A phase field approach in the numerical study of the elastic bending energy for vesicle membranes, Journal of Computational Physics, 198 (2004), 450-468.
doi: 10.1016/j.jcp.2004.01.029. |
[22] |
H. Edelsbrunner and J. Harer, Computational Topology: An Introduction, American Mathematical Society, Providence, RI, 2010. |
[23] |
H. Edelsbrunner, D. Letscher and A. Zomorodian, Topological persistence and simplification, in ![]() ![]() |
[24] |
N. Foster and D. Metaxas,
Realistic animation of liquids, Graphical Models and Image Processing, 58 (1996), 471-483.
doi: 10.1006/gmip.1996.0039. |
[25] |
K. O. Friedrichs,
Differential forms on Riemannian manifolds, Communications on Pure and Applied Mathematics, 8 (1955), 551-590.
doi: 10.1002/cpa.3160080408. |
[26] |
P. Frosini and C. Landi, Size theory as a topological tool for computer vision, Pattern Recognition and Image Analysis, 9 (1999), 596-603. Google Scholar |
[27] |
P. Frosini and C. Landi, Persistent Betti numbers for a noise tolerant shape-based approach to image retrieval, in Computer Analysis of Images and Patterns, Springer, Heidelberg, 2011, 294–301.
doi: 10.1007/978-3-642-23672-3_36. |
[28] |
M. Gameiro, Y. Hiraoka, S. Izumi, M. Kramar, K. Mischaikow and V. Nanda,
A topological measurement of protein compressibility, Japan Journal of Industrial and Applied Mathematics, 32 (2015), 1-17.
doi: 10.1007/s13160-014-0153-5. |
[29] |
H. Gao, M. K. Mandal, G. Guo and J. Wan, Singular point detection using discrete Hodge Helmholtz decomposition in fingerprint images, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, Dallas, TX, 2010, 1094–1097.
doi: 10.1109/ICASSP.2010.5495348. |
[30] |
J. Gomes and O. Faugeras, Using the vector distance functions to evolve manifolds of arbitrary codimension, International Conference on Scale-Space Theories in Computer Vision, Springer, 2001, 1–13. Google Scholar |
[31] |
T. Hazra, S. A. Ullah, S. Wang, E. Alexov and S. Zhao,
A super-Gaussian Poisson–Boltzmann model for electrostatic free energy calculation: Smooth dielectric distribution for protein cavities and in both water and vacuum states, Journal of Mathematical Biology, 79 (2019), 631-672.
doi: 10.1007/s00285-019-01372-1. |
[32] |
W. V. D. Hodge, The Theory and Applications of Harmonic Integrals, Cambridge University Press, Cambridge, 1989.
![]() |
[33] |
W. Humphrey, A. Dalke and K. Schulten,
VMD: visual molecular dynamics, Journal of Molecular Graphics, 14 (1996), 33-38.
doi: 10.1016/0263-7855(96)00018-5. |
[34] |
D. Horak, S. Maletić and M. Rajković, Persistent homology of complex networks, Journal of Statistical Mechanics: Theory and Experiment, (2009), no. 3, P03034, 24 pp.
doi: 10.1088/1742-5468/2009/03/p03034. |
[35] |
M. Kac,
Can one hear the shape of a drum?, The American Mathematical Monthly, 73 (1966), 1-23.
doi: 10.1080/00029890.1966.11970915. |
[36] |
T. Kaczynski, K. Mischaikow and M. Mrozek, Computational Homology, Volume 157, Springer-Verlag, New York, NY, 2004.
doi: 10.1007/b97315. |
[37] |
V. Kovacev-Nikolic, P. Bubenik, D. Nikolić and G. Heo,
Using persistent homology and dynamical distances to analyze protein binding, Statistical Applications in Genetics and Molecular Biology, 15 (2016), 19-38.
doi: 10.1515/sagmb-2015-0057. |
[38] |
H. Lee, H. Kang, M. K. Chung, B.-N. Kim and D. S. Lee, Persistent brain network homology from the perspective of dendrogram, IEEE Transactions on Medical Imaging, 31 (2012), 2267-2277. Google Scholar |
[39] |
A. Leis, B. Rockel, L. Andrees and W. Baumeister,
Visualizing cells at the nanoscale, Trends in Biochemical Sciences, 34 (2009), 60-70.
doi: 10.1016/j.tibs.2008.10.011. |
[40] |
N. N. Mansour, A. Kosovichev, D. Georgobiani, A. Wray and M. Miesch, Turbulence convection and oscillations in the sun, SOHO 14 Helio- and Asteroseismology: Towards a Golden Future, volume 559, 2004, 164 pp. Google Scholar |
[41] |
Z. Meng, D. V. Anand, Y. Lu, J. Wu and K. Xia, Weighted persistent homology for biomolecular data analysis, Scientific reports, 10 2020, 1–15. Google Scholar |
[42] |
K. Mikula and D. Sevcovic,
A direct method for solving an anisotropic mean curvature flow of plane curves with an external force, Mathematical Methods in the Applied Sciences, 27 (2004), 1545-1565.
doi: 10.1002/mma.514. |
[43] |
K. Mischaikow, M. Mrozek, J. Reiss and A. Szymczak, Construction of symbolic dynamics from experimental time series, Physical Review Letters, 82 (1999), 1144.
doi: 10.1103/PhysRevLett.82.1144. |
[44] |
Y. Mochizuki and A. Imiya, Spatial reasoning for robot navigation using the Helmholtz-Hodge decomposition of omnidirectional optical flow, 2009 24th International Conference Image and Vision Computing New Zealand, Wellington, New Zealand, 2009, 1–6.
doi: 10.1109/IVCNZ.2009.5378430. |
[45] |
D. D. Nguyen and G.-W. Wei, AGL-score: Algebraic graph learning score for protein-ligand binding scoring, ranking, docking and screening, Journal of Chemical Information and Modeling, 59 2019, 3291–3304.
doi: 10.1021/acs.jcim.9b00334. |
[46] |
D. D. Nguyen, Z. Cang, K. Wu, M. Wang, Y. Cao and G.-W. Wei,
Mathematical deep learning for pose and binding affinity prediction and ranking in D3R Grand Challenges, Journal of Computer-Aided Molecular Design, 33 (2019), 71-82.
doi: 10.1007/s10822-018-0146-6. |
[47] |
D. D. Nguyen, K. Gao, M. Wang and G.-W. Wei,
MathDL: Mathematical deep learning for D3R Grand Challenge 4, Journal of Computer-Aided Molecular Design, 34 (2019), 1-17.
doi: 10.1007/s10822-019-00237-5. |
[48] |
D. D. Nguyen and G.-W. Wei, DG-GL: Differential geometry-based geometric learning of molecular datasets, International Journal for Numerical Methods in Biomedical Engineering, 35 (2019), e3179.
doi: 10.1002/cnm.3179. |
[49] |
D. D. Nguyen, K. Xia and G.-W. Wei, Generalized flexibility-rigidity index, The Journal of Chemical Physics, 144 (2016), 234106.
doi: 10.1063/1.4953851. |
[50] |
S. Nickell, C. Kofler, A. P. Leis and W. Baumeister,
A visual approach to proteomics, Nature Reviews Molecular Cell Biology, 7 (2006), 225-230.
doi: 10.1038/nrm1861. |
[51] |
P. Niyogi, S. Smale and S. Weinberger,
A topological view of unsupervised learning from noisy data, SIAM Journal on Computing, 40 (2011), 646-663.
doi: 10.1137/090762932. |
[52] |
K. Opron, K. Xia and G.-W. Wei, Communication: Capturing protein multiscale thermal fluctuations, Journal of Chemical Physics, 142 (2015), 211101.
doi: 10.1063/1.4922045. |
[53] |
S. Osher and J. A. Sethian,
Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, 79 (1988), 12-49.
doi: 10.1016/0021-9991(88)90002-2. |
[54] |
J. Peschek, N. Braun, T. M. Franzmann, Y. Georgalis, M. Haslbeck, S. Weinkauf and J. Buchner, The eye lens chaperone $\alpha$-crystallin forms defined globular assemblies, Proceedings of the National Academy of Sciences, 106 (2009), 13272-13277. Google Scholar |
[55] |
D. Pachauri, C. Hinrichs, M. K. Chung, S. C. Johnson and V. Singh,
Topology-based kernels with application to inference problems in Alzheimer's disease, IEEE Transactions on Medical Imaging, 30 (2011), 1760-1770.
doi: 10.1109/TMI.2011.2147327. |
[56] |
D. B. Ray and I. M. Singer,
R-torsion and the Laplacian on Riemannian manifolds, Advances in Mathematics, 7 (1971), 145-210.
doi: 10.1016/0001-8708(71)90045-4. |
[57] |
C. V. Robinson, A Sali and W. Baumeister,
The molecular sociology of the cell, Nature, 450 (2007), 973-982.
doi: 10.1038/nature06523. |
[58] |
V. Robins, Towards computing homology from finite approximations, Topology Proceedings, Volume 24, Brookville, NY, 1999, 503–532. |
[59] |
C. Shonkwiler, Poincaré duality angles for riemannian manifolds with boundary, Ph.D. thesis, University of Pennsylvania, 2009, arXiv: 0909.1967. |
[60] |
G. Singh, F. Memoli, T. Ishkhanov, G. Sapiro, G. Carlsson and D. L. Ringach, Topological analysis of population activity in visual cortex, Journal of Vision, 8 (2008), 11 pp. Google Scholar |
[61] |
C. Sormani, How Riemannian manifolds converge, in Metric and Differential Geometry, Birkháuser/Springer, Basel, 2012, 91–117.
doi: 10.1007/978-3-0348-0257-4_4. |
[62] |
L. E.-J. Spruck,
Motion of level sets by mean curvature I, Journal of Differential Geometry, 33 (1991), 635-681.
doi: 10.4310/jdg/1214446559. |
[63] |
Y. Tong, S. Lombeyda, A. N. Hirani and M. Desbrun, Discrete multiscale vector field decomposition, ACM Transactions on Graphics (TOG), volume 22, ACM, 2003, 445–452.
doi: 10.1145/1201775.882290. |
[64] |
B. Wang, B. Summa, V. Pascucci and M. Vejdemo-Johansson, Branching and circular features in high dimensional data, IEEE Transactions on Visualization and Computer Graphics, 17 (2011), 1902-1911. Google Scholar |
[65] |
L. Wang, L. Li and E. Alexov, pKa predictions for proteins, RNAs and DNAs with the Gaussian dielectric function using DelPhi pKa, Proteins: Structure, Function and Bioinformatics, 83 (2015), 2186-2197. Google Scholar |
[66] |
B. Wang and G.-W. Wei,
Object-oriented persistent homology, Journal of Computational Physics, 305 (2016), 276-299.
doi: 10.1016/j.jcp.2015.10.036. |
[67] |
R. Wang, D. D. Nguyen and G.-W. Wei, Persistent spectral graph, International Journal for Numerical Methods in Biomedical Engineering, (2020), e3376.
doi: 10.1002/cnm.3376. |
[68] |
G.-W. Wei,
Differential geometry based multiscale models, Bulletin of Mathematical Biology, 72 (2010), 1562-1622.
doi: 10.1007/s11538-010-9511-x. |
[69] |
T. J. Willmore, An Introduction to Differential Geometry, Clarendon Press, Oxford, 2013.
![]() |
[70] |
K. Xia, X. Feng, Z. Chen, Y. Tong and G.-W. Wei,
Multiscale geometric modeling of macromolecules Ⅰ: Cartesian representation, Journal of Computational Physics, 257 (2014), 912-936.
doi: 10.1016/j.jcp.2013.09.034. |
[71] |
K. Xia, X. Feng, Y. Tong and G. W. Wei,
Persistent homology for the quantitative prediction of fullerene stability, Journal of Computational Chemistry, 36 (2015), 408-422.
doi: 10.1002/jcc.23816. |
[72] |
K. Xia and G.-W. Wei,
Persistent homology analysis of protein structure, flexibility and folding, International Journal for Numerical Methods in Biomedical Engineering, 30 (2014), 814-844.
doi: 10.1002/cnm.2655. |
[73] |
K. Xia and G.-W. Wei,
Multidimensional persistence in biomolecular data, Journal of Computational Chemistry, 36 (2015), 1502-1520.
doi: 10.1002/jcc.23953. |
[74] |
Y. Yao, J. Sun, X. Huang, G. R. Bowman, G. Singh, M. Lesnick, L. J. Guibas, V. S. Pande and G. Carlsson, Topological methods for exploring low-density states in biomolecular folding pathways, The Journal of Chemical Physics, 130 (2009), 144115.
doi: 10.1063/1.3103496. |
[75] |
S. Zelditch,
Spectral determination of analytic bi-axisymmetric plane domains, Geometric & Functional Analysis GAFA, 10 (2000), 628-677.
doi: 10.1007/PL00001633. |
[76] |
R. Zhao, M. Desbrun, G.-W. Wei and Y. Tong, 3D Hodge decompositions of edge- and face-based vector fields, ACM Transactions on Graphics (TOG), 38 (2019), 181 pp.
doi: 10.1145/3355089.3356546. |
[77] |
R. Zhao, M. Wang, J. Chen, Y. Tong and G.-W. Wei, The de Rham-Hodge analysis and modeling of biomolecules, Bull. Math. Biol., 82 (2020), 108.
doi: 10.1007/s11538-020-00783-2. |
[78] |
A. Zomorodian and G. Carlsson,
Computing persistent homology, Discrete & Computational Geometry, 33 (2005), 249-274.
doi: 10.1007/s00454-004-1146-y. |



















order |
order |
order |
order |
|
form | ||||
order |
order |
order |
order |
|
form | ||||
type | ||||
tangential | unrestricted | |||
normal | unrestricted |
type | ||||
tangential | unrestricted | |||
normal | unrestricted |
[1] |
Thomas Y. Hou, Dong Liang. Multiscale analysis for convection dominated transport equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 281-298. doi: 10.3934/dcds.2009.23.281 |
[2] |
George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003 |
[3] |
Olivier Pironneau, Alexei Lozinski, Alain Perronnet, Frédéric Hecht. Numerical zoom for multiscale problems with an application to flows through porous media. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 265-280. doi: 10.3934/dcds.2009.23.265 |
[4] |
Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021006 |
[5] |
Ziang Long, Penghang Yin, Jack Xin. Global convergence and geometric characterization of slow to fast weight evolution in neural network training for classifying linearly non-separable data. Inverse Problems & Imaging, 2021, 15 (1) : 41-62. doi: 10.3934/ipi.2020077 |
[6] |
Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331 |
[7] |
Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305 |
[8] |
Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020440 |
[9] |
Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026 |
[10] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021 doi: 10.3934/nhm.2021003 |
[11] |
Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226 |
[12] |
Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391 |
[13] |
Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051 |
[14] |
Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133 |
[15] |
Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020463 |
[16] |
Gökhan Mutlu. On the quotient quantum graph with respect to the regular representation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020295 |
[17] |
Guo-Niu Han, Huan Xiong. Skew doubled shifted plane partitions: Calculus and asymptotics. Electronic Research Archive, 2021, 29 (1) : 1841-1857. doi: 10.3934/era.2020094 |
[18] |
Tong Yang, Seiji Ukai, Huijiang Zhao. Stationary solutions to the exterior problems for the Boltzmann equation, I. Existence. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 495-520. doi: 10.3934/dcds.2009.23.495 |
[19] |
Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020031 |
[20] |
Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020459 |
2019 Impact Factor: 1.27
Tools
Article outline
Figures and Tables
[Back to Top]