-
Previous Article
Lyapunov functions for disease models with immigration of infected hosts
- DCDS-B Home
- This Issue
-
Next Article
Time periodic solutions for a two-species chemotaxis-Navier-Stokes system
Convergence of quasilinear parabolic equations to semilinear equations
1. | Departamento de Matemática, Universidade Federal da Paraíba, 58051-900, João Pessoa - PB, Brazil |
2. | Instituto de Matemática e Computação, Universidade Federal de Itajubá, Av. BPS n. 1303, Bairro Pinheirinho, 37500-903, Itajubá - MG, Brazil |
In this work we consider a family of reaction-diffusion equations with variable exponents reaching as a limit problem a semilinear equation. We provide uniform estimates for the solutions and we prove that the solutions of the family of quasilinear equations with variable exponents converge to the solution of a limit semilinear equation when the exponents go to 2. Moreover, the robustness of the global attractors is also studied.
References:
[1] |
C. Alves, S. Shmarev, J. Simsen and M. S. Simsen,
The Cauchy problem for a class of parabolic equations in weighted variable Sobolev spaces: Existence and asymptotic behavior, J. Math. Anal. Appl., 443 (2016), 265-294.
doi: 10.1016/j.jmaa.2016.05.024. |
[2] |
V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Editura Academiei Republicii Socialiste Romania, Bucharest, Noordhoff International Publishing, Leiden, 1976. |
[3] |
F. Bezerra, J. Simsen and M. S. Simsen,
Semilinear limit problems for reaction-diffusion equations with variable exponents, J. Differential Equations, 266 (2019), 3906-3924.
doi: 10.1016/j.jde.2018.09.021. |
[4] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, Vol. 840, Springer-Verlag, Berlin, 1981. |
[5] |
J. Simsen and M. S. Simsen,
On $p(x)$-Laplacian parabolic problems, Nonlinear Stud., 18 (2011), 393-403.
|
[6] |
J. Simsen, M. S. Simsen and F. B. Rocha,
Existence of solutions for some classes of parabolic problems involving variable exponents, Nonlinear Stud., 21 (2014), 113-128.
|
[7] |
J. Simsen, M. S. Simsen and M. R. T. Primo,
Reaction-diffusion equations with spatially variable exponents and large diffusion, Commun. Pure Appl. Anal., 15 (2016), 495-506.
doi: 10.3934/cpaa.2016.15.495. |
[8] |
J. Simsen, M. S. Simsen and A. Zimmermann,
Study of ODE limit problems for reaction-diffusion equations, Opuscula Math., 38 (2018), 117-131.
doi: 10.7494/OpMath.2018.38.1.117. |
[9] |
A. S. Tersenov,
The one dimensional parabolic $p(x)-$Laplace equation, NoDEA, 23 (2016), 1-11.
doi: 10.1007/s00030-016-0377-y. |
show all references
References:
[1] |
C. Alves, S. Shmarev, J. Simsen and M. S. Simsen,
The Cauchy problem for a class of parabolic equations in weighted variable Sobolev spaces: Existence and asymptotic behavior, J. Math. Anal. Appl., 443 (2016), 265-294.
doi: 10.1016/j.jmaa.2016.05.024. |
[2] |
V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Editura Academiei Republicii Socialiste Romania, Bucharest, Noordhoff International Publishing, Leiden, 1976. |
[3] |
F. Bezerra, J. Simsen and M. S. Simsen,
Semilinear limit problems for reaction-diffusion equations with variable exponents, J. Differential Equations, 266 (2019), 3906-3924.
doi: 10.1016/j.jde.2018.09.021. |
[4] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, Vol. 840, Springer-Verlag, Berlin, 1981. |
[5] |
J. Simsen and M. S. Simsen,
On $p(x)$-Laplacian parabolic problems, Nonlinear Stud., 18 (2011), 393-403.
|
[6] |
J. Simsen, M. S. Simsen and F. B. Rocha,
Existence of solutions for some classes of parabolic problems involving variable exponents, Nonlinear Stud., 21 (2014), 113-128.
|
[7] |
J. Simsen, M. S. Simsen and M. R. T. Primo,
Reaction-diffusion equations with spatially variable exponents and large diffusion, Commun. Pure Appl. Anal., 15 (2016), 495-506.
doi: 10.3934/cpaa.2016.15.495. |
[8] |
J. Simsen, M. S. Simsen and A. Zimmermann,
Study of ODE limit problems for reaction-diffusion equations, Opuscula Math., 38 (2018), 117-131.
doi: 10.7494/OpMath.2018.38.1.117. |
[9] |
A. S. Tersenov,
The one dimensional parabolic $p(x)-$Laplace equation, NoDEA, 23 (2016), 1-11.
doi: 10.1007/s00030-016-0377-y. |
[1] |
Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020283 |
[2] |
Masaharu Taniguchi. Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3981-3995. doi: 10.3934/dcds.2020126 |
[3] |
Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405 |
[4] |
Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242 |
[5] |
Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021004 |
[6] |
Chungang Shi, Wei Wang, Dafeng Chen. Weak time discretization for slow-fast stochastic reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021019 |
[7] |
Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020376 |
[8] |
Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020316 |
[9] |
Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020321 |
[10] |
Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033 |
[11] |
Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049 |
[12] |
Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053 |
[13] |
Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020319 |
[14] |
H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020433 |
[15] |
Shin-Ichiro Ei, Hiroshi Ishii. The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 173-190. doi: 10.3934/dcdsb.2020329 |
[16] |
El Haj Laamri, Michel Pierre. Stationary reaction-diffusion systems in $ L^1 $ revisited. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 455-464. doi: 10.3934/dcdss.2020355 |
[17] |
Klemens Fellner, Jeff Morgan, Bao Quoc Tang. Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 635-651. doi: 10.3934/dcdss.2020334 |
[18] |
Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164 |
[19] |
Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174 |
[20] |
Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020403 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]