
-
Previous Article
Nonlinear dynamics in tumor-immune system interaction models with delays
- DCDS-B Home
- This Issue
-
Next Article
Topological phase transition III: Solar surface eruptions and sunspots
Rich dynamics of a simple delay host-pathogen model of cell-to-cell infection for plant virus
1. | School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287, USA |
2. | Department of Mathematics and Computer Science, Lawrence Technological University, Southfield, MI 48075, USA |
3. | Agronomy Department, University of Florida, Gainesville, FL 32611, USA |
4. | Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN 55108, USA |
Viral dynamics within plant hosts can be important for understanding plant disease prevalence and impacts. However, few mathematical modeling efforts aim to characterize within-plant viral dynamics. In this paper, we derive a simple system of delay differential equations that describes the spread of infection throughout the plant by barley and cereal yellow dwarf viruses via the cell-to-cell mechanism. By incorporating ratio-dependent incidence function and logistic growth of the healthy cells, the model can capture a wide range of biologically relevant phenomena via the disease-free, endemic, mutual extinction steady states, and a stable periodic orbit. We show that when the basic reproduction number is less than $ 1 $ ($ R_0 < 1 $), the disease-free steady state is asymptotically stable. When $ R_0>1 $, the dynamics either converge to the endemic equilibrium or enter a periodic orbit. Using a ratio-dependent transformation, we show that if the infection rate is very high relative to the growth rate of healthy cells, then the system collapses to the mutual extinction steady state. Numerical and bifurcation simulations are provided to demonstrate our theoretical results. Finally, we carry out parameter estimation using experimental data to characterize the effects of varying nutrients on the dynamics of the system. Our parameter estimates suggest that varying the nutrient supply of nitrogen and phosphorous can alter the dynamics of the infection in plants, specifically reducing the rate of viral production and the rate of infection in certain cases.
References:
[1] |
M. Ali, S. Hameed and M. Tahir,
Luteovirus: Insights into pathogenicity, Archives of Virology, 159 (2014), 2853-2860.
doi: 10.1007/s00705-014-2172-6. |
[2] |
R. Antia, B. R. Levin and R. M. May,
Within-host population dynamics and the evolution and maintenance of microparasite virulence, The American Naturalist, 144 (1994), 457-472.
doi: 10.1086/285686. |
[3] |
F. Atkinson and J. Haddock,
Criteria for asymptotic constancy of solutions of functional differential equations, Journal of Mathematical Analysis and Applications, 91 (1983), 410-423.
doi: 10.1016/0022-247X(83)90161-0. |
[4] |
J. Bak, D. J. Newman and D. J. Newman, Complex Analysis, Springer, 2010.
doi: 10.1007/978-1-4419-7288-0. |
[5] |
Y. M. Bar-On, R. Phillips and R. Milo,
The biomass distribution on earth, Proceedings of the National Academy of Sciences, 115 (2018), 6506-6511.
doi: 10.1073/pnas.1711842115. |
[6] |
M. Begon, M. Bennett, R. G. Bowers, N. P. French, S. Hazel and J. Turner,
A clarification of transmission terms in host-microparasite models: numbers, densities and areas, Epidemiology & Infection, 129 (2002), 147-153.
doi: 10.1017/S0950268802007148. |
[7] |
C. Bendix and J. D. Lewis,
The enemy within: Phloem-limited pathogens, Molecular Plant Pathology, 19 (2018), 238-254.
doi: 10.1111/mpp.12526. |
[8] |
E. Beretta and Y. Kuang,
Modeling and analysis of a marine bacteriophage infection, Mathematical Biosciences, 149 (1998), 57-76.
doi: 10.1016/S0025-5564(97)10015-3. |
[9] |
E. Beretta and Y. Kuang,
Modeling and analysis of a marine bacteriophage infection with latency period, Nonlinear Analysis. Real World Applications, 2 (2001), 35-74.
doi: 10.1016/S0362-546X(99)00285-0. |
[10] |
E. Beretta and Y. Kuang,
Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM Journal on Mathematical Analysis, 33 (2002), 1144-1165.
doi: 10.1137/S0036141000376086. |
[11] |
P. Bernardo, T. Charles-Dominique, M. Barakat, P. Ortet, E. Fernandez, D. Filloux, P. Hartnady, T. A. Rebelo, S. R. Cousins, F. Mesleard et al., Geometagenomics illuminates the impact of agriculture on the distribution and prevalence of plant viruses at the ecosystem scale, The ISME Journal, 12 (2018), 173-184.
doi: 10.1038/ismej.2017.155. |
[12] |
E. T. Borer, A.-L. Laine and E. W. Seabloom,
A multiscale approach to plant disease using the metacommunity concept, Annual Review of Phytopathology, 54 (2016), 397-418.
doi: 10.1146/annurev-phyto-080615-095959. |
[13] |
J. C. Carrington, K. D. Kasschau, S. K. Mahajan and M. C. Schaad, Cell-to-cell and long-distance transport of viruses in plants., The Plant Cell, 8 (1996), 1669. Google Scholar |
[14] |
R. V. Culshaw, S. Ruan and G. Webb,
A mathematical model of cell-to-cell spread of hiv-1 that includes a time delay, Journal of Mathematical Biology, 46 (2003), 425-444.
doi: 10.1007/s00285-002-0191-5. |
[15] |
C. J. D'Arcy and P. A. Burnett, Barley Yellow Dwarf: 40 Years of Progress, 1995. Google Scholar |
[16] |
V. Eastop, Worldwide importance of aphids as virus vectors, in Aphids as Virus Vectors, Elsevier, 1977, 3–62.
doi: 10.1016/B978-0-12-327550-9.50006-9. |
[17] |
S. Eikenberry, S. Hews, J. D. Nagy and Y. Kuang,
The dynamics of a delay model of hbv infection with logistic hepatocyte growth, Math. Biosc. Eng, 6 (2009), 283-299.
doi: 10.3934/mbe.2009.6.283. |
[18] |
G. F. Gause, The Struggle for Existence: A Classic of Mathematical Biology and Ecology, Courier Dover Publications, 2019. Google Scholar |
[19] |
M. A. Gilchrist, D. Coombs and A. S. Perelson,
Optimizing within-host viral fitness: Infected cell lifespan and virion production rate, Journal of theoretical biology, 229 (2004), 281-288.
doi: 10.1016/j.jtbi.2004.04.015. |
[20] |
C. Gill and J. Chong,
Cytopathological evidence for the division of barley yellow dwarf virus isolates into two subgroups, Virology, 95 (1979), 59-69.
doi: 10.1016/0042-6822(79)90401-X. |
[21] |
S. A. Gourley, Y. Kuang and J. D. Nagy,
Dynamics of a delay differential equation model of hepatitis b virus infection, Journal of Biological Dynamics, 2 (2008), 140-153.
doi: 10.1080/17513750701769873. |
[22] |
Z. Grossman, M. B. Feinberg and W. E. Paul,
Multiple modes of cellular activation and virus transmission in hiv infection: a role for chronically and latently infected cells in sustaining viral replication, Proceedings of the National Academy of Sciences, 95 (1998), 6314-6319.
doi: 10.1073/pnas.95.11.6314. |
[23] |
S. Hews, S. Eikenberry, J. D. Nagy and Y. Kuang,
Rich dynamics of a hepatitis b viral infection model with logistic hepatocyte growth, Journal of Mathematical Biology, 60 (2010), 573-590.
doi: 10.1007/s00285-009-0278-3. |
[24] |
S.-B. Hsu, T.-W. Hwang and Y. Kuang,
Global analysis of the michaelis–menten-type ratio-dependent predator-prey system, Journal of Mathematical Biology, 42 (2001), 489-506.
doi: 10.1007/s002850100079. |
[25] |
M. Jackson and B. M. Chen-Charpentier,
Modeling plant virus propagation with delays, Journal of Computational and Applied Mathematics, 309 (2017), 611-621.
doi: 10.1016/j.cam.2016.04.024. |
[26] |
A. E. Kendig, E. T. Borer, E. N. Boak, T. C. Picard and E. W. Seabloom, Soil nitrogen and phosphorus effects on plant virus density, transmission, and species interactions, URLhttps://doi.org/10.6073/pasta/01e7bf593676a942f262623710acba13. Google Scholar |
[27] |
D. A. Kennedy, V. Dukic and G. Dwyer,
Pathogen growth in insect hosts: Inferring the importance of different mechanisms using stochastic models and response-time data, The American Naturalist, 184 (2014), 407-423.
doi: 10.1086/677308. |
[28] |
Y. Kuang and E. Beretta,
Global qualitative analysis of a ratio-dependent predator–prey system, Journal of Mathematical Biology, 36 (1998), 389-406.
doi: 10.1007/s002850050105. |
[29] |
P. Kumberger, K. Durso-Cain, S. Uprichard, H. Dahari and F. Graw, Accounting for space–quantification of cell-to-cell transmission kinetics using virus dynamics models, Viruses, 10 (2018), 200.
doi: 10.3390/v10040200. |
[30] |
C. Lacroix, E. W. Seabloom and E. T. Borer,
Environmental nutrient supply alters prevalence and weakens competitive interactions among coinfecting viruses, New Phytologist, 204 (2014), 424-433.
doi: 10.1111/nph.12909. |
[31] |
C. Lacroix, E. W. Seabloom and E. T. Borer, Environmental nutrient supply directly alters plant traits but indirectly determines virus growth rate, Frontiers in Microbiology, 8 (2017), 2116.
doi: 10.3389/fmicb.2017.02116. |
[32] |
P. Lefeuvre, D. P. Martin, S. F. Elena, D. N. Shepherd, P. Roumagnac and A. Varsani,
Evolution and ecology of plant viruses, Nature Reviews Microbiology, 17 (2019), 632-644.
doi: 10.1038/s41579-019-0232-3. |
[33] |
R. F. Luck,
Evaluation of natural enemies for biological control: A behavioral approach, Trends in Ecology & Evolution, 5 (1990), 196-199.
doi: 10.1016/0169-5347(90)90210-5. |
[34] |
G. Neofytou, Y. Kyrychko and K. Blyuss,
Mathematical model of plant-virus interactions mediated by rna interference, Journal of Theoretical Biology, 403 (2016), 129-142.
doi: 10.1016/j.jtbi.2016.05.018. |
[35] |
J. C. Ng and K. L. Perry,
Transmission of plant viruses by aphid vectors, Molecular Plant Pathology, 5 (2004), 505-511.
doi: 10.1111/j.1364-3703.2004.00240.x. |
[36] |
M. A. Nowak, S. Bonhoeffer, A. M. Hill, R. Boehme, H. C. Thomas and H. McDade,
Viral dynamics in hepatitis b virus infection, Proceedings of the National Academy of Sciences, 93 (1996), 4398-4402.
doi: 10.1073/pnas.93.9.4398. |
[37] |
B. Pell, A. E. Kendig, E. T. Borer and Y. Kuang,
Modeling nutrient and disease dynamics in a plant-pathogen system 2, Mathematical Biosciences and Engineering, 16 (2019), 234-264.
|
[38] |
M. J. Roossinck and E. R. Bazán,
Symbiosis: Viruses as intimate partners, Annual Review of Virology, 4 (2017), 123-139.
doi: 10.1146/annurev-virology-110615-042323. |
[39] |
M. J. Roossinck, P. Saha, G. B. Wiley, J. Quan, J. D. White, H. Lai, F. Chavarria, G. Shen and B. A. Roe,
Ecogenomics: Using massively parallel pyrosequencing to understand virus ecology, Molecular Ecology, 19 (2010), 81-88.
doi: 10.1111/j.1365-294X.2009.04470.x. |
[40] |
M. L. Rosenzweig,
Paradox of enrichment: Destabilization of exploitation ecosystems in ecological time, Science, 171 (1971), 385-387.
doi: 10.1126/science.171.3969.385. |
[41] |
A. Sigal, J. T. Kim, A. B. Balazs, E. Dekel, A. Mayo, R. Milo and D. Baltimore,
Cell-to-cell spread of hiv permits ongoing replication despite antiretroviral therapy, Nature, 477 (2011), 95-98.
doi: 10.1038/nature10347. |
[42] |
A. L. Vuorinen, J. Kelloniemi and J. P. Valkonen,
Why do viruses need phloem for systemic invasion of plants?, Plant Science, 181 (2011), 355-363.
doi: 10.1016/j.plantsci.2011.06.008. |
[43] |
X. Wang, S. Tang, X. Song and L. Rong,
Mathematical analysis of an hiv latent infection model including both virus-to-cell infection and cell-to-cell transmission, Journal of Biological Dynamics, 11 (2017), 455-483.
doi: 10.1080/17513758.2016.1242784. |
[44] |
Z. Wu, T. Phan, J. Baez, Y. Kuang and E. J. Kostelich,
Predictability and identifiability assessment of models for prostate cancer under androgen suppression therapy, Mathematical Biosciences and Engineering, 16 (2019), 3512-3536.
|
[45] |
Y. Yang, L. Zou and S. Ruan,
Global dynamics of a delayed within-host viral infection model with both virus-to-cell and cell-to-cell transmissions, Mathematical Biosciences, 270 (2015), 183-191.
doi: 10.1016/j.mbs.2015.05.001. |
[46] |
P. Zhong, L. M. Agosto, J. B. Munro and W. Mothes,
Cell-to-cell transmission of viruses, Current Opinion in Virology, 3 (2013), 44-50.
doi: 10.1016/j.coviro.2012.11.004. |
show all references
References:
[1] |
M. Ali, S. Hameed and M. Tahir,
Luteovirus: Insights into pathogenicity, Archives of Virology, 159 (2014), 2853-2860.
doi: 10.1007/s00705-014-2172-6. |
[2] |
R. Antia, B. R. Levin and R. M. May,
Within-host population dynamics and the evolution and maintenance of microparasite virulence, The American Naturalist, 144 (1994), 457-472.
doi: 10.1086/285686. |
[3] |
F. Atkinson and J. Haddock,
Criteria for asymptotic constancy of solutions of functional differential equations, Journal of Mathematical Analysis and Applications, 91 (1983), 410-423.
doi: 10.1016/0022-247X(83)90161-0. |
[4] |
J. Bak, D. J. Newman and D. J. Newman, Complex Analysis, Springer, 2010.
doi: 10.1007/978-1-4419-7288-0. |
[5] |
Y. M. Bar-On, R. Phillips and R. Milo,
The biomass distribution on earth, Proceedings of the National Academy of Sciences, 115 (2018), 6506-6511.
doi: 10.1073/pnas.1711842115. |
[6] |
M. Begon, M. Bennett, R. G. Bowers, N. P. French, S. Hazel and J. Turner,
A clarification of transmission terms in host-microparasite models: numbers, densities and areas, Epidemiology & Infection, 129 (2002), 147-153.
doi: 10.1017/S0950268802007148. |
[7] |
C. Bendix and J. D. Lewis,
The enemy within: Phloem-limited pathogens, Molecular Plant Pathology, 19 (2018), 238-254.
doi: 10.1111/mpp.12526. |
[8] |
E. Beretta and Y. Kuang,
Modeling and analysis of a marine bacteriophage infection, Mathematical Biosciences, 149 (1998), 57-76.
doi: 10.1016/S0025-5564(97)10015-3. |
[9] |
E. Beretta and Y. Kuang,
Modeling and analysis of a marine bacteriophage infection with latency period, Nonlinear Analysis. Real World Applications, 2 (2001), 35-74.
doi: 10.1016/S0362-546X(99)00285-0. |
[10] |
E. Beretta and Y. Kuang,
Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM Journal on Mathematical Analysis, 33 (2002), 1144-1165.
doi: 10.1137/S0036141000376086. |
[11] |
P. Bernardo, T. Charles-Dominique, M. Barakat, P. Ortet, E. Fernandez, D. Filloux, P. Hartnady, T. A. Rebelo, S. R. Cousins, F. Mesleard et al., Geometagenomics illuminates the impact of agriculture on the distribution and prevalence of plant viruses at the ecosystem scale, The ISME Journal, 12 (2018), 173-184.
doi: 10.1038/ismej.2017.155. |
[12] |
E. T. Borer, A.-L. Laine and E. W. Seabloom,
A multiscale approach to plant disease using the metacommunity concept, Annual Review of Phytopathology, 54 (2016), 397-418.
doi: 10.1146/annurev-phyto-080615-095959. |
[13] |
J. C. Carrington, K. D. Kasschau, S. K. Mahajan and M. C. Schaad, Cell-to-cell and long-distance transport of viruses in plants., The Plant Cell, 8 (1996), 1669. Google Scholar |
[14] |
R. V. Culshaw, S. Ruan and G. Webb,
A mathematical model of cell-to-cell spread of hiv-1 that includes a time delay, Journal of Mathematical Biology, 46 (2003), 425-444.
doi: 10.1007/s00285-002-0191-5. |
[15] |
C. J. D'Arcy and P. A. Burnett, Barley Yellow Dwarf: 40 Years of Progress, 1995. Google Scholar |
[16] |
V. Eastop, Worldwide importance of aphids as virus vectors, in Aphids as Virus Vectors, Elsevier, 1977, 3–62.
doi: 10.1016/B978-0-12-327550-9.50006-9. |
[17] |
S. Eikenberry, S. Hews, J. D. Nagy and Y. Kuang,
The dynamics of a delay model of hbv infection with logistic hepatocyte growth, Math. Biosc. Eng, 6 (2009), 283-299.
doi: 10.3934/mbe.2009.6.283. |
[18] |
G. F. Gause, The Struggle for Existence: A Classic of Mathematical Biology and Ecology, Courier Dover Publications, 2019. Google Scholar |
[19] |
M. A. Gilchrist, D. Coombs and A. S. Perelson,
Optimizing within-host viral fitness: Infected cell lifespan and virion production rate, Journal of theoretical biology, 229 (2004), 281-288.
doi: 10.1016/j.jtbi.2004.04.015. |
[20] |
C. Gill and J. Chong,
Cytopathological evidence for the division of barley yellow dwarf virus isolates into two subgroups, Virology, 95 (1979), 59-69.
doi: 10.1016/0042-6822(79)90401-X. |
[21] |
S. A. Gourley, Y. Kuang and J. D. Nagy,
Dynamics of a delay differential equation model of hepatitis b virus infection, Journal of Biological Dynamics, 2 (2008), 140-153.
doi: 10.1080/17513750701769873. |
[22] |
Z. Grossman, M. B. Feinberg and W. E. Paul,
Multiple modes of cellular activation and virus transmission in hiv infection: a role for chronically and latently infected cells in sustaining viral replication, Proceedings of the National Academy of Sciences, 95 (1998), 6314-6319.
doi: 10.1073/pnas.95.11.6314. |
[23] |
S. Hews, S. Eikenberry, J. D. Nagy and Y. Kuang,
Rich dynamics of a hepatitis b viral infection model with logistic hepatocyte growth, Journal of Mathematical Biology, 60 (2010), 573-590.
doi: 10.1007/s00285-009-0278-3. |
[24] |
S.-B. Hsu, T.-W. Hwang and Y. Kuang,
Global analysis of the michaelis–menten-type ratio-dependent predator-prey system, Journal of Mathematical Biology, 42 (2001), 489-506.
doi: 10.1007/s002850100079. |
[25] |
M. Jackson and B. M. Chen-Charpentier,
Modeling plant virus propagation with delays, Journal of Computational and Applied Mathematics, 309 (2017), 611-621.
doi: 10.1016/j.cam.2016.04.024. |
[26] |
A. E. Kendig, E. T. Borer, E. N. Boak, T. C. Picard and E. W. Seabloom, Soil nitrogen and phosphorus effects on plant virus density, transmission, and species interactions, URLhttps://doi.org/10.6073/pasta/01e7bf593676a942f262623710acba13. Google Scholar |
[27] |
D. A. Kennedy, V. Dukic and G. Dwyer,
Pathogen growth in insect hosts: Inferring the importance of different mechanisms using stochastic models and response-time data, The American Naturalist, 184 (2014), 407-423.
doi: 10.1086/677308. |
[28] |
Y. Kuang and E. Beretta,
Global qualitative analysis of a ratio-dependent predator–prey system, Journal of Mathematical Biology, 36 (1998), 389-406.
doi: 10.1007/s002850050105. |
[29] |
P. Kumberger, K. Durso-Cain, S. Uprichard, H. Dahari and F. Graw, Accounting for space–quantification of cell-to-cell transmission kinetics using virus dynamics models, Viruses, 10 (2018), 200.
doi: 10.3390/v10040200. |
[30] |
C. Lacroix, E. W. Seabloom and E. T. Borer,
Environmental nutrient supply alters prevalence and weakens competitive interactions among coinfecting viruses, New Phytologist, 204 (2014), 424-433.
doi: 10.1111/nph.12909. |
[31] |
C. Lacroix, E. W. Seabloom and E. T. Borer, Environmental nutrient supply directly alters plant traits but indirectly determines virus growth rate, Frontiers in Microbiology, 8 (2017), 2116.
doi: 10.3389/fmicb.2017.02116. |
[32] |
P. Lefeuvre, D. P. Martin, S. F. Elena, D. N. Shepherd, P. Roumagnac and A. Varsani,
Evolution and ecology of plant viruses, Nature Reviews Microbiology, 17 (2019), 632-644.
doi: 10.1038/s41579-019-0232-3. |
[33] |
R. F. Luck,
Evaluation of natural enemies for biological control: A behavioral approach, Trends in Ecology & Evolution, 5 (1990), 196-199.
doi: 10.1016/0169-5347(90)90210-5. |
[34] |
G. Neofytou, Y. Kyrychko and K. Blyuss,
Mathematical model of plant-virus interactions mediated by rna interference, Journal of Theoretical Biology, 403 (2016), 129-142.
doi: 10.1016/j.jtbi.2016.05.018. |
[35] |
J. C. Ng and K. L. Perry,
Transmission of plant viruses by aphid vectors, Molecular Plant Pathology, 5 (2004), 505-511.
doi: 10.1111/j.1364-3703.2004.00240.x. |
[36] |
M. A. Nowak, S. Bonhoeffer, A. M. Hill, R. Boehme, H. C. Thomas and H. McDade,
Viral dynamics in hepatitis b virus infection, Proceedings of the National Academy of Sciences, 93 (1996), 4398-4402.
doi: 10.1073/pnas.93.9.4398. |
[37] |
B. Pell, A. E. Kendig, E. T. Borer and Y. Kuang,
Modeling nutrient and disease dynamics in a plant-pathogen system 2, Mathematical Biosciences and Engineering, 16 (2019), 234-264.
|
[38] |
M. J. Roossinck and E. R. Bazán,
Symbiosis: Viruses as intimate partners, Annual Review of Virology, 4 (2017), 123-139.
doi: 10.1146/annurev-virology-110615-042323. |
[39] |
M. J. Roossinck, P. Saha, G. B. Wiley, J. Quan, J. D. White, H. Lai, F. Chavarria, G. Shen and B. A. Roe,
Ecogenomics: Using massively parallel pyrosequencing to understand virus ecology, Molecular Ecology, 19 (2010), 81-88.
doi: 10.1111/j.1365-294X.2009.04470.x. |
[40] |
M. L. Rosenzweig,
Paradox of enrichment: Destabilization of exploitation ecosystems in ecological time, Science, 171 (1971), 385-387.
doi: 10.1126/science.171.3969.385. |
[41] |
A. Sigal, J. T. Kim, A. B. Balazs, E. Dekel, A. Mayo, R. Milo and D. Baltimore,
Cell-to-cell spread of hiv permits ongoing replication despite antiretroviral therapy, Nature, 477 (2011), 95-98.
doi: 10.1038/nature10347. |
[42] |
A. L. Vuorinen, J. Kelloniemi and J. P. Valkonen,
Why do viruses need phloem for systemic invasion of plants?, Plant Science, 181 (2011), 355-363.
doi: 10.1016/j.plantsci.2011.06.008. |
[43] |
X. Wang, S. Tang, X. Song and L. Rong,
Mathematical analysis of an hiv latent infection model including both virus-to-cell infection and cell-to-cell transmission, Journal of Biological Dynamics, 11 (2017), 455-483.
doi: 10.1080/17513758.2016.1242784. |
[44] |
Z. Wu, T. Phan, J. Baez, Y. Kuang and E. J. Kostelich,
Predictability and identifiability assessment of models for prostate cancer under androgen suppression therapy, Mathematical Biosciences and Engineering, 16 (2019), 3512-3536.
|
[45] |
Y. Yang, L. Zou and S. Ruan,
Global dynamics of a delayed within-host viral infection model with both virus-to-cell and cell-to-cell transmissions, Mathematical Biosciences, 270 (2015), 183-191.
doi: 10.1016/j.mbs.2015.05.001. |
[46] |
P. Zhong, L. M. Agosto, J. B. Munro and W. Mothes,
Cell-to-cell transmission of viruses, Current Opinion in Virology, 3 (2013), 44-50.
doi: 10.1016/j.coviro.2012.11.004. |



Parameter | Fitted (CTRL) | Fitted (+N) | Fitted (+P) | Fitted (+NP) | Units |
0.9000 | 0.9000 | 0.9000 | 0.8860 | day |
|
515024 | 719563 | 400294 | 400000 | cells | |
0.5387 | 0.4355 | 0.8925 | 0.6710 | cells virion |
|
65 | 94 | 62 | 80 | virions cell |
|
8.27 | 12.00 | 12.00 | 12.00 | days | |
1.62 | 2.07 | 2.30 | 2.23 | unitless |
Parameter | Fitted (CTRL) | Fitted (+N) | Fitted (+P) | Fitted (+NP) | Units |
0.9000 | 0.9000 | 0.9000 | 0.8860 | day |
|
515024 | 719563 | 400294 | 400000 | cells | |
0.5387 | 0.4355 | 0.8925 | 0.6710 | cells virion |
|
65 | 94 | 62 | 80 | virions cell |
|
8.27 | 12.00 | 12.00 | 12.00 | days | |
1.62 | 2.07 | 2.30 | 2.23 | unitless |
Experiment | control | +N | +P | +NP |
RMSE | 4.27e+6 | 5.97e+6 | 3.66e+6 | 8.96e+6 |
MAPE | 8.03e-1 | 6.35e-1 | 4.10e-1 | 7.14e-1 |
Experiment | control | +N | +P | +NP |
RMSE | 4.27e+6 | 5.97e+6 | 3.66e+6 | 8.96e+6 |
MAPE | 8.03e-1 | 6.35e-1 | 4.10e-1 | 7.14e-1 |
Conditions | Results or question |
1. |
|
2. |
|
3. |
Open question 1: is |
when does a periodic orbit occurs? | |
4. |
(0, 0) is globally asymptotically stable |
Conditions | Results or question |
1. |
|
2. |
|
3. |
Open question 1: is |
when does a periodic orbit occurs? | |
4. |
(0, 0) is globally asymptotically stable |
Parameter | Fitted (CTRL) | Fitted (+N) | Fitted (+P) | Fitted (+NP) | Units |
0.0993 | 0.0100 | 0.8579 | 0.1549 | day |
|
4.0000e+5 | 6.0164e+5 | 4.0038e+5 | 1.0987e+6 | cells | |
2.0273e-6 | 2.8651e-7 | 1.9817e-6 | 1.9188e-6 | cells virion |
|
0.7129 | 0.1001 | 0.1001 | 0.1001 | day |
|
118.2189 | 199.9803 | 60.4637 | 56.2613 | virions cell |
|
9.6880 | 21.0000 | 4.9741 | 7.4480 | days |
Parameter | Fitted (CTRL) | Fitted (+N) | Fitted (+P) | Fitted (+NP) | Units |
0.0993 | 0.0100 | 0.8579 | 0.1549 | day |
|
4.0000e+5 | 6.0164e+5 | 4.0038e+5 | 1.0987e+6 | cells | |
2.0273e-6 | 2.8651e-7 | 1.9817e-6 | 1.9188e-6 | cells virion |
|
0.7129 | 0.1001 | 0.1001 | 0.1001 | day |
|
118.2189 | 199.9803 | 60.4637 | 56.2613 | virions cell |
|
9.6880 | 21.0000 | 4.9741 | 7.4480 | days |
[1] |
Lin Niu, Yi Wang, Xizhuang Xie. Carrying simplex in the Lotka-Volterra competition model with seasonal succession with applications. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021014 |
[2] |
Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021013 |
[3] |
Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020432 |
[4] |
Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392 |
[5] |
Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362 |
[6] |
Rajendra K C Khatri, Brendan J Caseria, Yifei Lou, Guanghua Xiao, Yan Cao. Automatic extraction of cell nuclei using dilated convolutional network. Inverse Problems & Imaging, 2021, 15 (1) : 27-40. doi: 10.3934/ipi.2020049 |
[7] |
Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305 |
[8] |
Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391 |
[9] |
Bilel Elbetch, Tounsia Benzekri, Daniel Massart, Tewfik Sari. The multi-patch logistic equation. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021025 |
[10] |
H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020433 |
[11] |
Jean-Paul Chehab. Damping, stabilization, and numerical filtering for the modeling and the simulation of time dependent PDEs. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021002 |
[12] |
Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074 |
[13] |
Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020457 |
[14] |
Wenbin Lv, Qingyuan Wang. Global existence for a class of Keller-Segel models with signal-dependent motility and general logistic term. Evolution Equations & Control Theory, 2021, 10 (1) : 25-36. doi: 10.3934/eect.2020040 |
[15] |
Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252 |
[16] |
Huijuan Song, Bei Hu, Zejia Wang. Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 667-691. doi: 10.3934/dcdsb.2020084 |
[17] |
Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321 |
[18] |
Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020107 |
[19] |
John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3789-3812. doi: 10.3934/dcds.2020044 |
[20] |
Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]