
-
Previous Article
Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core
- DCDS-B Home
- This Issue
-
Next Article
The $ P^* $ rule in the stochastic Holt-Lawton model of apparent competition
Efficient and accurate sav schemes for the generalized Zakharov systems
1. | Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA |
2. | School of Mathematical Sciences, Fujian Provincial Key Laboratory of Mathematical Modeling, and High-Performance Scientific Computing, Xiamen University, Xiamen 361005, China |
We develop in this paper efficient and accurate numerical schemes based on the scalar auxiliary variable (SAV) approach for the generalized Zakharov system and generalized vector Zakharov system. These schemes are second-order in time, linear, unconditionally stable, only require solving linear systems with constant coefficients at each time step, and preserve exactly a modified Hamiltonian. Ample numerical results are presented to demonstrate the accuracy and robustness of the schemes.
References:
[1] |
K. Amaratunga, J. R. Williams, S. Qian and J. Weiss,
Wavelet-galerkin solutions for one-dimensional partial differential equations, International Journal for Numerical Methods in Engineering, 37 (1994), 2703-2716.
doi: 10.1002/nme.1620371602. |
[2] |
X. Antoine, J. Shen and Q. Tang, An explicit scalar auxiliary variable pseudospectral scheme for the dynamics of nonlinear schrödinger and gross-pitaevskii equations, Preprint. Google Scholar |
[3] |
W. Bao and C. Su, A uniformly and optimally accurate method for the zakharov system in the subsonic limit regime, SIAM Journal on Scientific Computing, 40 (2018), A929-A953.
doi: 10.1137/17M1113333. |
[4] |
W. Bao and F. Sun,
Efficient and stable numerical methods for the generalized and vector zakharov system, SIAM Journal on Scientific Computing, 26 (2005), 1057-1088.
doi: 10.1137/030600941. |
[5] |
J. P. Boyd, Chebyshev and Fourier Spectral Methods, Courier Corporation, 2001. |
[6] |
W. Cai, C. Jiang, Y. Wang and Y. Song,
Structure-preserving algorithms for the two-dimensional sine-gordon equation with neumann boundary conditions, Journal of Computational Physics, 395 (2019), 166-185.
doi: 10.1016/j.jcp.2019.05.048. |
[7] |
Q. Chang and H. Jiang,
A conservative difference scheme for the zakharov equations, Journal of Computational Physics, 113 (1994), 309-319.
doi: 10.1006/jcph.1994.1138. |
[8] |
R. T. Glassey,
Convergence of an energy-preserving scheme for the zakharov equations in one space dimension, Mathematics of Computation, 58 (1992), 83-102.
doi: 10.1090/S0025-5718-1992-1106968-6. |
[9] |
H. Hadouaj, B. A. Malomed and G. A. Maugin,
Dynamics of a soliton in a generalized zakharov system with dissipation, Physical Review A, 44 (1991), 3925-3931.
doi: 10.1103/PhysRevA.44.3925. |
[10] |
H. Hadouaj, B. A. Malomed and G. A. Maugin,
Soliton-soliton collisions in a generalized zakharov system, Physical Review A, 44 (1991), 3932-3940.
doi: 10.1103/PhysRevA.44.3932. |
[11] |
P. K. Newton,
Wave interactions in the singular zakharov system, Journal of Mathematical Physics, 32 (1991), 431-440.
doi: 10.1063/1.529430. |
[12] |
G. L. Payne, D. R. Nicholson and R. M. Downie,
Numerical solution of the zakharov equations, Journal of Computational Physics, 50 (1983), 482-498.
doi: 10.1016/0021-9991(83)90107-9. |
[13] |
B. F. Sanders, N. D. Katopodes and J. P. Boyd, Spectral modeling of nonlinear dispersive waves, Journal of Hydraulic Engineering, 124 (1998), 2-12. Google Scholar |
[14] |
J. Shen, T. Tang and L.-L. Wang, Spectral Methods: Algorithms, Analysis and Applications, volume 41, Springer Science & Business Media, 2011.
doi: 10.1007/978-3-540-71041-7. |
[15] |
J. Shen, J. Xu and J. Yang,
The scalar auxiliary variable (sav) approach for gradient flows, Journal of Computational Physics, 353 (2018), 407-416.
doi: 10.1016/j.jcp.2017.10.021. |
[16] |
J. Shen, J. Xu and J. Yang,
A new class of efficient and robust energy stable schemes for gradient flows, SIAM Review, 61 (2019), 474-506.
doi: 10.1137/17M1150153. |
[17] |
C. Sulem and P. L. Sulem,
Regularity properties for the equations of langmuir turbulence, Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie A, 289 (1979), 173-176.
|
[18] |
G. W. Wei,
Discrete singular convolution for the solution of the fokker-planck equation, The Journal of Chemical Physics, 110 (1999), 8930-8942.
doi: 10.1063/1.478812. |
[19] |
V. E. Zakharov et al., Collapse of langmuir waves, Sov. Phys. JETP, 35 (1972), 908-914. Google Scholar |
show all references
References:
[1] |
K. Amaratunga, J. R. Williams, S. Qian and J. Weiss,
Wavelet-galerkin solutions for one-dimensional partial differential equations, International Journal for Numerical Methods in Engineering, 37 (1994), 2703-2716.
doi: 10.1002/nme.1620371602. |
[2] |
X. Antoine, J. Shen and Q. Tang, An explicit scalar auxiliary variable pseudospectral scheme for the dynamics of nonlinear schrödinger and gross-pitaevskii equations, Preprint. Google Scholar |
[3] |
W. Bao and C. Su, A uniformly and optimally accurate method for the zakharov system in the subsonic limit regime, SIAM Journal on Scientific Computing, 40 (2018), A929-A953.
doi: 10.1137/17M1113333. |
[4] |
W. Bao and F. Sun,
Efficient and stable numerical methods for the generalized and vector zakharov system, SIAM Journal on Scientific Computing, 26 (2005), 1057-1088.
doi: 10.1137/030600941. |
[5] |
J. P. Boyd, Chebyshev and Fourier Spectral Methods, Courier Corporation, 2001. |
[6] |
W. Cai, C. Jiang, Y. Wang and Y. Song,
Structure-preserving algorithms for the two-dimensional sine-gordon equation with neumann boundary conditions, Journal of Computational Physics, 395 (2019), 166-185.
doi: 10.1016/j.jcp.2019.05.048. |
[7] |
Q. Chang and H. Jiang,
A conservative difference scheme for the zakharov equations, Journal of Computational Physics, 113 (1994), 309-319.
doi: 10.1006/jcph.1994.1138. |
[8] |
R. T. Glassey,
Convergence of an energy-preserving scheme for the zakharov equations in one space dimension, Mathematics of Computation, 58 (1992), 83-102.
doi: 10.1090/S0025-5718-1992-1106968-6. |
[9] |
H. Hadouaj, B. A. Malomed and G. A. Maugin,
Dynamics of a soliton in a generalized zakharov system with dissipation, Physical Review A, 44 (1991), 3925-3931.
doi: 10.1103/PhysRevA.44.3925. |
[10] |
H. Hadouaj, B. A. Malomed and G. A. Maugin,
Soliton-soliton collisions in a generalized zakharov system, Physical Review A, 44 (1991), 3932-3940.
doi: 10.1103/PhysRevA.44.3932. |
[11] |
P. K. Newton,
Wave interactions in the singular zakharov system, Journal of Mathematical Physics, 32 (1991), 431-440.
doi: 10.1063/1.529430. |
[12] |
G. L. Payne, D. R. Nicholson and R. M. Downie,
Numerical solution of the zakharov equations, Journal of Computational Physics, 50 (1983), 482-498.
doi: 10.1016/0021-9991(83)90107-9. |
[13] |
B. F. Sanders, N. D. Katopodes and J. P. Boyd, Spectral modeling of nonlinear dispersive waves, Journal of Hydraulic Engineering, 124 (1998), 2-12. Google Scholar |
[14] |
J. Shen, T. Tang and L.-L. Wang, Spectral Methods: Algorithms, Analysis and Applications, volume 41, Springer Science & Business Media, 2011.
doi: 10.1007/978-3-540-71041-7. |
[15] |
J. Shen, J. Xu and J. Yang,
The scalar auxiliary variable (sav) approach for gradient flows, Journal of Computational Physics, 353 (2018), 407-416.
doi: 10.1016/j.jcp.2017.10.021. |
[16] |
J. Shen, J. Xu and J. Yang,
A new class of efficient and robust energy stable schemes for gradient flows, SIAM Review, 61 (2019), 474-506.
doi: 10.1137/17M1150153. |
[17] |
C. Sulem and P. L. Sulem,
Regularity properties for the equations of langmuir turbulence, Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie A, 289 (1979), 173-176.
|
[18] |
G. W. Wei,
Discrete singular convolution for the solution of the fokker-planck equation, The Journal of Chemical Physics, 110 (1999), 8930-8942.
doi: 10.1063/1.478812. |
[19] |
V. E. Zakharov et al., Collapse of langmuir waves, Sov. Phys. JETP, 35 (1972), 908-914. Google Scholar |










1.90E(-3) | - | 1.60E(-3) | - | |
4.82E(-4) | 1.98 | 3.94E(-4) | 1.98 | |
1.21E(-4) | 1.99 | 9.93E(-5) | 1.99 | |
3.04E(-5) | 2.00 | 2.49E(-5) | 2.00 | |
7.61E(-6) | 2.00 | 6.23E(-6) | 2.00 | |
1.90E(-6) | 2.00 | 1.56E(-6) | 2.00 | |
4.76E(-7) | 2.00 | 3.93E(-7) | 1.99 | |
1.21E(-7) | 1.97 | 1.08E(-7) | 1.87 |
1.90E(-3) | - | 1.60E(-3) | - | |
4.82E(-4) | 1.98 | 3.94E(-4) | 1.98 | |
1.21E(-4) | 1.99 | 9.93E(-5) | 1.99 | |
3.04E(-5) | 2.00 | 2.49E(-5) | 2.00 | |
7.61E(-6) | 2.00 | 6.23E(-6) | 2.00 | |
1.90E(-6) | 2.00 | 1.56E(-6) | 2.00 | |
4.76E(-7) | 2.00 | 3.93E(-7) | 1.99 | |
1.21E(-7) | 1.97 | 1.08E(-7) | 1.87 |
32 | 64 | 128 | 256 | |
5.40E(-1) | 7.84E(-2) | 1.91E(-4) | 8.88E(-7) | |
2.64E(-1) | 1.23E(-1) | 1.10E(-3) | 5.19E(-6) |
32 | 64 | 128 | 256 | |
5.40E(-1) | 7.84E(-2) | 1.91E(-4) | 8.88E(-7) | |
2.64E(-1) | 1.23E(-1) | 1.10E(-3) | 5.19E(-6) |
1.50E(-3) | - | 2.10E(-3) | - | 2.00E(-3) | - | |
1.69E(-4) | 3.14 | 4.68E(-4) | 2.16 | 2.26E(-4) | 3.10 | |
2.05E(-5) | 3.04 | 1.12E(-4) | 2.07 | 2.90E(-5) | 3.02 | |
2.53E(-6) | 3.02 | 2.73E(-5) | 2.03 | 3.60E(-6) | 3.01 | |
3.14E(-7) | 3.01 | 6.74E(-6) | 2.02 | 4.49E(-7) | 3.00 | |
3.91E(-8) | 3.01 | 1.68E(-6) | 2.01 | 5.61E(-8) | 3.00 | |
4.88E(-9) | 3.00 | 4.18E(-7) | 2.00 | 7.09E(-9) | 2.98 | |
6.09E(-10) | 3.00 | 1.05E(-7) | 1.99 | 1.18E(-9) | 2.58 |
1.50E(-3) | - | 2.10E(-3) | - | 2.00E(-3) | - | |
1.69E(-4) | 3.14 | 4.68E(-4) | 2.16 | 2.26E(-4) | 3.10 | |
2.05E(-5) | 3.04 | 1.12E(-4) | 2.07 | 2.90E(-5) | 3.02 | |
2.53E(-6) | 3.02 | 2.73E(-5) | 2.03 | 3.60E(-6) | 3.01 | |
3.14E(-7) | 3.01 | 6.74E(-6) | 2.02 | 4.49E(-7) | 3.00 | |
3.91E(-8) | 3.01 | 1.68E(-6) | 2.01 | 5.61E(-8) | 3.00 | |
4.88E(-9) | 3.00 | 4.18E(-7) | 2.00 | 7.09E(-9) | 2.98 | |
6.09E(-10) | 3.00 | 1.05E(-7) | 1.99 | 1.18E(-9) | 2.58 |
[1] |
Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292 |
[2] |
Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315 |
[3] |
Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003 |
[4] |
Kengo Nakai, Yoshitaka Saiki. Machine-learning construction of a model for a macroscopic fluid variable using the delay-coordinate of a scalar observable. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1079-1092. doi: 10.3934/dcdss.2020352 |
[5] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
[6] |
Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020400 |
[7] |
Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021002 |
[8] |
Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020353 |
[9] |
Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002 |
[10] |
Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301 |
[11] |
Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291 |
[12] |
Michael Winkler, Christian Stinner. Refined regularity and stabilization properties in a degenerate haptotaxis system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4039-4058. doi: 10.3934/dcds.2020030 |
[13] |
Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036 |
[14] |
Peter Giesl, Sigurdur Hafstein. System specific triangulations for the construction of CPA Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020378 |
[15] |
Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003 |
[16] |
Chao Xing, Zhigang Pan, Quan Wang. Stabilities and dynamic transitions of the Fitzhugh-Nagumo system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 775-794. doi: 10.3934/dcdsb.2020134 |
[17] |
Marcos C. Mota, Regilene D. S. Oliveira. Dynamic aspects of Sprott BC chaotic system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1653-1673. doi: 10.3934/dcdsb.2020177 |
[18] |
Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020321 |
[19] |
Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020045 |
[20] |
Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020049 |
2019 Impact Factor: 1.27
Tools
Article outline
Figures and Tables
[Back to Top]