• Previous Article
    Impulses in driving semigroups of nonautonomous dynamical systems: Application to cascade systems
  • DCDS-B Home
  • This Issue
  • Next Article
    On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit
doi: 10.3934/dcdsb.2020268

On the reducibility of a class of almost periodic Hamiltonian systems

a. 

School of Mathematics and Statistics, Xuzhou Institute of Technology, Xuzhou, 221111, China

b. 

College of Mathematics, Southeast University, Nanjing, 210096, China

Received  October 2019 Revised  July 2020 Published  September 2020

Fund Project: The authors are supported by NSFC grant 11526177 and the Natural Science Foundations for Colleges and Universities in Jiangsu Province grant 18KJB110029

In this paper we consider the following linear almost periodic hamiltonian system
$ \dot{x} = (A+\varepsilon Q(t, \varepsilon))x, \; x\in R^{2}, $
where
$ A $
is a constant matrix with different eigenvalues, and
$ Q(t, \varepsilon) $
is analytic almost periodic with respect to
$ t $
and analytic with respect to
$ \varepsilon $
. Without any non-degeneracy condition, we prove that the linear hamiltonian system is reducible for most of sufficiently small parameter
$ \varepsilon $
by an almost periodic symplectic mapping.
Citation: Jia Li, Junxiang Xu. On the reducibility of a class of almost periodic Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020268
References:
[1]

N. N. Bogoljubov, J. A. Mitropoliski and A. M. Samoilenko, Methods of accelerated convergence in nonlinear mechanics, Springer-Verlag, New York, 1976.  Google Scholar

[2]

L. H. Eliasson, Floquent solutions for the one-dimensional quasi-periodic Schrödinger equation, Commun. Math. Phys., 146 (1992), 447–482. doi: 10.1007/BF02097013.  Google Scholar

[3]

H.-L. Her and J. You, Full measure reducibility for generic one-parameter family of quasi-periodic linear systems, J. Dyn. Differ. Equ., 20 (2008), 831–866. doi: 10.1007/s10884-008-9113-6.  Google Scholar

[4]

R. A. Johnson and G. R. Sell, Smoothness of spectral subbundles and reducibility of quasiperodic linear differential systems, J. Dyn. Differ. Equ., 41 (1981), 262–288. doi: 10.1016/0022-0396(81)90062-0.  Google Scholar

[5]

A. Jorba and C. Simó, On the reducibility of linear differential equations with quasiperiodic coefficients, J. Differ. Equations, 98 (1992), 111–124. doi: 10.1016/0022-0396(92)90107-X.  Google Scholar

[6]

A. Jorba and C. Simó, On quasi-periodic perturbations of elliptic equilibrium points, SIAM J. Math. Anal., 27 (1996), 1704–1737. doi: 10.1137/S0036141094276913.  Google Scholar

[7]

J. Li and C. Zhu, On the reducibility of a class of finitely differentiable quasi-periodic linear systems, J. Math. Anal. Appl., 413 (2014), 69–83. doi: 10.1016/j.jmaa.2013.10.077.  Google Scholar

[8]

J. Li, C. Zhu and S. Chen, On the reducibility of a class of quasi-periodic Hamiltonian systems with small perturbation parameter near the equilibrium, Qual. Theory Dyn. Syst., 16 (2017), 127–147. doi: 10.1007/s12346-015-0164-x.  Google Scholar

[9]

J. Pöschel, Small divisors with spatial structure in infinite dimensional Hamiltonian systems, Commun. Math. Phys., 127 (1990), 351–393. doi: 10.1007/BF02096763.  Google Scholar

[10]

H. Rüssmann, Convergent transformations into a normal form in analytic Hamiltonian systems with two degrees of freedom on the zero energy surface near degenerate elliptic singularities, Ergodic Theor. Dyn. Syst., 24 (2004), 1787–1832. doi: 10.1017/S0143385703000774.  Google Scholar

[11]

X. Wang and J. Xu, On the reducibility of a class of nonlinear quasi-periodic system with small perturbation parameter near zero equilibrium point, Nonlinear Anal., 69 (2008), 2318–2329. doi: 10.1016/j.na.2007.08.016.  Google Scholar

[12]

H. Whitney, Analytical extensions of differentiable functions defined in closed sets, Trans. A. M. S., 36 (1934), 63–89. doi: 10.1090/S0002-9947-1934-1501735-3.  Google Scholar

[13]

J. Xu and J. You, On reducibility of linear differential equations with almost-periodic coefficients, Chinese Ann. Math. A(in Chinese), 17 (1996), 607–616.  Google Scholar

[14]

J. Xu, On the reducibility of a class of linear differential equations with quasiperiodic coefficients, Mathematika, 46 (1999), 443–451. doi: 10.1112/S0025579300007907.  Google Scholar

[15]

J. Xu and X. Lu, On the reducibility of two-dimensional linear quasi-periodic systems with small parameter, Ergodic Theor. Dyn. Syst., 35 (2015), 2334–2352. doi: 10.1017/etds.2014.31.  Google Scholar

[16]

J. Xu, K. Wang and M. Zhu, On the reducibility of 2-dimensional linear quasi-periodic systems with small parameters, P. Am. Math. Soc., 144 (2016), 4793–4805. doi: 10.1090/proc/13088.  Google Scholar

[17]

L. Zhang and J. Xu, Persistence of invariant tori in Hamiltonian systems with two-degree of freedom, J. Math. Anal. Appl., 338 (2008), 793-802. doi: 10.1016/j.jmaa.2007.05.052.  Google Scholar

show all references

References:
[1]

N. N. Bogoljubov, J. A. Mitropoliski and A. M. Samoilenko, Methods of accelerated convergence in nonlinear mechanics, Springer-Verlag, New York, 1976.  Google Scholar

[2]

L. H. Eliasson, Floquent solutions for the one-dimensional quasi-periodic Schrödinger equation, Commun. Math. Phys., 146 (1992), 447–482. doi: 10.1007/BF02097013.  Google Scholar

[3]

H.-L. Her and J. You, Full measure reducibility for generic one-parameter family of quasi-periodic linear systems, J. Dyn. Differ. Equ., 20 (2008), 831–866. doi: 10.1007/s10884-008-9113-6.  Google Scholar

[4]

R. A. Johnson and G. R. Sell, Smoothness of spectral subbundles and reducibility of quasiperodic linear differential systems, J. Dyn. Differ. Equ., 41 (1981), 262–288. doi: 10.1016/0022-0396(81)90062-0.  Google Scholar

[5]

A. Jorba and C. Simó, On the reducibility of linear differential equations with quasiperiodic coefficients, J. Differ. Equations, 98 (1992), 111–124. doi: 10.1016/0022-0396(92)90107-X.  Google Scholar

[6]

A. Jorba and C. Simó, On quasi-periodic perturbations of elliptic equilibrium points, SIAM J. Math. Anal., 27 (1996), 1704–1737. doi: 10.1137/S0036141094276913.  Google Scholar

[7]

J. Li and C. Zhu, On the reducibility of a class of finitely differentiable quasi-periodic linear systems, J. Math. Anal. Appl., 413 (2014), 69–83. doi: 10.1016/j.jmaa.2013.10.077.  Google Scholar

[8]

J. Li, C. Zhu and S. Chen, On the reducibility of a class of quasi-periodic Hamiltonian systems with small perturbation parameter near the equilibrium, Qual. Theory Dyn. Syst., 16 (2017), 127–147. doi: 10.1007/s12346-015-0164-x.  Google Scholar

[9]

J. Pöschel, Small divisors with spatial structure in infinite dimensional Hamiltonian systems, Commun. Math. Phys., 127 (1990), 351–393. doi: 10.1007/BF02096763.  Google Scholar

[10]

H. Rüssmann, Convergent transformations into a normal form in analytic Hamiltonian systems with two degrees of freedom on the zero energy surface near degenerate elliptic singularities, Ergodic Theor. Dyn. Syst., 24 (2004), 1787–1832. doi: 10.1017/S0143385703000774.  Google Scholar

[11]

X. Wang and J. Xu, On the reducibility of a class of nonlinear quasi-periodic system with small perturbation parameter near zero equilibrium point, Nonlinear Anal., 69 (2008), 2318–2329. doi: 10.1016/j.na.2007.08.016.  Google Scholar

[12]

H. Whitney, Analytical extensions of differentiable functions defined in closed sets, Trans. A. M. S., 36 (1934), 63–89. doi: 10.1090/S0002-9947-1934-1501735-3.  Google Scholar

[13]

J. Xu and J. You, On reducibility of linear differential equations with almost-periodic coefficients, Chinese Ann. Math. A(in Chinese), 17 (1996), 607–616.  Google Scholar

[14]

J. Xu, On the reducibility of a class of linear differential equations with quasiperiodic coefficients, Mathematika, 46 (1999), 443–451. doi: 10.1112/S0025579300007907.  Google Scholar

[15]

J. Xu and X. Lu, On the reducibility of two-dimensional linear quasi-periodic systems with small parameter, Ergodic Theor. Dyn. Syst., 35 (2015), 2334–2352. doi: 10.1017/etds.2014.31.  Google Scholar

[16]

J. Xu, K. Wang and M. Zhu, On the reducibility of 2-dimensional linear quasi-periodic systems with small parameters, P. Am. Math. Soc., 144 (2016), 4793–4805. doi: 10.1090/proc/13088.  Google Scholar

[17]

L. Zhang and J. Xu, Persistence of invariant tori in Hamiltonian systems with two-degree of freedom, J. Math. Anal. Appl., 338 (2008), 793-802. doi: 10.1016/j.jmaa.2007.05.052.  Google Scholar

[1]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[2]

Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021026

[3]

Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127

[4]

Amira M. Boughoufala, Ahmed Y. Abdallah. Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1549-1563. doi: 10.3934/dcdsb.2020172

[5]

Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176

[6]

Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087

[7]

Yongjie Wang, Nan Gao. Some properties for almost cellular algebras. Electronic Research Archive, 2021, 29 (1) : 1681-1689. doi: 10.3934/era.2020086

[8]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020405

[9]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020400

[10]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[11]

Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020406

[12]

Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2021001

[13]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[14]

Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054

[15]

Juhua Shi, Feida Jiang. The degenerate Monge-Ampère equations with the Neumann condition. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020297

[16]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[17]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020407

[18]

Zheng Han, Daoyuan Fang. Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020287

[19]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[20]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (29)
  • HTML views (146)
  • Cited by (0)

Other articles
by authors

[Back to Top]