
-
Previous Article
Combined therapy for treating solid tumors with chemotherapy and angiogenic inhibitors
- DCDS-B Home
- This Issue
-
Next Article
Traveling wave solutions of a free boundary problem with latent heat effect
Complex dynamics in a quasi-periodic plasma perturbations model
1. | School of Applied Mathematics, Nanjing University of Finance & Economics, 210023 Nanjing, China |
2. | School of Mathematics, Jilin Univesity, 130012 Changchun, China |
In this paper, the complex dynamics of a quasi-periodic plasma perturbations (QPP) model, which governs the interplay between a driver associated with pressure gradient and relaxation of instability due to magnetic field perturbations in Tokamaks, are studied. The model consists of three coupled ordinary differential equations (ODEs) and contains three parameters. This paper consists of three parts: (1) We study the stability and bifurcations of the QPP model, which gives the theoretical interpretation of various types of oscillations observed in [Phys. Plasmas, 18(2011):1-7]. In particular, assuming that there exists a finite time lag $ \tau $ between the plasma pressure gradient and the speed of the magnetic field, we also study the delay effect in the QPP model from the point of view of Hopf bifurcation. (2) We provide some numerical indices for identifying chaotic properties of the QPP system, which shows that the QPP model has chaotic behaviors for a wide range of parameters. Then we prove that the QPP model is not rationally integrable in an extended Liouville sense for almost all parameter values, which may help us distinguish values of parameters for which the QPP model is integrable. (3) To understand the asymptotic behavior of the orbits for the QPP model, we also provide a complete description of its dynamical behavior at infinity by the Poincaré compactification method. Our results show that the input power $ h $ and the relaxation of the instability $ \delta $ do not affect the global dynamics at infinity of the QPP model and the heat diffusion coefficient $ \eta $ just yield quantitative, but not qualitative changes for the global dynamics at infinity of the QPP model.
References:
[1] |
R. Balescu, M. Vlad and F. Spineanu, Tokamap: A model of a partially stochastic toroidal magnetic field, In Chaos, Kinetics and Nonlinear Dynamics in Fluids and Plasmas (Carry-Le Rouet, 1997), volume 511 of Lecture Notes in Phys., pages 243-261. Springer, Berlin, 1998. |
[2] |
P. J. Morrison,
Magnetic field lines, Hamiltonian dynamics, and nontwist systems, Phys. Plasmas, 7 (2000), 2279-2289.
doi: 10.1063/1.874062. |
[3] |
B. Shi, Magnetic Confinement Fusion: Principles and Practices, Beijing, Atomic Energy Press (in Chinese), 1999. Google Scholar |
[4] |
Zohm and Hartmut, The physics of edge localized modes (elms) and their role in power and particle exhaust, Plasma Physics & Controlled Fusion, 38 (1996), 1213-1223. Google Scholar |
[5] |
H. Natiq, S. Banerjee, A. P. Misra and M. R. M. Said,
Degenerating the butterfly attractor in a plasma perturbation model using nonlinear controllers, Chaos Solitons Fractals, 122 (2019), 58-68.
doi: 10.1016/j.chaos.2019.03.009. |
[6] |
C. Kieu, Q. Wang and D. Yan, Dynamical transitions of the quasi-periodic plasma model, Nonlinear Dyn, 96 (2019), 323-338.
doi: 10.1007/s11071-019-04792-2. |
[7] |
D. Constantinescu, O. Dumbrajs, V. Igochine, K. Lackner, H. Zohm and A. U. Team, Bifurcations and fast-slow dynamics in a low-dimensional model for quasi-periodic plasma perturbations, Romanian Reports in Physics, 67 (2015), 1049-1060. Google Scholar |
[8] |
D. Constantinescu, O. Dumbrajs, V. Igochine, K. Lackner, R. Meyer-Spasche and H. Zohm, A low-dimensional model system for quasi-periodic plasma perturbations, Physics of Plasmas, 18 (2011), 062307.
doi: 10.1063/1.3600209. |
[9] |
A. A. Elsadany, Am r Elsonbaty and H. N. Agiza,
Qualitative dynamical analysis of chaotic plasma perturbations model, Communications in Nonlinear Science and Numerical Simulation, 59 (2018), 409-423.
doi: 10.1016/j.cnsns.2017.11.020. |
[10] |
E. A. González Velasco,
Generic properties of polynomial vector fields at infinity, Transactions of the American Mathematical Society, 143 (1969), 201-222.
doi: 10.1090/S0002-9947-1969-0252788-8. |
[11] |
A. Cima and J. Llibre,
Bounded polynomial vector fields, Transactions of the American Mathematical Society, 318 (1990), 557-579.
doi: 10.1090/S0002-9947-1990-0998352-5. |
[12] |
M. R. A. Gouveia, M. Messias and C. Pessoa,
Bifurcations at infinity, invariant algebraic surfaces, homoclinic and heteroclinic orbits and centers of a new Lorenz-like chaotic system, Nonlinear Dynamics, 84 (2016), 703-713.
doi: 10.1007/s11071-015-2520-4. |
[13] |
Y. Liu,
Dynamics at infinity and the existence of singularly degenerate heteroclinic cycles in the conjugate Lorenz-type system, Nonlinear Analysis Real World Applications, 13 (2012), 2466-2475.
doi: 10.1016/j.nonrwa.2012.02.011. |
[14] |
G. Meinsma,
Elementary proof of the Routh-Hurwitz test, Systems & Control Letters, 25 (1995), 237-242.
doi: 10.1016/0167-6911(94)00089-E. |
[15] |
J. Hale, Theory of Functional Differential Equations, Second edition, 1977. Applied Mathematical Sciences, Vol. 3. |
[16] |
E. Beretta and Y. Kuang,
Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM Journal on Mathematical Analysis, 33 (2002), 1144-1165.
doi: 10.1137/S0036141000376086. |
[17] |
X. Sun, Y. Pei and B. Qin, Global existence and uniqueness of periodic waves in a population model with density-dependent migrations and Allee effect, International Journal of Bifurcation & Chaos, 27 (2017), 1750192, 10pp.
doi: 10.1142/S0218127417501929. |
[18] |
X. Sun and Y. Pei,
Periodic traveling waves in a generalized BBM equation with weak backward diffusion and dissipation terms, Discrete & Continuous Dynamical Systems-B, 24 (2019), 965-987.
doi: 10.3934/dcdsb.2018341. |
[19] |
X. Sun and Y. Pei,
Exact bound on the number of zeros of Abelian integrals for two hyper-elliptic Hamiltonian systems of degree 4, Journal of Differential Equations, 267 (2019), 7369-7384.
doi: 10.1016/j.jde.2019.07.023. |
[20] |
N. Fenichel,
Geometric singular perturbation theory for ordinary differential equations, Journal of Differential Equations, 31 (1979), 53-98.
doi: 10.1016/0022-0396(79)90152-9. |
[21] |
J.-M. Ginoux, J. Llibre and K. Tchizawa, Canards existence in the hindmarsh-rose model, Mathematical Modelling Of Natural Phenomena, 14 (2019), Paper No. 409, 21 pp.
doi: 10.1051/mmnp/2019012. |
[22] |
A. L. Shil'nikov,
On bifurcations of the Lorenz attractor in the Shimizu-Morioka model, Physica D: Nonlinear Phenomena, 62 (1993), 338-346.
doi: 10.1016/0167-2789(93)90292-9. |
[23] |
J. J. Morales Ruiz, Differential Galois Theory and Non-Integrability of Hamiltonian Systems, Progress in Mathematics, 179. Birkhäuser Verlag, Basel, 1999.
doi: 10.1007/978-3-0348-8718-2. |
[24] |
M. Ayoul and N. T. Zung,
Galoisian obstructions to non-Hamiltonian integrability, Comptes Rendus Mathematique, 348 (2010), 1323-1326.
doi: 10.1016/j.crma.2010.10.024. |
[25] |
O. I. Bogoyavlenskij,
Extended integrability and bi-Hamiltonian systems, Communications in Mathematical Physics, 196 (1998), 19-51.
doi: 10.1007/s002200050412. |
[26] |
K. Huang, S. Shi and W. Li,
Meromorphic and formal first integrals for the Lorenz system, Journal of Nonlinear Mathematical Physics, 25 (2018), 106-121.
doi: 10.1080/14029251.2018.1440745. |
[27] |
K. Huang, S. Shi and Z. Xu, Integrable deformations, bi-Hamiltonian structures and nonintegrability of a generalized Rikitake system, International Journal of Geometric Methods in Modern Physics, 16 (2019), 1950059, 17pp.
doi: 10.1142/S0219887819500592. |
[28] |
K. Huang, S. Shi and W. Li,
Kovalevskaya exponents, weak painlevé property and integrability for quasi-homogeneous differential systems, Regular & Chaotic Dynamics, 25 (2020), 295-312.
doi: 10.1134/S1560354720030053. |
[29] |
K. Yagasaki,
Nonintegrability of the unfolding of the Fold-Hopf bifurcation, Nonlinearity, 31 (2018), 341-350.
doi: 10.1088/1361-6544/aa92e8. |
[30] |
K. Huang, S. Shi and W. Li, Integrability analysis of the shimizu-morioka system, Communications in Nonlinear Science and Numerical Simulation, 84 (2020), 105101, 12pp.
doi: 10.1016/j.cnsns.2019.105101. |
[31] |
J. J. Morales-Ruiz, J.-P. Ramis and C. Sim$\acute{o}$, Integrability of Hamiltonian systems and differential galois groups of higher variational equations, Annales Scientifiques de l'École Normale Supérieure, 406 (2006), 845-884.
doi: 10.1016/j.ansens.2007.09.002. |
[32] |
J. Llibre and X. Zhang,
Invariant algebraic surfaces of the Lorenz system, Journal of Mathematical Physics, 43 (2002), 1622-1645.
doi: 10.1063/1.1435078. |
[33] |
R. Oliveira and C. Valls,
Global dynamical aspects of a generalized Chen-Wang differential system, Nonlinear Dynamics, 84 (2016), 1497-1516.
doi: 10.1007/s11071-015-2584-1. |
[34] |
Z. Wang, Z. Wei, X. Xi and Y. Li,
Dynamics of a 3D autonomous quadratic system with an invariant algebraic surface, Nonlinear Dynamics, 77 (2014), 1503-1518.
doi: 10.1007/s11071-014-1395-0. |
[35] |
B. Balachandran, T. Kalmár-Nagy and D. E. Gilsinn, Delay Differential Equations. Recent Advances and New Directions, Springer, New York, 2009. |
[36] |
M. Liao, C. Xu and X. Tang,
Stability and Hopf bifurcation for a competition and cooperation model of two enterprises with delay, Communications in Nonlinear Science & Numerical Simulation, 19 (2014), 3845-3856.
doi: 10.1016/j.cnsns.2014.02.031. |
[37] |
L. Li, C. Zhang and X. Yan,
Stability and Hopf bifurcation analysis for a two-enterprise interaction model with delays, Communications in Nonlinear Science & Numerical Simulation, 30 (2016), 70-83.
doi: 10.1016/j.cnsns.2015.06.011. |
[38] |
R. Yang and J. Wei,
Stability and bifurcation analysis of a diffusive prey-predator system in Holling type Ⅲ with a prey refuge, Nonlinear Dynamics, 79 (2015), 631-646.
doi: 10.1007/s11071-014-1691-8. |
[39] |
I. Richards and H. K Youn, The Theory of Distributions: A Nontechnical Introduction, Cambridge University Press, Cambridge, 1990.
doi: 10.1017/CBO9780511623837.![]() ![]() |
[40] |
G. Hu, W. Li and X. Yan,
Hopf bifurcations in a predator-prey system with multiple delays, Chaos, Solitons & Fractals, 42 (2009), 1273-1285.
doi: 10.1016/j.chaos.2009.03.075. |
[41] |
B. D. Hassard, N. D. Kazarinoff and Y. H. Wan, Theory and Applications of Hopf Bifurcation, volume 41 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge-New York, 1981.
![]() |
show all references
References:
[1] |
R. Balescu, M. Vlad and F. Spineanu, Tokamap: A model of a partially stochastic toroidal magnetic field, In Chaos, Kinetics and Nonlinear Dynamics in Fluids and Plasmas (Carry-Le Rouet, 1997), volume 511 of Lecture Notes in Phys., pages 243-261. Springer, Berlin, 1998. |
[2] |
P. J. Morrison,
Magnetic field lines, Hamiltonian dynamics, and nontwist systems, Phys. Plasmas, 7 (2000), 2279-2289.
doi: 10.1063/1.874062. |
[3] |
B. Shi, Magnetic Confinement Fusion: Principles and Practices, Beijing, Atomic Energy Press (in Chinese), 1999. Google Scholar |
[4] |
Zohm and Hartmut, The physics of edge localized modes (elms) and their role in power and particle exhaust, Plasma Physics & Controlled Fusion, 38 (1996), 1213-1223. Google Scholar |
[5] |
H. Natiq, S. Banerjee, A. P. Misra and M. R. M. Said,
Degenerating the butterfly attractor in a plasma perturbation model using nonlinear controllers, Chaos Solitons Fractals, 122 (2019), 58-68.
doi: 10.1016/j.chaos.2019.03.009. |
[6] |
C. Kieu, Q. Wang and D. Yan, Dynamical transitions of the quasi-periodic plasma model, Nonlinear Dyn, 96 (2019), 323-338.
doi: 10.1007/s11071-019-04792-2. |
[7] |
D. Constantinescu, O. Dumbrajs, V. Igochine, K. Lackner, H. Zohm and A. U. Team, Bifurcations and fast-slow dynamics in a low-dimensional model for quasi-periodic plasma perturbations, Romanian Reports in Physics, 67 (2015), 1049-1060. Google Scholar |
[8] |
D. Constantinescu, O. Dumbrajs, V. Igochine, K. Lackner, R. Meyer-Spasche and H. Zohm, A low-dimensional model system for quasi-periodic plasma perturbations, Physics of Plasmas, 18 (2011), 062307.
doi: 10.1063/1.3600209. |
[9] |
A. A. Elsadany, Am r Elsonbaty and H. N. Agiza,
Qualitative dynamical analysis of chaotic plasma perturbations model, Communications in Nonlinear Science and Numerical Simulation, 59 (2018), 409-423.
doi: 10.1016/j.cnsns.2017.11.020. |
[10] |
E. A. González Velasco,
Generic properties of polynomial vector fields at infinity, Transactions of the American Mathematical Society, 143 (1969), 201-222.
doi: 10.1090/S0002-9947-1969-0252788-8. |
[11] |
A. Cima and J. Llibre,
Bounded polynomial vector fields, Transactions of the American Mathematical Society, 318 (1990), 557-579.
doi: 10.1090/S0002-9947-1990-0998352-5. |
[12] |
M. R. A. Gouveia, M. Messias and C. Pessoa,
Bifurcations at infinity, invariant algebraic surfaces, homoclinic and heteroclinic orbits and centers of a new Lorenz-like chaotic system, Nonlinear Dynamics, 84 (2016), 703-713.
doi: 10.1007/s11071-015-2520-4. |
[13] |
Y. Liu,
Dynamics at infinity and the existence of singularly degenerate heteroclinic cycles in the conjugate Lorenz-type system, Nonlinear Analysis Real World Applications, 13 (2012), 2466-2475.
doi: 10.1016/j.nonrwa.2012.02.011. |
[14] |
G. Meinsma,
Elementary proof of the Routh-Hurwitz test, Systems & Control Letters, 25 (1995), 237-242.
doi: 10.1016/0167-6911(94)00089-E. |
[15] |
J. Hale, Theory of Functional Differential Equations, Second edition, 1977. Applied Mathematical Sciences, Vol. 3. |
[16] |
E. Beretta and Y. Kuang,
Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM Journal on Mathematical Analysis, 33 (2002), 1144-1165.
doi: 10.1137/S0036141000376086. |
[17] |
X. Sun, Y. Pei and B. Qin, Global existence and uniqueness of periodic waves in a population model with density-dependent migrations and Allee effect, International Journal of Bifurcation & Chaos, 27 (2017), 1750192, 10pp.
doi: 10.1142/S0218127417501929. |
[18] |
X. Sun and Y. Pei,
Periodic traveling waves in a generalized BBM equation with weak backward diffusion and dissipation terms, Discrete & Continuous Dynamical Systems-B, 24 (2019), 965-987.
doi: 10.3934/dcdsb.2018341. |
[19] |
X. Sun and Y. Pei,
Exact bound on the number of zeros of Abelian integrals for two hyper-elliptic Hamiltonian systems of degree 4, Journal of Differential Equations, 267 (2019), 7369-7384.
doi: 10.1016/j.jde.2019.07.023. |
[20] |
N. Fenichel,
Geometric singular perturbation theory for ordinary differential equations, Journal of Differential Equations, 31 (1979), 53-98.
doi: 10.1016/0022-0396(79)90152-9. |
[21] |
J.-M. Ginoux, J. Llibre and K. Tchizawa, Canards existence in the hindmarsh-rose model, Mathematical Modelling Of Natural Phenomena, 14 (2019), Paper No. 409, 21 pp.
doi: 10.1051/mmnp/2019012. |
[22] |
A. L. Shil'nikov,
On bifurcations of the Lorenz attractor in the Shimizu-Morioka model, Physica D: Nonlinear Phenomena, 62 (1993), 338-346.
doi: 10.1016/0167-2789(93)90292-9. |
[23] |
J. J. Morales Ruiz, Differential Galois Theory and Non-Integrability of Hamiltonian Systems, Progress in Mathematics, 179. Birkhäuser Verlag, Basel, 1999.
doi: 10.1007/978-3-0348-8718-2. |
[24] |
M. Ayoul and N. T. Zung,
Galoisian obstructions to non-Hamiltonian integrability, Comptes Rendus Mathematique, 348 (2010), 1323-1326.
doi: 10.1016/j.crma.2010.10.024. |
[25] |
O. I. Bogoyavlenskij,
Extended integrability and bi-Hamiltonian systems, Communications in Mathematical Physics, 196 (1998), 19-51.
doi: 10.1007/s002200050412. |
[26] |
K. Huang, S. Shi and W. Li,
Meromorphic and formal first integrals for the Lorenz system, Journal of Nonlinear Mathematical Physics, 25 (2018), 106-121.
doi: 10.1080/14029251.2018.1440745. |
[27] |
K. Huang, S. Shi and Z. Xu, Integrable deformations, bi-Hamiltonian structures and nonintegrability of a generalized Rikitake system, International Journal of Geometric Methods in Modern Physics, 16 (2019), 1950059, 17pp.
doi: 10.1142/S0219887819500592. |
[28] |
K. Huang, S. Shi and W. Li,
Kovalevskaya exponents, weak painlevé property and integrability for quasi-homogeneous differential systems, Regular & Chaotic Dynamics, 25 (2020), 295-312.
doi: 10.1134/S1560354720030053. |
[29] |
K. Yagasaki,
Nonintegrability of the unfolding of the Fold-Hopf bifurcation, Nonlinearity, 31 (2018), 341-350.
doi: 10.1088/1361-6544/aa92e8. |
[30] |
K. Huang, S. Shi and W. Li, Integrability analysis of the shimizu-morioka system, Communications in Nonlinear Science and Numerical Simulation, 84 (2020), 105101, 12pp.
doi: 10.1016/j.cnsns.2019.105101. |
[31] |
J. J. Morales-Ruiz, J.-P. Ramis and C. Sim$\acute{o}$, Integrability of Hamiltonian systems and differential galois groups of higher variational equations, Annales Scientifiques de l'École Normale Supérieure, 406 (2006), 845-884.
doi: 10.1016/j.ansens.2007.09.002. |
[32] |
J. Llibre and X. Zhang,
Invariant algebraic surfaces of the Lorenz system, Journal of Mathematical Physics, 43 (2002), 1622-1645.
doi: 10.1063/1.1435078. |
[33] |
R. Oliveira and C. Valls,
Global dynamical aspects of a generalized Chen-Wang differential system, Nonlinear Dynamics, 84 (2016), 1497-1516.
doi: 10.1007/s11071-015-2584-1. |
[34] |
Z. Wang, Z. Wei, X. Xi and Y. Li,
Dynamics of a 3D autonomous quadratic system with an invariant algebraic surface, Nonlinear Dynamics, 77 (2014), 1503-1518.
doi: 10.1007/s11071-014-1395-0. |
[35] |
B. Balachandran, T. Kalmár-Nagy and D. E. Gilsinn, Delay Differential Equations. Recent Advances and New Directions, Springer, New York, 2009. |
[36] |
M. Liao, C. Xu and X. Tang,
Stability and Hopf bifurcation for a competition and cooperation model of two enterprises with delay, Communications in Nonlinear Science & Numerical Simulation, 19 (2014), 3845-3856.
doi: 10.1016/j.cnsns.2014.02.031. |
[37] |
L. Li, C. Zhang and X. Yan,
Stability and Hopf bifurcation analysis for a two-enterprise interaction model with delays, Communications in Nonlinear Science & Numerical Simulation, 30 (2016), 70-83.
doi: 10.1016/j.cnsns.2015.06.011. |
[38] |
R. Yang and J. Wei,
Stability and bifurcation analysis of a diffusive prey-predator system in Holling type Ⅲ with a prey refuge, Nonlinear Dynamics, 79 (2015), 631-646.
doi: 10.1007/s11071-014-1691-8. |
[39] |
I. Richards and H. K Youn, The Theory of Distributions: A Nontechnical Introduction, Cambridge University Press, Cambridge, 1990.
doi: 10.1017/CBO9780511623837.![]() ![]() |
[40] |
G. Hu, W. Li and X. Yan,
Hopf bifurcations in a predator-prey system with multiple delays, Chaos, Solitons & Fractals, 42 (2009), 1273-1285.
doi: 10.1016/j.chaos.2009.03.075. |
[41] |
B. D. Hassard, N. D. Kazarinoff and Y. H. Wan, Theory and Applications of Hopf Bifurcation, volume 41 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge-New York, 1981.
![]() |








[1] |
Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020032 |
[2] |
Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020466 |
[3] |
Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113 |
[4] |
Maoli Chen, Xiao Wang, Yicheng Liu. Collision-free flocking for a time-delay system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1223-1241. doi: 10.3934/dcdsb.2020251 |
[5] |
Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003 |
[6] |
Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173 |
[7] |
Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042 |
[8] |
Guihong Fan, Gail S. K. Wolkowicz. Chaotic dynamics in a simple predator-prey model with discrete delay. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 191-216. doi: 10.3934/dcdsb.2020263 |
[9] |
Zhongbao Zhou, Yanfei Bai, Helu Xiao, Xu Chen. A non-zero-sum reinsurance-investment game with delay and asymmetric information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 909-936. doi: 10.3934/jimo.2020004 |
[10] |
Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020341 |
[11] |
Tin Phan, Bruce Pell, Amy E. Kendig, Elizabeth T. Borer, Yang Kuang. Rich dynamics of a simple delay host-pathogen model of cell-to-cell infection for plant virus. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 515-539. doi: 10.3934/dcdsb.2020261 |
[12] |
Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021005 |
[13] |
Kengo Nakai, Yoshitaka Saiki. Machine-learning construction of a model for a macroscopic fluid variable using the delay-coordinate of a scalar observable. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1079-1092. doi: 10.3934/dcdss.2020352 |
[14] |
Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020339 |
[15] |
Rong Wang, Yihong Du. Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020360 |
[16] |
Ming Chen, Hao Wang. Dynamics of a discrete-time stoichiometric optimal foraging model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 107-120. doi: 10.3934/dcdsb.2020264 |
[17] |
Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296 |
[18] |
Indranil Chowdhury, Gyula Csató, Prosenjit Roy, Firoj Sk. Study of fractional Poincaré inequalities on unbounded domains. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020394 |
[19] |
Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021004 |
[20] |
Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020294 |
2019 Impact Factor: 1.27
Tools
Article outline
Figures and Tables
[Back to Top]