-
Previous Article
A dynamical theory for singular stochastic delay differential equations Ⅱ: nonlinear equations and invariant manifolds
- DCDS-B Home
- This Issue
-
Next Article
The nonstationary flows of micropolar fluids with thermal convection: An iterative approach
Effect of diffusion in a spatial SIS epidemic model with spontaneous infection
1. | School of Mathematical Science, Yangzhou University, Yangzhou 225002, China |
2. | Department of Mathematics, Korea University, 2511, Sejong-ro, Sejong 339-700, South Korea |
3. | School of Mathematical Science, Yangzhou University, Yangzhou 225002, China |
This paper is concerned with an SIS epidemic reaction-diffusion model with mass-action incidence incorporating spontaneous infection in a spatially heterogeneous environment. The main goal of this article is to study the influence of spontaneous infection on the endemic equilibrium (EE) of the model. To achieve this, first the existence of EE is investigated. Furthermore, we discuss the asymptotic behavior of endemic equilibrium if the migration rate of the susceptible or infected population is sufficiently small. Compared to the case without spontaneous infection, our theoretical results show that spontaneous infection can enhance persistence of infectious disease.
References:
[1] |
L. J. S. Allen, B. M. Bolker, Y. Lou and A. L. Nevai,
Asymptotic profiles of the steady states for an SIS epidemic disease patch model, SIAM J. Appl. Math., 76 (2007), 1283-1309.
doi: 10.1137/060672522. |
[2] |
L. J. S. Allen, B. M. Bolker, Y. Lou and A. L. Nevai,
Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst., 21 (2008), 1-20.
doi: 10.3934/dcds.2008.21.1. |
[3] |
F. Altarelli, A. Braunstein, L. Dall'Asta, J. R. Wakeling and R. Zecchina, Containing epidemic outbreaks by message-passing techniques, Physical Review X, 4 (2014), 021024.
doi: 10.1103/PhysRevX.4.021024. |
[4] |
R. M. Anderson and R. M. May,
Population biology of infectious diseases: Part â…, Discrete Contin. Dyn. Syst. Ser. A, 280 (1979), 361-367.
doi: 10.1038/280361a0. |
[5] |
H. Amman,
Invariant sets and existence theorems for semilinear parabolic and elliptic systems, J.Math. Anal.Appl., 65 (1978), 432-467.
doi: 10.1016/0022-247X(78)90192-0. |
[6] |
H. Brezis and W. A. Strauss,
Semi-linear second-order elliptic equations in $L^1$, J. Math. Soc. Japan, 25 (1973), 565-590.
doi: 10.2969/jmsj/02540565. |
[7] |
R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-diffusion Equations, Ser. Math. Comput. Biol., 2003.
doi: 10.1002/0470871296. |
[8] |
R. H. Cui, K. Y. Lam and Y. Lou,
Dynamics and asymptotic profiles of steady states of an epidemic model in advective environments, J. Differential Equations, 263 (2017), 2343-2373.
doi: 10.1016/j.jde.2017.03.045. |
[9] |
R. H. Cui and Y. Lou,
A spatial SIS model in advective heterogeneous environments, J. Differential Equations, 261 (2016), 3305-3343.
doi: 10.1016/j.jde.2016.05.025. |
[10] |
K. Deng and Y. X. Wu,
Dynamics of a susceptible-infected-susceptible epidemic reaction-diffusion model, Proc. Roy. Soc. Edinburgh Sect. A, 146 (2016), 929-946.
doi: 10.1017/S0308210515000864. |
[11] |
Y. H. Du, R. Peng and M. X. Wang,
Effect of a protection zone in the diffusive Leslie predator-prey model, J. Differential Equations, 246 (2009), 3932-3956.
doi: 10.1016/j.jde.2008.11.007. |
[12] |
Z. J. Du and R. Peng,
A priori $L^\infty$ estimates for solutions of a class of reaction-diffusion systems, J. Math. Biol., 72 (2016), 1429-1439.
doi: 10.1007/s00285-015-0914-z. |
[13] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 2001. |
[14] |
H. W. Hethcote,
The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599-653.
doi: 10.1137/S0036144500371907. |
[15] |
H. W. Hethcote,
Epidemiology models with variable population size, Mathematical Understanding of Infectious Disease Dynamics, 16 (2009), 63-89.
doi: 10.1142/9789812834836_0002. |
[16] |
A. Hill, D. G. Rand, M. A. Nowak and N. A. Christakis,
Emotions as infectious diseases in a large social network: The SISa model, Proceedings of the Royal Society B, 277 (2010), 3827-3835.
doi: 10.1098/rspb.2010.1217. |
[17] |
A. Hill, D. G. Rand, M. A. Nowak and N. A. Christakis, Infectious disease modeling of social contagion in networks, Plos Comput. Biol., 6 (2010), e1000968, 15 pp.
doi: 10.1371/journal.pcbi.1000968. |
[18] |
W. Z. Huang, M. A. Han and K. Y. Liu,
Dynamics of an SIS reaction-diffusion epidemic model for disease transmission, Math. Biosci. Eng., 7 (2010), 51-66.
doi: 10.3934/mbe.2010.7.51. |
[19] |
M. J. Keeling and P. Rohani, Modeling Infectious Diseases in Humans and Animals, Princeton University Press, 2008.
![]() |
[20] |
H. C. Li, R. Peng and F. B. Wang,
Varying total population enhances disease persistence: Qualitative analysis on a diffusive SIS epidemic model, J. Differential Equations, 262 (2017), 885-913.
doi: 10.1016/j.jde.2016.09.044. |
[21] |
C. S. Lin, W. M. Ni and I. Takagi,
Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations, 72 (1988), 1-27.
doi: 10.1016/0022-0396(88)90147-7. |
[22] |
Y. Lou and W. M. Ni,
Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131 (1996), 79-131.
doi: 10.1006/jdeq.1996.0157. |
[23] |
L. Nirenberg, Topics in Nonlinear Functional Analysis, Providence, RI: American Mathematical Society, Providence, RI, 2001.
doi: 10.1090/cln/006. |
[24] |
S. O'Regan and J. Drake,
Theory of early warning signals of disease emergenceand leading indicators of elimination, Theoretical Ecology, 6 (2013), 333-357.
doi: 10.1007/s12080-013-0185-5. |
[25] |
R. Peng,
Asymptotic profiles of the positive steady state for an SIS epidemic reaction-diffusion model.Ⅰ, J. Differential Equations, 247 (2009), 1096-1119.
doi: 10.1016/j.jde.2009.05.002. |
[26] |
R. Peng and S. Q. Liu,
Global stability of the steady states of an SIS epidemic reaction-diffusion model, Nonlinear Anal., 71 (2009), 239-247.
doi: 10.1016/j.na.2008.10.043. |
[27] |
R. Peng and X. Q. Zhao,
A reaction-diffusion SIS epidemic model in a time-periodic environment, Nonlinearity, 25 (2012), 1451-1471.
doi: 10.1088/0951-7715/25/5/1451. |
[28] |
R. Peng and F. Q. Yi,
Asymptotic profile of the positive steady state for an SIS epidemic reaction-diffusion model: effects of epidemic risk and population movement, Phys. D, 259 (2013), 8-25.
doi: 10.1016/j.physd.2013.05.006. |
[29] |
H. J. Shi, Z. S. Duan and G. R. Chen,
An SIS model with infective medium on complex networks, Physica A, 387 (2008), 2133-2144.
doi: 10.1016/j.physa.2007.11.048. |
[30] |
Y. C. Tong and C. X. Lei,
An SIS Epidemic Reaction-diffusion Model with Spontaneous Infection in A Spatially Heterogeneous Environment, Nonlinear Anal. Real World Appl., 41 (2018), 443-460.
doi: 10.1016/j.nonrwa.2017.11.002. |
[31] |
X. W. Wen, J. P. Ji and B. Li,
Asymptotic profiles of the endemic equilibrium to a diffusive SIS epidemic model with mass action infection mechanism, J. Math. Anal. Appl., 458 (2018), 715-729.
doi: 10.1016/j.jmaa.2017.08.016. |
[32] |
Y. X. Wu and X. F. Zou,
Asymptotic profiles of steady states for a diffusive SIS epidemic model with mass action infection mechanism, J. Differential Equations, 261 (2016), 4424-4447.
doi: 10.1016/j.jde.2016.06.028. |
[33] |
M. Yang, G. R. Chen and X. C. Fu,
A modified SIS model with an infective medium on complex networks and its global stability, Physica A, 390 (2011), 2408-2413.
doi: 10.1016/j.physa.2011.02.007. |
show all references
References:
[1] |
L. J. S. Allen, B. M. Bolker, Y. Lou and A. L. Nevai,
Asymptotic profiles of the steady states for an SIS epidemic disease patch model, SIAM J. Appl. Math., 76 (2007), 1283-1309.
doi: 10.1137/060672522. |
[2] |
L. J. S. Allen, B. M. Bolker, Y. Lou and A. L. Nevai,
Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst., 21 (2008), 1-20.
doi: 10.3934/dcds.2008.21.1. |
[3] |
F. Altarelli, A. Braunstein, L. Dall'Asta, J. R. Wakeling and R. Zecchina, Containing epidemic outbreaks by message-passing techniques, Physical Review X, 4 (2014), 021024.
doi: 10.1103/PhysRevX.4.021024. |
[4] |
R. M. Anderson and R. M. May,
Population biology of infectious diseases: Part â…, Discrete Contin. Dyn. Syst. Ser. A, 280 (1979), 361-367.
doi: 10.1038/280361a0. |
[5] |
H. Amman,
Invariant sets and existence theorems for semilinear parabolic and elliptic systems, J.Math. Anal.Appl., 65 (1978), 432-467.
doi: 10.1016/0022-247X(78)90192-0. |
[6] |
H. Brezis and W. A. Strauss,
Semi-linear second-order elliptic equations in $L^1$, J. Math. Soc. Japan, 25 (1973), 565-590.
doi: 10.2969/jmsj/02540565. |
[7] |
R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-diffusion Equations, Ser. Math. Comput. Biol., 2003.
doi: 10.1002/0470871296. |
[8] |
R. H. Cui, K. Y. Lam and Y. Lou,
Dynamics and asymptotic profiles of steady states of an epidemic model in advective environments, J. Differential Equations, 263 (2017), 2343-2373.
doi: 10.1016/j.jde.2017.03.045. |
[9] |
R. H. Cui and Y. Lou,
A spatial SIS model in advective heterogeneous environments, J. Differential Equations, 261 (2016), 3305-3343.
doi: 10.1016/j.jde.2016.05.025. |
[10] |
K. Deng and Y. X. Wu,
Dynamics of a susceptible-infected-susceptible epidemic reaction-diffusion model, Proc. Roy. Soc. Edinburgh Sect. A, 146 (2016), 929-946.
doi: 10.1017/S0308210515000864. |
[11] |
Y. H. Du, R. Peng and M. X. Wang,
Effect of a protection zone in the diffusive Leslie predator-prey model, J. Differential Equations, 246 (2009), 3932-3956.
doi: 10.1016/j.jde.2008.11.007. |
[12] |
Z. J. Du and R. Peng,
A priori $L^\infty$ estimates for solutions of a class of reaction-diffusion systems, J. Math. Biol., 72 (2016), 1429-1439.
doi: 10.1007/s00285-015-0914-z. |
[13] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 2001. |
[14] |
H. W. Hethcote,
The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599-653.
doi: 10.1137/S0036144500371907. |
[15] |
H. W. Hethcote,
Epidemiology models with variable population size, Mathematical Understanding of Infectious Disease Dynamics, 16 (2009), 63-89.
doi: 10.1142/9789812834836_0002. |
[16] |
A. Hill, D. G. Rand, M. A. Nowak and N. A. Christakis,
Emotions as infectious diseases in a large social network: The SISa model, Proceedings of the Royal Society B, 277 (2010), 3827-3835.
doi: 10.1098/rspb.2010.1217. |
[17] |
A. Hill, D. G. Rand, M. A. Nowak and N. A. Christakis, Infectious disease modeling of social contagion in networks, Plos Comput. Biol., 6 (2010), e1000968, 15 pp.
doi: 10.1371/journal.pcbi.1000968. |
[18] |
W. Z. Huang, M. A. Han and K. Y. Liu,
Dynamics of an SIS reaction-diffusion epidemic model for disease transmission, Math. Biosci. Eng., 7 (2010), 51-66.
doi: 10.3934/mbe.2010.7.51. |
[19] |
M. J. Keeling and P. Rohani, Modeling Infectious Diseases in Humans and Animals, Princeton University Press, 2008.
![]() |
[20] |
H. C. Li, R. Peng and F. B. Wang,
Varying total population enhances disease persistence: Qualitative analysis on a diffusive SIS epidemic model, J. Differential Equations, 262 (2017), 885-913.
doi: 10.1016/j.jde.2016.09.044. |
[21] |
C. S. Lin, W. M. Ni and I. Takagi,
Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations, 72 (1988), 1-27.
doi: 10.1016/0022-0396(88)90147-7. |
[22] |
Y. Lou and W. M. Ni,
Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131 (1996), 79-131.
doi: 10.1006/jdeq.1996.0157. |
[23] |
L. Nirenberg, Topics in Nonlinear Functional Analysis, Providence, RI: American Mathematical Society, Providence, RI, 2001.
doi: 10.1090/cln/006. |
[24] |
S. O'Regan and J. Drake,
Theory of early warning signals of disease emergenceand leading indicators of elimination, Theoretical Ecology, 6 (2013), 333-357.
doi: 10.1007/s12080-013-0185-5. |
[25] |
R. Peng,
Asymptotic profiles of the positive steady state for an SIS epidemic reaction-diffusion model.Ⅰ, J. Differential Equations, 247 (2009), 1096-1119.
doi: 10.1016/j.jde.2009.05.002. |
[26] |
R. Peng and S. Q. Liu,
Global stability of the steady states of an SIS epidemic reaction-diffusion model, Nonlinear Anal., 71 (2009), 239-247.
doi: 10.1016/j.na.2008.10.043. |
[27] |
R. Peng and X. Q. Zhao,
A reaction-diffusion SIS epidemic model in a time-periodic environment, Nonlinearity, 25 (2012), 1451-1471.
doi: 10.1088/0951-7715/25/5/1451. |
[28] |
R. Peng and F. Q. Yi,
Asymptotic profile of the positive steady state for an SIS epidemic reaction-diffusion model: effects of epidemic risk and population movement, Phys. D, 259 (2013), 8-25.
doi: 10.1016/j.physd.2013.05.006. |
[29] |
H. J. Shi, Z. S. Duan and G. R. Chen,
An SIS model with infective medium on complex networks, Physica A, 387 (2008), 2133-2144.
doi: 10.1016/j.physa.2007.11.048. |
[30] |
Y. C. Tong and C. X. Lei,
An SIS Epidemic Reaction-diffusion Model with Spontaneous Infection in A Spatially Heterogeneous Environment, Nonlinear Anal. Real World Appl., 41 (2018), 443-460.
doi: 10.1016/j.nonrwa.2017.11.002. |
[31] |
X. W. Wen, J. P. Ji and B. Li,
Asymptotic profiles of the endemic equilibrium to a diffusive SIS epidemic model with mass action infection mechanism, J. Math. Anal. Appl., 458 (2018), 715-729.
doi: 10.1016/j.jmaa.2017.08.016. |
[32] |
Y. X. Wu and X. F. Zou,
Asymptotic profiles of steady states for a diffusive SIS epidemic model with mass action infection mechanism, J. Differential Equations, 261 (2016), 4424-4447.
doi: 10.1016/j.jde.2016.06.028. |
[33] |
M. Yang, G. R. Chen and X. C. Fu,
A modified SIS model with an infective medium on complex networks and its global stability, Physica A, 390 (2011), 2408-2413.
doi: 10.1016/j.physa.2011.02.007. |
[1] |
Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020317 |
[2] |
Ténan Yeo. Stochastic and deterministic SIS patch model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021012 |
[3] |
Rong Wang, Yihong Du. Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020360 |
[4] |
Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159 |
[5] |
Yancong Xu, Lijun Wei, Xiaoyu Jiang, Zirui Zhu. Complex dynamics of a SIRS epidemic model with the influence of hospital bed number. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021016 |
[6] |
Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387 |
[7] |
Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020431 |
[8] |
A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020441 |
[9] |
Tin Phan, Bruce Pell, Amy E. Kendig, Elizabeth T. Borer, Yang Kuang. Rich dynamics of a simple delay host-pathogen model of cell-to-cell infection for plant virus. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 515-539. doi: 10.3934/dcdsb.2020261 |
[10] |
Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118 |
[11] |
Xin Zhao, Tao Feng, Liang Wang, Zhipeng Qiu. Threshold dynamics and sensitivity analysis of a stochastic semi-Markov switched SIRS epidemic model with nonlinear incidence and vaccination. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021010 |
[12] |
Elvio Accinelli, Humberto Muñiz. A dynamic for production economies with multiple equilibria. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021002 |
[13] |
Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020465 |
[14] |
Alex P. Farrell, Horst R. Thieme. Predator – Prey/Host – Parasite: A fragile ecoepidemic system under homogeneous infection incidence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 217-267. doi: 10.3934/dcdsb.2020328 |
[15] |
Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164 |
[16] |
Jan Březina, Eduard Feireisl, Antonín Novotný. On convergence to equilibria of flows of compressible viscous fluids under in/out–flux boundary conditions. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021009 |
[17] |
Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020032 |
[18] |
M. Dambrine, B. Puig, G. Vallet. A mathematical model for marine dinoflagellates blooms. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 615-633. doi: 10.3934/dcdss.2020424 |
[19] |
Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020457 |
[20] |
Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020464 |
2019 Impact Factor: 1.27
Tools
Article outline
[Back to Top]