-
Previous Article
Water taxes and fines imposed on legal and illegal firms exploiting groudwater
- DCDS-B Home
- This Issue
-
Next Article
A mathematical model to restore water quality in urban lakes using Phoslock
Time-domain analysis of forward obstacle scattering for elastic wave
School of Mathematics, Jilin University, Changchun, 130012, China |
This paper concerns a time-domain scattering problem of elastic plane wave by a rigid obstacle, which is immersed in an open space filled with homogeneous and isotropic elastic medium in two dimensions. A new compressed coordinate transformation is developed to reduce the scattering problem into an initial boundary value problem in a bounded domain over a finite time interval. The well-posednesss is established for the reduced problem. This paper adopts Galerkin method to prove the uniqueness results and employs energy method to derive stability results for the scattering problem. Furthermore, we achieve a priori estimate with explicit time dependence.
References:
[1] |
G. Bao, B. Hu, P. Li and J. Wang,
Analysis of time-domain Maxwell's equations in biperiodic structures, Discrete Cont Dyn-B, 25 (2020), 259-286.
doi: 10.3934/dcdsb.2019181. |
[2] |
G. Bao, G. Hu, J. Sun and T. Yin, Direct and inverse elastic scattering from anisotropic media, J Math Pures Appl, 117 (2018), 263–301, arXiv: 1612.06604.
doi: 10.1016/j.matpur.2018.01.007. |
[3] |
G. Bao, Y. Gao and P. Li,
Time domain analysis of an acoustic-elastic interaction problem, Arch Ration Mech An, 229 (2018), 835-884.
doi: 10.1007/s00205-018-1228-2. |
[4] |
M. J. Bluck and S. P. Walker,
Time-domain BIE analysis of large three-dimensional electromagnetic scattering problems, IEEE T Antenn Propag, 45 (1997), 894-901.
doi: 10.1109/8.575643. |
[5] |
J. H. Bramble, J. E. Pasciak and D. Trenev,
Analysis of a finite PML approximation to the three dimensional elastic wave scattering problem, Math Comput, 79 (2010), 2079-2101.
doi: 10.1090/S0025-5718-10-02355-0. |
[6] |
Q. Chen and P. Monk,
Discretization of the time domain CFIE for acoustic scattering problems using convolution quadrature, SIAM J. Math Anal, 46 (2016), 3107-3130.
doi: 10.1137/110833555. |
[7] |
Z. Chen, Convergence of the time-domain perfectly matched layer method for acoustic scattering problems, Int J Numer Anal Mod, 6 (2009), 124–146. http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=61E76534114A89A0D109AAE9DF588AC5?doi=10.1.1.407.8691&rep=rep1&type=pdf Google Scholar |
[8] |
Z. Chen and J.-C. N$\acute{e}$d$\acute{e}$lec,
On Maxwell equations with the transparent boundary condition, J Comput Math, 26 (2008), 284-296.
|
[9] |
Z. Chen and X. Wu,
Long-time stability and convergence of the uniaxial perfectly matched layer method for time-domain acoustic scattering problems, SIAM J. Numer Anal, 50 (2012), 2632-2655.
doi: 10.1137/110835268. |
[10] |
Z. Chen, X. Xiang and X. Zhang,
Convergence of the PML method for elastic wave scattering problems, Math Comput, 85 (2016), 2687-2714.
doi: 10.1090/mcom/3100. |
[11] |
H. Dong, J. Lai and P. Li,
Inverse obstacle scattering for elastic waves with phased or phaseless far-field data, SIAM J. Imaging Sci, 12 (2019), 809-838.
doi: 10.1137/18M1227263. |
[12] |
L. C. Evans, Partial Differential Equations, 2$^nd$ edition, vol. 19, Graduate Studies in Mathematics, AMS, Providence, RI, 2010.
doi: 10.1090/gsm/019. |
[13] |
Y. Gao and P. Li,
Analysis of time-domain scattering by periodic structures, J. Differ Equations, 261 (2016), 5094-5118.
doi: 10.1016/j.jde.2016.07.020. |
[14] |
Y. Gao and P. Li,
Electromagnetic scattering for time-domain Maxwell's equations in an unbounded structure, Math Mod Meth Appl S, 27 (2017), 1843-1870.
doi: 10.1142/S0218202517500336. |
[15] |
Y. Gao, P. Li and B. Zhang,
Analysis of transient acoustic-elastic interaction in an unbounded structure, SIAM J Math Anal, 49 (2017), 3951-3972.
doi: 10.1137/16M1090326. |
[16] |
Y. Gao, P. Li and Y. Li,
Analysis of time-domain elastic scattering by an unbounded structure, Math Method Appl Sci, 41 (2018), 7032-7054.
doi: 10.1002/mma.5214. |
[17] |
L. D. Landau and E. M. Lifshitz, Theory of Elasticity, London-Paris-Frankfurt; Addison-Wesley Publishing Co., Inc., Reading, Mass. 1959. http://gen.lib.rus.ec/book/index.php?md5=16af3489becf3ea6fb1d585b40658fcd |
[18] |
P. Li, Y. Wang, Z. Wang and Y. Zhao, Inverse obstacle scattering for elastic waves, Inverse Probl, 32 (2016), 115018, 24pp.
doi: 10.1088/0266-5611/32/11/115018. |
[19] |
P. Li and X. Yuan,
Inverse obstacle scattering for elastic waves in three dimensions, Inverse Probl Imag, 13 (2019), 545-573.
doi: 10.3934/ipi.2019026. |
[20] |
P. Li and L. Zhang,
Analysis of transient acoustic scattering by an elastic obstacle, Commun Math Sci, 17 (2019), 1671-1698.
doi: 10.4310/CMS.2019.v17.n6.a8. |
[21] |
D. J. Riley and J.-M. Jin,
Finite-element time-domain analysis of electrically and magnetically dispersive periodic structures, IEEE T Antenn Propag, 56 (2008), 3501-3509.
doi: 10.1109/TAP.2008.2005454. |
[22] |
C. Wei and J. Yang,
Analysis of a time-dependent fluid-solid interaction problem above a local rough surface, Sci China Math, 63 (2020), 887-906.
doi: 10.1007/s11425-017-9364-3. |
show all references
References:
[1] |
G. Bao, B. Hu, P. Li and J. Wang,
Analysis of time-domain Maxwell's equations in biperiodic structures, Discrete Cont Dyn-B, 25 (2020), 259-286.
doi: 10.3934/dcdsb.2019181. |
[2] |
G. Bao, G. Hu, J. Sun and T. Yin, Direct and inverse elastic scattering from anisotropic media, J Math Pures Appl, 117 (2018), 263–301, arXiv: 1612.06604.
doi: 10.1016/j.matpur.2018.01.007. |
[3] |
G. Bao, Y. Gao and P. Li,
Time domain analysis of an acoustic-elastic interaction problem, Arch Ration Mech An, 229 (2018), 835-884.
doi: 10.1007/s00205-018-1228-2. |
[4] |
M. J. Bluck and S. P. Walker,
Time-domain BIE analysis of large three-dimensional electromagnetic scattering problems, IEEE T Antenn Propag, 45 (1997), 894-901.
doi: 10.1109/8.575643. |
[5] |
J. H. Bramble, J. E. Pasciak and D. Trenev,
Analysis of a finite PML approximation to the three dimensional elastic wave scattering problem, Math Comput, 79 (2010), 2079-2101.
doi: 10.1090/S0025-5718-10-02355-0. |
[6] |
Q. Chen and P. Monk,
Discretization of the time domain CFIE for acoustic scattering problems using convolution quadrature, SIAM J. Math Anal, 46 (2016), 3107-3130.
doi: 10.1137/110833555. |
[7] |
Z. Chen, Convergence of the time-domain perfectly matched layer method for acoustic scattering problems, Int J Numer Anal Mod, 6 (2009), 124–146. http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=61E76534114A89A0D109AAE9DF588AC5?doi=10.1.1.407.8691&rep=rep1&type=pdf Google Scholar |
[8] |
Z. Chen and J.-C. N$\acute{e}$d$\acute{e}$lec,
On Maxwell equations with the transparent boundary condition, J Comput Math, 26 (2008), 284-296.
|
[9] |
Z. Chen and X. Wu,
Long-time stability and convergence of the uniaxial perfectly matched layer method for time-domain acoustic scattering problems, SIAM J. Numer Anal, 50 (2012), 2632-2655.
doi: 10.1137/110835268. |
[10] |
Z. Chen, X. Xiang and X. Zhang,
Convergence of the PML method for elastic wave scattering problems, Math Comput, 85 (2016), 2687-2714.
doi: 10.1090/mcom/3100. |
[11] |
H. Dong, J. Lai and P. Li,
Inverse obstacle scattering for elastic waves with phased or phaseless far-field data, SIAM J. Imaging Sci, 12 (2019), 809-838.
doi: 10.1137/18M1227263. |
[12] |
L. C. Evans, Partial Differential Equations, 2$^nd$ edition, vol. 19, Graduate Studies in Mathematics, AMS, Providence, RI, 2010.
doi: 10.1090/gsm/019. |
[13] |
Y. Gao and P. Li,
Analysis of time-domain scattering by periodic structures, J. Differ Equations, 261 (2016), 5094-5118.
doi: 10.1016/j.jde.2016.07.020. |
[14] |
Y. Gao and P. Li,
Electromagnetic scattering for time-domain Maxwell's equations in an unbounded structure, Math Mod Meth Appl S, 27 (2017), 1843-1870.
doi: 10.1142/S0218202517500336. |
[15] |
Y. Gao, P. Li and B. Zhang,
Analysis of transient acoustic-elastic interaction in an unbounded structure, SIAM J Math Anal, 49 (2017), 3951-3972.
doi: 10.1137/16M1090326. |
[16] |
Y. Gao, P. Li and Y. Li,
Analysis of time-domain elastic scattering by an unbounded structure, Math Method Appl Sci, 41 (2018), 7032-7054.
doi: 10.1002/mma.5214. |
[17] |
L. D. Landau and E. M. Lifshitz, Theory of Elasticity, London-Paris-Frankfurt; Addison-Wesley Publishing Co., Inc., Reading, Mass. 1959. http://gen.lib.rus.ec/book/index.php?md5=16af3489becf3ea6fb1d585b40658fcd |
[18] |
P. Li, Y. Wang, Z. Wang and Y. Zhao, Inverse obstacle scattering for elastic waves, Inverse Probl, 32 (2016), 115018, 24pp.
doi: 10.1088/0266-5611/32/11/115018. |
[19] |
P. Li and X. Yuan,
Inverse obstacle scattering for elastic waves in three dimensions, Inverse Probl Imag, 13 (2019), 545-573.
doi: 10.3934/ipi.2019026. |
[20] |
P. Li and L. Zhang,
Analysis of transient acoustic scattering by an elastic obstacle, Commun Math Sci, 17 (2019), 1671-1698.
doi: 10.4310/CMS.2019.v17.n6.a8. |
[21] |
D. J. Riley and J.-M. Jin,
Finite-element time-domain analysis of electrically and magnetically dispersive periodic structures, IEEE T Antenn Propag, 56 (2008), 3501-3509.
doi: 10.1109/TAP.2008.2005454. |
[22] |
C. Wei and J. Yang,
Analysis of a time-dependent fluid-solid interaction problem above a local rough surface, Sci China Math, 63 (2020), 887-906.
doi: 10.1007/s11425-017-9364-3. |
[1] |
Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302 |
[2] |
Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361 |
[3] |
Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020382 |
[4] |
Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248 |
[5] |
Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020377 |
[6] |
Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142 |
[7] |
Dongfen Bian, Yao Xiao. Global well-posedness of non-isothermal inhomogeneous nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1243-1272. doi: 10.3934/dcdsb.2020161 |
[8] |
Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247 |
[9] |
Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243 |
[10] |
Gabrielle Nornberg, Delia Schiera, Boyan Sirakov. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3857-3881. doi: 10.3934/dcds.2020128 |
[11] |
Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004 |
[12] |
Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020033 |
[13] |
Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021004 |
[14] |
Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571 |
[15] |
Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322 |
[16] |
Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021015 |
[17] |
Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270 |
[18] |
Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388 |
[19] |
Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010 |
[20] |
Ludovick Gagnon, José M. Urquiza. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. Evolution Equations & Control Theory, 2021, 10 (1) : 129-153. doi: 10.3934/eect.2020054 |
2019 Impact Factor: 1.27
Tools
Article outline
[Back to Top]