# American Institute of Mathematical Sciences

## Optimal control of an avian influenza model with multiple time delays in state and control variables

 1 School of Mathematics and Statistics, Ningxia University, Yinchuan, 750021, China 2 Xinhua College, Ningxia University, Yinchuan, 750021, China 3 School of Mathematical and Natural Sciences, Arizona State University, AZ, USA

* Corresponding author: Qimin Zhang

Received  December 2019 Revised  August 2020 Published  September 2020

Fund Project: Ting Kang and Qimin Zhang are supported by the Natural Science Foundation of China (11661064), Ningxia Natural Science Foundation Project (2019AAC03069) and the Funds for Improving the International Education Capacity of Ningxia University (030900001921)

In this paper, we consider an optimal control model governed by a class of delay differential equation, which describe the spread of avian influenza virus from the poultry to human. We take three control variables into the optimal control model, namely: slaughtering to the susceptible and infected poultry ($u_{1}(t)$), educational campaign to the susceptible human population ($u_{2}(t)$) and treatment to infected population ($u_{3}(t)$). The model involves two time delays that stand for the incubation periods of avian influenza virus in the infective poultry and human populations. We derive first order necessary conditions for existence of the optimal control and perform several numerical simulations. Numerical results show that different control strategies have different effects on controlling the outbreak of avian influenza. At the same time, we discuss the influence of time delays on objective function and conclude that the spread of avian influenza will slow down as the time delays increase.

Citation: Ting Kang, Qimin Zhang, Haiyan Wang. Optimal control of an avian influenza model with multiple time delays in state and control variables. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020278
##### References:

show all references

##### References:
Schematic diagram of the model with delay
The optimal states of $I_a(t)$ and $I_h(t)$, and optimal controls under all of control
The optimal states of $I_a(t)$ and $I_h(t)$ with one control and without control
The optimal states of $I_a(t)$ and $I_h(t)$ with two controls and without control
Values of objective function under different time delays for model (6)
Effect of $\mathscr{R}_0$
Effect of $\alpha$
Effect of $\alpha_1$
Effect of $\alpha_2$
Effect of $\beta_1$
Effect of $\beta_1$
Algorithm
 Step 1: for $k = -m, -(m-1), ..., 0$ do: $S_a^k = S_a(0); I_a^k = I_a(0); S_h^k = S_h(0); I_h^k = I_h(0); R_h^k = R_h(0)$ end for for $k = n, n+1, ..., n+m$ do: $\lambda_1^k = 0; \lambda_2^k = 0; \lambda_3^k = 0; \lambda_4^k = 0; \lambda_5^k = 0$ end for $m_1 = \lfloor\tau_1/\Delta\rfloor$; $m_2 = \lfloor\tau_2/\Delta\rfloor$ Step 2: for $k = 0, 1, ..., n-1$ do: $S_a^{k+1} = S_a^{k} + \Delta\left[\Lambda_{a} -\frac{\beta_{a} S_{a}^k I_{a}^k}{1 +\alpha_{1} S_{a}^k+\alpha_{2} I_{a}^k}-(\mu_{a} +u_{1}(t)) S_{a}^k \right]$ $I_a^{k+1} = I_a^{k} + \Delta\left[ \frac{\beta_{a} e^{-\mu_{a} \tau_{1}}S_{a}^{k-m_1} I_{a}^{k-m_1}}{1 +\alpha_{1}S_{a}^{k-m_1} +\alpha_{2} I_{a}^{k-m_1}} -(\mu_{a} +\delta_{a} +u_{1}^k) I_{a}^k \right]$ $S_h^{k+1} = S_h^{k} + \Delta\left[ \Lambda_{h} -(1-u_{2}^k) \frac{\beta_{h} S_{h}^k I_{a}^k}{1 +\beta_{1}S_{h}^k +\beta_{2}I_{a}^k} -\mu_{h}S_{h}^k \right]$ $I_h^{k+1} = I_h^{k} + \Delta\Big[ (1-u_{2}^{k-m_2}) \frac{\beta_{h}e^{ -\mu_{h}\tau_{2}} S_{h}^{k-m_2} I_{a}^{k-m_2}}{1 +\beta_{1} S_{h}^{k-m_2} +\beta_{2} I_{a}^{k-m_2}}$ $-(\mu_{h} +\delta_{h} +\gamma) I_{h}^k -\frac{c u_{3}^k I_{h}^k}{1+\alpha I_{h}^k} \Big]$ $R_h^{k+1} = R_h^{k} + \Delta\left[ \gamma I_{h}^k -\mu_{h}R_{h}^k +\frac{c u_{3}^k I_{h}^k}{1 +\alpha I_{h}^k} \right]$ for $j = 1, 2, 3, 4, 5$ do: $\lambda_j^{n-k-1} = \lambda_j^{n-k} - \Delta\times\text{Temp}_j$ end for $D_1^{k+1} = [(\lambda_{1}^{n-k}-B_{1})S_{a}^k +(\lambda_{2}^{n-k} -B_{1})I_{a}^k]/C_{1}$; $D_2^{k+1} = \text{Temp}_6/C_2$ $D_3^{k+1} = \left[(\lambda_{4}^{n-k} -\lambda_{5}^{n-k}) \frac{c I_{h}^k}{1+\alpha I_{h}^k} -B_{3}I_{h}^k \right] /C_3$ $u_1^{k+1} = \min\{\max(0, D_1^{k+1}), 1\}$; $u_2^{k+1} = \min\{\max(0, D_2^{k+1}), 1\}$ $u_3^{k+1} = \min\{\max(0, D_3^{k+1}), 1\}$ end for Step 3: for $k = 1, 2, ..., n$ do: $S_a^*(t_k) = S_a^k; I_a^*(t_k) = I_a^k; S_h^*(t_k) = S_h^k; I_h^*(t_k) = I_h^k; R_h^*(t_k) = R_h^k$ $u_1^*(t_k) = u_1^k; u_2^*(t_k) = u_2^k; u_3^*(t_k) = u_3^k$ end for $\dagger$ The $\text{Temp}_i (1\leq i\leq 6)$ is defined in C.
 Step 1: for $k = -m, -(m-1), ..., 0$ do: $S_a^k = S_a(0); I_a^k = I_a(0); S_h^k = S_h(0); I_h^k = I_h(0); R_h^k = R_h(0)$ end for for $k = n, n+1, ..., n+m$ do: $\lambda_1^k = 0; \lambda_2^k = 0; \lambda_3^k = 0; \lambda_4^k = 0; \lambda_5^k = 0$ end for $m_1 = \lfloor\tau_1/\Delta\rfloor$; $m_2 = \lfloor\tau_2/\Delta\rfloor$ Step 2: for $k = 0, 1, ..., n-1$ do: $S_a^{k+1} = S_a^{k} + \Delta\left[\Lambda_{a} -\frac{\beta_{a} S_{a}^k I_{a}^k}{1 +\alpha_{1} S_{a}^k+\alpha_{2} I_{a}^k}-(\mu_{a} +u_{1}(t)) S_{a}^k \right]$ $I_a^{k+1} = I_a^{k} + \Delta\left[ \frac{\beta_{a} e^{-\mu_{a} \tau_{1}}S_{a}^{k-m_1} I_{a}^{k-m_1}}{1 +\alpha_{1}S_{a}^{k-m_1} +\alpha_{2} I_{a}^{k-m_1}} -(\mu_{a} +\delta_{a} +u_{1}^k) I_{a}^k \right]$ $S_h^{k+1} = S_h^{k} + \Delta\left[ \Lambda_{h} -(1-u_{2}^k) \frac{\beta_{h} S_{h}^k I_{a}^k}{1 +\beta_{1}S_{h}^k +\beta_{2}I_{a}^k} -\mu_{h}S_{h}^k \right]$ $I_h^{k+1} = I_h^{k} + \Delta\Big[ (1-u_{2}^{k-m_2}) \frac{\beta_{h}e^{ -\mu_{h}\tau_{2}} S_{h}^{k-m_2} I_{a}^{k-m_2}}{1 +\beta_{1} S_{h}^{k-m_2} +\beta_{2} I_{a}^{k-m_2}}$ $-(\mu_{h} +\delta_{h} +\gamma) I_{h}^k -\frac{c u_{3}^k I_{h}^k}{1+\alpha I_{h}^k} \Big]$ $R_h^{k+1} = R_h^{k} + \Delta\left[ \gamma I_{h}^k -\mu_{h}R_{h}^k +\frac{c u_{3}^k I_{h}^k}{1 +\alpha I_{h}^k} \right]$ for $j = 1, 2, 3, 4, 5$ do: $\lambda_j^{n-k-1} = \lambda_j^{n-k} - \Delta\times\text{Temp}_j$ end for $D_1^{k+1} = [(\lambda_{1}^{n-k}-B_{1})S_{a}^k +(\lambda_{2}^{n-k} -B_{1})I_{a}^k]/C_{1}$; $D_2^{k+1} = \text{Temp}_6/C_2$ $D_3^{k+1} = \left[(\lambda_{4}^{n-k} -\lambda_{5}^{n-k}) \frac{c I_{h}^k}{1+\alpha I_{h}^k} -B_{3}I_{h}^k \right] /C_3$ $u_1^{k+1} = \min\{\max(0, D_1^{k+1}), 1\}$; $u_2^{k+1} = \min\{\max(0, D_2^{k+1}), 1\}$ $u_3^{k+1} = \min\{\max(0, D_3^{k+1}), 1\}$ end for Step 3: for $k = 1, 2, ..., n$ do: $S_a^*(t_k) = S_a^k; I_a^*(t_k) = I_a^k; S_h^*(t_k) = S_h^k; I_h^*(t_k) = I_h^k; R_h^*(t_k) = R_h^k$ $u_1^*(t_k) = u_1^k; u_2^*(t_k) = u_2^k; u_3^*(t_k) = u_3^k$ end for $\dagger$ The $\text{Temp}_i (1\leq i\leq 6)$ is defined in C.
Parameter values of numerical experiments for model (2)
 Parameter Value Source of data $\Lambda_a$ $1000/245$ per day [5,9] $\beta_a$ $5.1\times10^{-4}$ per day [5], $\mu_a$ $1/245$ per day [5,9] $\delta_a$ $1/400$ per day [5] $\Lambda_h$ $2000/36500$ per day [5] $\beta_h$ $2\times10^{-6}$ per day [5] $\mu_h$ $5.48\times10^{-5}$ per day [26,37] $\delta_h$ 0.001 per day [26,37] $\gamma$ 0.1 per day [26,37] $c$ 0.5 Assumed $\alpha$ 0.1 Assumed $\alpha_1$ 0.01 Assumed $\alpha_2$ 0.03 Assumed $\beta_1$ 0.01 Assumed $\beta_2$ 0.01 Assumed
 Parameter Value Source of data $\Lambda_a$ $1000/245$ per day [5,9] $\beta_a$ $5.1\times10^{-4}$ per day [5], $\mu_a$ $1/245$ per day [5,9] $\delta_a$ $1/400$ per day [5] $\Lambda_h$ $2000/36500$ per day [5] $\beta_h$ $2\times10^{-6}$ per day [5] $\mu_h$ $5.48\times10^{-5}$ per day [26,37] $\delta_h$ 0.001 per day [26,37] $\gamma$ 0.1 per day [26,37] $c$ 0.5 Assumed $\alpha$ 0.1 Assumed $\alpha_1$ 0.01 Assumed $\alpha_2$ 0.03 Assumed $\beta_1$ 0.01 Assumed $\beta_2$ 0.01 Assumed
Values of objective function under different control variables for model (2)
 Value of control $\mathbf{u(t)}$ Value of objective function ($\times10^4$) $u_1(t), u_2(t), u_3(t)\equiv0$ (Without control) $1.4681$ $u_1(t) \neq 0, u_2(t), u_3(t)\equiv0$ $1.2038$ $u_2(t) \neq 0, u_1(t), u_3(t)\equiv0$ $1.4692$ $u_3(t) \neq 0, u_1(t), u_2(t)\equiv0$ $1.4684$ $u_1(t), u_2(t) \neq 0, u_3(t)\equiv0$ $1.2039$ $u_1(t), u_3(t) \neq 0, u_2(t)\equiv0$ $1.2041$ $u_2(t), u_3(t) \neq 0, u_1(t)\equiv0$ $1.4692$ $u_1(t), u_2(t), u_3(t) \neq 0$ (With all of controls) $1.2043$
 Value of control $\mathbf{u(t)}$ Value of objective function ($\times10^4$) $u_1(t), u_2(t), u_3(t)\equiv0$ (Without control) $1.4681$ $u_1(t) \neq 0, u_2(t), u_3(t)\equiv0$ $1.2038$ $u_2(t) \neq 0, u_1(t), u_3(t)\equiv0$ $1.4692$ $u_3(t) \neq 0, u_1(t), u_2(t)\equiv0$ $1.4684$ $u_1(t), u_2(t) \neq 0, u_3(t)\equiv0$ $1.2039$ $u_1(t), u_3(t) \neq 0, u_2(t)\equiv0$ $1.2041$ $u_2(t), u_3(t) \neq 0, u_1(t)\equiv0$ $1.4692$ $u_1(t), u_2(t), u_3(t) \neq 0$ (With all of controls) $1.2043$
 [1] Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033 [2] Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046 [3] Ming Chen, Hao Wang. Dynamics of a discrete-time stoichiometric optimal foraging model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 107-120. doi: 10.3934/dcdsb.2020264 [4] Arthur Fleig, Lars Grüne. Strict dissipativity analysis for classes of optimal control problems involving probability density functions. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020053 [5] George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003 [6] Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321 [7] A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441 [8] Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control & Related Fields, 2021, 11 (1) : 169-188. doi: 10.3934/mcrf.2020032 [9] Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347 [10] Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019 [11] Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032 [12] Zhimin Li, Tailei Zhang, Xiuqing Li. Threshold dynamics of stochastic models with time delays: A case study for Yunnan, China. Electronic Research Archive, 2021, 29 (1) : 1661-1679. doi: 10.3934/era.2020085 [13] Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021013 [14] Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354 [15] Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432 [16] Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044 [17] Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391 [18] Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269 [19] Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571 [20] Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021007

2019 Impact Factor: 1.27

## Tools

Article outline

Figures and Tables