
-
Previous Article
Collective behaviors of a Winfree ensemble on an infinite cylinder
- DCDS-B Home
- This Issue
-
Next Article
Stochastic and deterministic SIS patch model
On predation effort allocation strategy over two patches
1. | Department of Applied Mathematics, National Pingtung University, Pingtung 90003, Taiwan |
2. | Department of Applied Mathematics, University of Western Ontario, London, ON, Canada N6A 5B7 |
In this paper, we formulate an ODE model to describe the population dynamics of one non-dispersing prey and two dispersing predators in a two-patch environment with spatial heterogeneity. The dispersals of the predators are implicitly reflected by the allocation of their presence (foraging time) in each patch. We analyze the dynamics of the model and discuss some biological implications of the theoretical results on the dynamics of the model. Particularly, we relate the results to the evolution of the allocation strategy and explore the impact of the spatial heterogeneity and the difference in fitness of the two predators on the allocation strategy. Under certain range of other parameters, we observe the existence of an evolutionarily stable strategy (ESS) while in some other ranges, the ESS disappears. We also discuss some possible extensions of the model. Particularly, when the model is modified to allow distinct preys in the two patches, we find that the heterogeneity in predation rates and biomass transfer rates in the two patches caused by such a modification may lead to otherwise impossible bi-stability for some pairs of equilibria.
References:
[1] |
R. S. Cantrell, C. Cosner, D. L. Deangelis and V. Padron,
The ideal free distribution as an evolutionarily stable strategy, J. Biol. Dyn., 1 (2007), 249-271.
doi: 10.1080/17513750701450227. |
[2] |
R. S. Cantrell, C. Cosner and Y. Lou,
Evolutionary stability of ideal free dispersal strategies in patchy environments, J. Math. Biol., 65 (2012), 943-965.
doi: 10.1007/s00285-011-0486-5. |
[3] |
R. S. Cantrell, C. Cosner and S. Ruan,
Intraspecific interference and consumer-resource dynamics, Disc. Cont. Dyn. Syst. B, 4 (2004), 527-546.
doi: 10.3934/dcdsb.2004.4.527. |
[4] |
J. Colbert, E. Danchin, A. A. Dhondt and J. D. Nichols, Dispersal, Oxford University Press, New York, 2001. Google Scholar |
[5] | S. Creel and N. M. Dreel, The African Wild Dog: Behavior, Ecology and Conservation, Princeton University Press, Princeton, 2002. Google Scholar |
[6] |
R. Cressman, V. Křivan and J. Garay,
Ideal free distributions, evolutionary games, and population dynamics in multiple-species environments, Amer. Natur., 164 (2004), 473-489.
doi: 10.1086/423827. |
[7] |
R. Cressman and V. Křivan,
Migration dynamics for the ideal free distribution, Amer. Natur., 168 (2006), 384-397.
doi: 10.1086/506970. |
[8] |
J. Cui, Y. Takeuchi and Z. Lin,
Permanence and extinction for dispersal population systems, J. Math. Anal. Appl., 298 (2004), 73-93.
doi: 10.1016/j.jmaa.2004.02.059. |
[9] |
J. Dockery, V. Hutson, K. Mischaikow and M. Pernarowski,
The evolution of slow dispersal rates: A reaction-diffusion model, J. Math. Biol., 37 (1998), 61-83.
doi: 10.1007/s002850050120. |
[10] |
S. D. Fretwell and H. L. Lucas,
On territorial behavior and other factors influencing habitat selection in birds, Acta Biotheor., 19 (1969), 16-36.
doi: 10.1007/BF01601953. |
[11] |
J. K. Hale and P. Waltman,
Persistence in infinite-dimensional systems, SIAM J. Math. Anal., 20 (1989), 388-395.
doi: 10.1137/0520025. |
[12] |
X. He and W.-M. Ni,
The effects of diffusion and spatial variation in Lotka-Volterra competition diffusion system I: Heterogeneity vs. homogeneity, J. Differ. Eqs., 254 (2013), 528-546.
doi: 10.1016/j.jde.2012.08.032. |
[13] |
S. B. Hsu, S. P. Hubbell and P. Waltman,
Competing predators, SIAM J. Appl. Math., 35 (1978), 617-625.
doi: 10.1137/0135051. |
[14] |
S. B. Hsu, S. P. Hubbell and P. Waltman,
A contribution to the theory of competing predators, Ecological Monographs, 48 (1978), 337-349.
doi: 10.2307/2937235. |
[15] |
Y. Kang, S. K. Sasmal and K. Messan,
Two-patch prey-predator model with predator dispersal driven by the predation strength, Math. Biosci. Eng., 14 (2017), 843-880.
doi: 10.3934/mbe.2017046. |
[16] |
V. Křvan,
The Lotka-Volterra predator-prey model with foraging-predation risk trade-offs, Amer. Natur., 170 (2007), 771-782.
doi: 10.1086/522055. |
[17] |
Y. Kuang and Y. Takeuchi,
Predator-prey dynamics in models of prey dispersal in two-patch environments, Math. Biosci., 120 (1994), 77-98.
doi: 10.1016/0025-5564(94)90038-8. |
[18] |
M. Kummel, D. Brown and A. Bruder,
How the aphids got their spots: Predation drives self-organization of aphid colonies in a patchy habitat, Oikos, 122 (2013), 896-906.
doi: 10.1111/j.1600-0706.2012.20805.x. |
[19] |
S. A. Levin,
Community equilibria and stability, and an extension of the competitive exclusion principle, Amer. Natur., 104 (1970), 413-423.
doi: 10.1086/282676. |
[20] |
J. Llibre and D. Xiao,
Global dynamics of a Lotka-Volterra model with two predators competing for one prey, SIAM J. Appl. Math., 74 (2014), 434-453.
doi: 10.1137/130923907. |
[21] |
Y. Lou,
On the effects of migration and spatial heterogeneity on single and multiple species, J. Differ. Eqs., 223 (2006), 400-426.
doi: 10.1016/j.jde.2005.05.010. |
[22] |
S. Lowe, M. Browne and S. Boudjelas, 100 of the World's Worst Invasive Alien Species. A Selection from the Global Invasive Species Database, Invasive Species Specialist Group, Auckland, New Zealand, 2000. Google Scholar |
[23] |
R. H. MacArthur, Geographical Ecology, Harper and Row, New York, USA, 1972. Google Scholar |
[24] |
R. MacArthur and R. Levins,
Competition, habitat selection, and character displacement in a patchy environment, Proc. Natl. Acad. Sci. USA, 51 (1964), 1207-1210.
doi: 10.1073/pnas.51.6.1207. |
[25] |
M. Martcheva and S. S. Pilyugin,
The role of coinfection in multi-disease dynamics, SIAM J. Appl. Math., 66 (2006), 843-872.
doi: 10.1137/040619272. |
[26] |
R. M. May, Stability and Complexity in Model Ecosystems, Princeton University Press, Princeton, NJ, 1973. Google Scholar |
[27] |
K. Messan and Y. Kang,
A two patch prey-predator model with multiple foraging strategies in predators, Disc. Cont. Dyn. Syst. B, 22 (2017), 947-976.
doi: 10.3934/dcdsb.2017048. |
[28] |
D. W. Morris,
Adaptation and habitat selection in the eco-evolutionary process, Proc. R. Soc. Lond. B, 27 (2011), 2401-2411.
doi: 10.1098/rspb.2011.0604. |
[29] |
J. Passarge, S. Hol, M. Escher and J. Huisman,
Competition for nutrients and light: Stable coexistence, alternative stable states, or competitive exclusion?, Ecological Monographs, 76 (2006), 57-72.
doi: 10.1890/04-1824. |
[30] |
D. Pimentel, Biological Invasions: Economic and Environmental Costs of Alien Plant, Animal, and Microbe Species, CRC Press, New York, 2002.
doi: 10.1201/9781420041668. |
[31] |
H. R. Thieme,
Persistence under relaxed point-dissipativity (with application to an endemic model), SIAM J. Math. Anal., 24 (1993), 407-435.
doi: 10.1137/0524026. |
[32] |
X. Wang and X. Zou,
On a two-patch predator-prey model with adaptive habitancy of predators, Disc. Cont. Dyn. Syst. B, 21 (2016), 677-697.
doi: 10.3934/dcdsb.2016.21.677. |
[33] |
D. K. Wasko and M. Sasa,
Food resources influence spatial ecology, habitat selection, and foraging behavior in an ambush-hunting snake (Viperidae: Bothrops asper): An experimental study, Zoology, 115 (2012), 179-187.
doi: 10.1016/j.zool.2011.10.001. |
[34] |
M. H. Williamson, Biological Invasions, Chapman and Hall, London, 1996. Google Scholar |
[35] |
X.-Q. Zhao,
Uniform persistence and periodic coexistence states in infinite dimensional periodic semiflows with applications, Can. Appl. Math. Quart.B, 3 (1995), 473-495.
|
show all references
References:
[1] |
R. S. Cantrell, C. Cosner, D. L. Deangelis and V. Padron,
The ideal free distribution as an evolutionarily stable strategy, J. Biol. Dyn., 1 (2007), 249-271.
doi: 10.1080/17513750701450227. |
[2] |
R. S. Cantrell, C. Cosner and Y. Lou,
Evolutionary stability of ideal free dispersal strategies in patchy environments, J. Math. Biol., 65 (2012), 943-965.
doi: 10.1007/s00285-011-0486-5. |
[3] |
R. S. Cantrell, C. Cosner and S. Ruan,
Intraspecific interference and consumer-resource dynamics, Disc. Cont. Dyn. Syst. B, 4 (2004), 527-546.
doi: 10.3934/dcdsb.2004.4.527. |
[4] |
J. Colbert, E. Danchin, A. A. Dhondt and J. D. Nichols, Dispersal, Oxford University Press, New York, 2001. Google Scholar |
[5] | S. Creel and N. M. Dreel, The African Wild Dog: Behavior, Ecology and Conservation, Princeton University Press, Princeton, 2002. Google Scholar |
[6] |
R. Cressman, V. Křivan and J. Garay,
Ideal free distributions, evolutionary games, and population dynamics in multiple-species environments, Amer. Natur., 164 (2004), 473-489.
doi: 10.1086/423827. |
[7] |
R. Cressman and V. Křivan,
Migration dynamics for the ideal free distribution, Amer. Natur., 168 (2006), 384-397.
doi: 10.1086/506970. |
[8] |
J. Cui, Y. Takeuchi and Z. Lin,
Permanence and extinction for dispersal population systems, J. Math. Anal. Appl., 298 (2004), 73-93.
doi: 10.1016/j.jmaa.2004.02.059. |
[9] |
J. Dockery, V. Hutson, K. Mischaikow and M. Pernarowski,
The evolution of slow dispersal rates: A reaction-diffusion model, J. Math. Biol., 37 (1998), 61-83.
doi: 10.1007/s002850050120. |
[10] |
S. D. Fretwell and H. L. Lucas,
On territorial behavior and other factors influencing habitat selection in birds, Acta Biotheor., 19 (1969), 16-36.
doi: 10.1007/BF01601953. |
[11] |
J. K. Hale and P. Waltman,
Persistence in infinite-dimensional systems, SIAM J. Math. Anal., 20 (1989), 388-395.
doi: 10.1137/0520025. |
[12] |
X. He and W.-M. Ni,
The effects of diffusion and spatial variation in Lotka-Volterra competition diffusion system I: Heterogeneity vs. homogeneity, J. Differ. Eqs., 254 (2013), 528-546.
doi: 10.1016/j.jde.2012.08.032. |
[13] |
S. B. Hsu, S. P. Hubbell and P. Waltman,
Competing predators, SIAM J. Appl. Math., 35 (1978), 617-625.
doi: 10.1137/0135051. |
[14] |
S. B. Hsu, S. P. Hubbell and P. Waltman,
A contribution to the theory of competing predators, Ecological Monographs, 48 (1978), 337-349.
doi: 10.2307/2937235. |
[15] |
Y. Kang, S. K. Sasmal and K. Messan,
Two-patch prey-predator model with predator dispersal driven by the predation strength, Math. Biosci. Eng., 14 (2017), 843-880.
doi: 10.3934/mbe.2017046. |
[16] |
V. Křvan,
The Lotka-Volterra predator-prey model with foraging-predation risk trade-offs, Amer. Natur., 170 (2007), 771-782.
doi: 10.1086/522055. |
[17] |
Y. Kuang and Y. Takeuchi,
Predator-prey dynamics in models of prey dispersal in two-patch environments, Math. Biosci., 120 (1994), 77-98.
doi: 10.1016/0025-5564(94)90038-8. |
[18] |
M. Kummel, D. Brown and A. Bruder,
How the aphids got their spots: Predation drives self-organization of aphid colonies in a patchy habitat, Oikos, 122 (2013), 896-906.
doi: 10.1111/j.1600-0706.2012.20805.x. |
[19] |
S. A. Levin,
Community equilibria and stability, and an extension of the competitive exclusion principle, Amer. Natur., 104 (1970), 413-423.
doi: 10.1086/282676. |
[20] |
J. Llibre and D. Xiao,
Global dynamics of a Lotka-Volterra model with two predators competing for one prey, SIAM J. Appl. Math., 74 (2014), 434-453.
doi: 10.1137/130923907. |
[21] |
Y. Lou,
On the effects of migration and spatial heterogeneity on single and multiple species, J. Differ. Eqs., 223 (2006), 400-426.
doi: 10.1016/j.jde.2005.05.010. |
[22] |
S. Lowe, M. Browne and S. Boudjelas, 100 of the World's Worst Invasive Alien Species. A Selection from the Global Invasive Species Database, Invasive Species Specialist Group, Auckland, New Zealand, 2000. Google Scholar |
[23] |
R. H. MacArthur, Geographical Ecology, Harper and Row, New York, USA, 1972. Google Scholar |
[24] |
R. MacArthur and R. Levins,
Competition, habitat selection, and character displacement in a patchy environment, Proc. Natl. Acad. Sci. USA, 51 (1964), 1207-1210.
doi: 10.1073/pnas.51.6.1207. |
[25] |
M. Martcheva and S. S. Pilyugin,
The role of coinfection in multi-disease dynamics, SIAM J. Appl. Math., 66 (2006), 843-872.
doi: 10.1137/040619272. |
[26] |
R. M. May, Stability and Complexity in Model Ecosystems, Princeton University Press, Princeton, NJ, 1973. Google Scholar |
[27] |
K. Messan and Y. Kang,
A two patch prey-predator model with multiple foraging strategies in predators, Disc. Cont. Dyn. Syst. B, 22 (2017), 947-976.
doi: 10.3934/dcdsb.2017048. |
[28] |
D. W. Morris,
Adaptation and habitat selection in the eco-evolutionary process, Proc. R. Soc. Lond. B, 27 (2011), 2401-2411.
doi: 10.1098/rspb.2011.0604. |
[29] |
J. Passarge, S. Hol, M. Escher and J. Huisman,
Competition for nutrients and light: Stable coexistence, alternative stable states, or competitive exclusion?, Ecological Monographs, 76 (2006), 57-72.
doi: 10.1890/04-1824. |
[30] |
D. Pimentel, Biological Invasions: Economic and Environmental Costs of Alien Plant, Animal, and Microbe Species, CRC Press, New York, 2002.
doi: 10.1201/9781420041668. |
[31] |
H. R. Thieme,
Persistence under relaxed point-dissipativity (with application to an endemic model), SIAM J. Math. Anal., 24 (1993), 407-435.
doi: 10.1137/0524026. |
[32] |
X. Wang and X. Zou,
On a two-patch predator-prey model with adaptive habitancy of predators, Disc. Cont. Dyn. Syst. B, 21 (2016), 677-697.
doi: 10.3934/dcdsb.2016.21.677. |
[33] |
D. K. Wasko and M. Sasa,
Food resources influence spatial ecology, habitat selection, and foraging behavior in an ambush-hunting snake (Viperidae: Bothrops asper): An experimental study, Zoology, 115 (2012), 179-187.
doi: 10.1016/j.zool.2011.10.001. |
[34] |
M. H. Williamson, Biological Invasions, Chapman and Hall, London, 1996. Google Scholar |
[35] |
X.-Q. Zhao,
Uniform persistence and periodic coexistence states in infinite dimensional periodic semiflows with applications, Can. Appl. Math. Quart.B, 3 (1995), 473-495.
|








Equilibrium | Existence | Stability | Condition for stability |
always exists | unstable | ||
always exists | LS | ||
LS | |||
LS | |||
LS | Cond-1 | ||
LS | |||
LS | |||
LS | Cond-2 | ||
Theorem 3.8 |
Equilibrium | Existence | Stability | Condition for stability |
always exists | unstable | ||
always exists | LS | ||
LS | |||
LS | |||
LS | Cond-1 | ||
LS | |||
LS | |||
LS | Cond-2 | ||
Theorem 3.8 |
Value of |
I-1 | I-2 | I-3 | I-4 |
Conditions | ||||
Value of |
I-1 | I-2 | I-3 | I-4 |
Conditions | ||||
Value of |
I-1 | I-2 | I-3 | I-4 |
Conditions | ||||
Value of |
I-1 | I-2 | I-3 | I-4 |
Conditions | ||||
[1] |
Guihong Fan, Gail S. K. Wolkowicz. Chaotic dynamics in a simple predator-prey model with discrete delay. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 191-216. doi: 10.3934/dcdsb.2020263 |
[2] |
Jinfeng Wang, Sainan Wu, Junping Shi. Pattern formation in diffusive predator-prey systems with predator-taxis and prey-taxis. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1273-1289. doi: 10.3934/dcdsb.2020162 |
[3] |
Claudio Arancibia-Ibarra, José Flores, Michael Bode, Graeme Pettet, Peter van Heijster. A modified May–Holling–Tanner predator-prey model with multiple Allee effects on the prey and an alternative food source for the predator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 943-962. doi: 10.3934/dcdsb.2020148 |
[4] |
Ching-Hui Wang, Sheng-Chen Fu. Traveling wave solutions to diffusive Holling-Tanner predator-prey models. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021007 |
[5] |
Yu Jin, Xiang-Qiang Zhao. The spatial dynamics of a Zebra mussel model in river environments. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020362 |
[6] |
Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020468 |
[7] |
Alex P. Farrell, Horst R. Thieme. Predator – Prey/Host – Parasite: A fragile ecoepidemic system under homogeneous infection incidence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 217-267. doi: 10.3934/dcdsb.2020328 |
[8] |
Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020426 |
[9] |
Attila Dénes, Gergely Röst. Single species population dynamics in seasonal environment with short reproduction period. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020288 |
[10] |
Linfeng Mei, Feng-Bin Wang. Dynamics of phytoplankton species competition for light and nutrient with recycling in a water column. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020359 |
[11] |
Xueli Bai, Fang Li. Global dynamics of competition models with nonsymmetric nonlocal dispersals when one diffusion rate is small. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3075-3092. doi: 10.3934/dcds.2020035 |
[12] |
Yunfeng Geng, Xiaoying Wang, Frithjof Lutscher. Coexistence of competing consumers on a single resource in a hybrid model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 269-297. doi: 10.3934/dcdsb.2020140 |
[13] |
Yuanshi Wang. Asymmetric diffusion in a two-patch mutualism system characterizing exchange of resource for resource. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 963-985. doi: 10.3934/dcdsb.2020149 |
[14] |
Mahir Demir, Suzanne Lenhart. A spatial food chain model for the Black Sea Anchovy, and its optimal fishery. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 155-171. doi: 10.3934/dcdsb.2020373 |
[15] |
Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019 |
[16] |
Maicon Sônego. Stable transition layers in an unbalanced bistable equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020370 |
[17] |
Niklas Kolbe, Nikolaos Sfakianakis, Christian Stinner, Christina Surulescu, Jonas Lenz. Modeling multiple taxis: Tumor invasion with phenotypic heterogeneity, haptotaxis, and unilateral interspecies repellence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 443-481. doi: 10.3934/dcdsb.2020284 |
[18] |
Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020464 |
[19] |
Kimie Nakashima. Indefinite nonlinear diffusion problem in population genetics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3837-3855. doi: 10.3934/dcds.2020169 |
[20] |
Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]