January  2021, 26(1): 367-400. doi: 10.3934/dcdsb.2020283

Ecological and evolutionary dynamics in advective environments: Critical domain size and boundary conditions

1. 

Department of Mathematics, Pennsylvania State University, University Park, PA 16802, USA

2. 

Department of Mathematics, The Ohio State University, Columbus, OH 43210, USA

* Corresponding author: lam.184@math.ohio-state.edu

Received  March 2020 Revised  August 2020 Published  September 2020

Fund Project: The first author is supported by NSF grant DMS-1818769. The second and third authors are supported by NSF grant DMS-1853561

We consider the ecological and evolutionary dynamics of a reaction-diffusion-advection model for populations residing in a one-dimensional advective homogeneous environment, with emphasis on the effects of boundary conditions and domain size. We assume that there is a net loss of individuals at the downstream end with rate $ b \geq 0 $, while the no-flux condition is imposed on the upstream end. For the single species model, it is shown that the critical patch size is a decreasing function of the dispersal rate when $ b \leq 3/2 $; whereas it first decreases and then increases when $ b >3/2 $.

For the two-species competition model, we show that the infinite dispersal rate is evolutionarily stable for $ b < 3/2 $ and, when dispersal rates of both species are large, the population with larger dispersal rate always displaces the population with the smaller rate. For certain specific population loss rate $ b<3/2 $, it is also shown that there can be up to three evolutionarily stable strategies. For $ b>3/2 $, it is proved that the infinite random dispersal rate is not evolutionarily stable, and that, for some specific $ b>3/2 $, a finite dispersal rate is evolutionarily stable. Furthermore, for the intermediate domain size, this dispersal rate is optimal in the sense that the species adopting this rate is able to displace its competitor with a similar but different rate. Finally, nine qualitatively different pairwise invasibility plots are obtained by varying the parameter $ b $ and the domain size.

Citation: Wenrui Hao, King-Yeung Lam, Yuan Lou. Ecological and evolutionary dynamics in advective environments: Critical domain size and boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 367-400. doi: 10.3934/dcdsb.2020283
References:
[1]

M. BallykL. DungD. A. Jones and H. L. Smith, Effects of random motility on microbial growth and competition in a flow reactor, SIAM J. Appl. Math., 59 (1999), 573-596.  doi: 10.1137/S0036139997325345.  Google Scholar

[2]

H. BerestyckiO. DiekmannC. J. Nagelkerke and P. A. Zegeling, Can a species keep pace with a shifting climate?, Bull. Math. Biol., 71 (2009), 399-429.  doi: 10.1007/s11538-008-9367-5.  Google Scholar

[3]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley Series in Mathematical and Computational Biology, John Wiley & Sons, Ltd., Chichester, 2003. doi: 10.1002/0470871296.  Google Scholar

[4]

R. S. CantrellC. Cosner and K.-Y. Lam, On resident-invader dynamics in infinite dimensional dynamical systems, J. Differential Equations, 263 (2017), 4565-4616.   Google Scholar

[5]

R. S. CantrellC. CosnerM. A. Lewis and Y. Lou, Evolution of dispersal in spatial population models with multiple timescales, J. Math. Biol., 80 (2020), 3-37.  doi: 10.1007/s00285-018-1302-2.  Google Scholar

[6]

R. S. CantrellC. Cosner and Y. Lou, Advection-mediated coexistence of competing species, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 497-518.  doi: 10.1017/S0308210506000047.  Google Scholar

[7]

X. ChenK.-Y. Lam and Y. Lou, Dynamics of a reaction-diffusion-advection model for two competing species, Discrete Contin. Dyn. Syst. A, 32 (2012), 3841-3859.  doi: 10.3934/dcds.2012.32.3841.  Google Scholar

[8] F. Dercole and S. Rinaldi, Analysis of Evolutionary Processes. The Adaptive Dynamics Approach and its Applications, Princeton University Press, Princeton, 2008.   Google Scholar
[9]

U. Dieckmann and R. Law, The dynamical theory of coevolution: A derivation from stochastic ecological processes, J. Math. Biol., 34 (1996), 579-612.  doi: 10.1007/BF02409751.  Google Scholar

[10]

J. DockeryV. HutsonK. Mischaikow and M. Pernarowski, The evolution of slow dispersal rates: A reaction-diffusion model, J. Math. Biol., 37 (1998), 61-83.  doi: 10.1007/s002850050120.  Google Scholar

[11]

S. A. H. GeritzE. KisdiG. Meszena and J. A. J. Metz, Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree, Evol. Ecol., 12 (1998), 35-57.   Google Scholar

[12]

M. GolubitskyW. HaoK.-Y. Lam and Y. Lou, Dimorphism by singularity theory in a model for river ecology, Bull. Math. Biol., 79 (2017), 1051-1069.  doi: 10.1007/s11538-017-0268-3.  Google Scholar

[13]

R. Hambrock and Y. Lou, The evolution of conditional dispersal strategy in spatially heterogeneous habitats, Bull. Math. Biol., 71 (2009), 1793-1817.  doi: 10.1007/s11538-009-9425-7.  Google Scholar

[14]

W. Hao and C. Zheng, An adaptive homotopy method for computing bifurcations of nonlinear parametric systems, J. Sci. Comp., 82 (2020), 1-19.  doi: 10.1007/s10915-020-01160-w.  Google Scholar

[15]

A. Hastings, Can spatial variation alone lead to selection for dispersal?, Theoretical Population Biology, 24 (1983), 244-251.   Google Scholar

[16]

P. Hess, Periodic-Parabolic Boundary Value Problems and Positivity, Pitman Research Notes in Mathematics Series, 247. Longman Scientific & Technical, Harlow, copublished in the United States with John Wiley & Sons, Inc., New York, 1991.  Google Scholar

[17]

S. B. Hsu, H. L. Smith and P. Waltman, Competitive exclusion and coexistence for competitive systems on ordered Banach spaces, Trans. Amer. Math. Soc., 348 (1996), 4083-4094. doi: 10.1090/S0002-9947-96-01724-2.  Google Scholar

[18]

S.-B. Hsu and Y. Lou, Single phytoplankton species growth with light and advection in a water column, SIAM J. Appl. Math., 70 (2010), 2942-2974.  doi: 10.1137/100782358.  Google Scholar

[19]

J. HuismanM. ArrayàsU. Ebert and B. Sommeijer, How do sinking phytoplankton species manage to persist?, Amer. Nat., 159 (2002), 245-254.  doi: 10.1086/338511.  Google Scholar

[20]

T. KolokolnikovC. Ou and Y. Yuan, Profiles of self-shading, sinking phytoplankton with finite depth, J. Math. Biol., 59 (2009), 105-122.   Google Scholar

[21]

K.-Y. Lam and Y. Lou, Evolutionarily stable and convergent stable strategies in reaction-diffusion models for conditional dispersal, Bull. Math. Biol., 76 (2014), 261-291.  doi: 10.1007/s11538-013-9901-y.  Google Scholar

[22]

K.-Y. Lam and Y. Lou, Persistence, competition, and evolution, The Dynamics of Biological Systems, Math. Planet Earth, Springer, Cham, 4 (2019), 205–238.  Google Scholar

[23]

K.-Y. Lam, Y. Lou and F. Lutscher, Evolution of dispersal in closed advective environments, J. Biol. Dyn., 9 (2015), Suppl. 1,188–212. doi: 10.1080/17513758.2014.969336.  Google Scholar

[24]

K.-Y. Lam and D. Munther, A remark on the global dynamics of competitive systems on ordered Banach spaces, Proc. Amer. Math. Soc., 144 (2016), 1153-1159.  doi: 10.1090/proc12768.  Google Scholar

[25]

Y. Lou and F. Lutscher, Evolution of dispersal in open advective environments, J. Math. Biol., 69 (2014), 1319-1342.  doi: 10.1007/s00285-013-0730-2.  Google Scholar

[26]

Y. Lou and P. Zhou, Evolution of dispersal in advective homogeneous environment: The effect of boundary conditions, J. Differential Equations, 259 (2015), 141-171.  doi: 10.1016/j.jde.2015.02.004.  Google Scholar

[27]

D. LudwigD. G. Aronson and H. F. Weinberger, Spatial patterning of the spruce budworm, J. Math. Biol., 8 (1979), 217-258.  doi: 10.1007/BF00276310.  Google Scholar

[28]

F. LutscherM. A. Lewis and E. McCauley, Effects of heterogeneity on spread and persistence in rivers, Bull. Math. Biol., 68 (2006), 2129-2160.  doi: 10.1007/s11538-006-9100-1.  Google Scholar

[29]

F. LutscherE. Pachepsky and M. A. Lewis, The effect of dispersal patterns on stream populations, SIAM Rev., 47 (2005), 749-772.  doi: 10.1137/050636152.  Google Scholar

[30]

J. Maynard-Smith and G. R. Price, The logic of animal conflict, Nature, 246 (1973), 15-18.   Google Scholar

[31]

B. J. McGill and J. S. Brown, Evolutionary game theory and adaptive dynamics of continuous traits, Annu. Rev. Ecol. Evol. Syst., 38 (2007), 403-435.  doi: 10.1146/annurev.ecolsys.36.091704.175517.  Google Scholar

[32]

K. Müller, Investigations on the Organic Drift in North Swedish Streams, Tech. Report 34, Institute of Freshwater Research, Drottningholm, Sweden, 1954. Google Scholar

[33]

K. Müller, The colonization cycle of freshwater insects, Oecologica, 53 (1982), 202-207.   Google Scholar

[34]

A. Okubo and S. A. Levin, Diffusion and Ecological Problems: Modern Perspectives, Second edition, Interdisciplinary Applied Mathematics, 14, Springer-Verlag, New York, 2001. doi: 10.1007/978-1-4757-4978-6.  Google Scholar

[35]

A. B. Potapov and M. A. Lewis, Climate and competition: The effect of moving range boundaries on habitat invasibility, Bull. Math. Biol., 66 (2004), 975-1008.  doi: 10.1016/j.bulm.2003.10.010.  Google Scholar

[36] N. Shigesada and K. Kawasaki, Biological Invasions: Theory and Practice, Oxford Series in Ecology and Evolution, Oxford University Press, Oxford, New York, Tokyo, 1997.   Google Scholar
[37]

D. C. Speirs and W. S. C. Gurney, Population persistence in rivers and estuaries, Ecology, 82 (2001), 1219-1237.   Google Scholar

[38]

O. Vasilyeva and F. Lutscher, Population dynamics in rivers: Analysis of steady states, Can. Appl. Math. Quart., 18 (2010), 439-469.   Google Scholar

[39]

A. Vutha and M. Golubitsky, Normal forms and unfoldings of singular strategy functions, Dyn. Games Appl., 5 (2015), 180-213.  doi: 10.1007/s13235-014-0116-0.  Google Scholar

[40]

D. Waxman and S. Gavrilets, 20 questions on adaptive dynamics, J Evol. Biol., 18 (2005), 1139-1154.  doi: 10.1111/j.1420-9101.2005.00948.x.  Google Scholar

show all references

References:
[1]

M. BallykL. DungD. A. Jones and H. L. Smith, Effects of random motility on microbial growth and competition in a flow reactor, SIAM J. Appl. Math., 59 (1999), 573-596.  doi: 10.1137/S0036139997325345.  Google Scholar

[2]

H. BerestyckiO. DiekmannC. J. Nagelkerke and P. A. Zegeling, Can a species keep pace with a shifting climate?, Bull. Math. Biol., 71 (2009), 399-429.  doi: 10.1007/s11538-008-9367-5.  Google Scholar

[3]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley Series in Mathematical and Computational Biology, John Wiley & Sons, Ltd., Chichester, 2003. doi: 10.1002/0470871296.  Google Scholar

[4]

R. S. CantrellC. Cosner and K.-Y. Lam, On resident-invader dynamics in infinite dimensional dynamical systems, J. Differential Equations, 263 (2017), 4565-4616.   Google Scholar

[5]

R. S. CantrellC. CosnerM. A. Lewis and Y. Lou, Evolution of dispersal in spatial population models with multiple timescales, J. Math. Biol., 80 (2020), 3-37.  doi: 10.1007/s00285-018-1302-2.  Google Scholar

[6]

R. S. CantrellC. Cosner and Y. Lou, Advection-mediated coexistence of competing species, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 497-518.  doi: 10.1017/S0308210506000047.  Google Scholar

[7]

X. ChenK.-Y. Lam and Y. Lou, Dynamics of a reaction-diffusion-advection model for two competing species, Discrete Contin. Dyn. Syst. A, 32 (2012), 3841-3859.  doi: 10.3934/dcds.2012.32.3841.  Google Scholar

[8] F. Dercole and S. Rinaldi, Analysis of Evolutionary Processes. The Adaptive Dynamics Approach and its Applications, Princeton University Press, Princeton, 2008.   Google Scholar
[9]

U. Dieckmann and R. Law, The dynamical theory of coevolution: A derivation from stochastic ecological processes, J. Math. Biol., 34 (1996), 579-612.  doi: 10.1007/BF02409751.  Google Scholar

[10]

J. DockeryV. HutsonK. Mischaikow and M. Pernarowski, The evolution of slow dispersal rates: A reaction-diffusion model, J. Math. Biol., 37 (1998), 61-83.  doi: 10.1007/s002850050120.  Google Scholar

[11]

S. A. H. GeritzE. KisdiG. Meszena and J. A. J. Metz, Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree, Evol. Ecol., 12 (1998), 35-57.   Google Scholar

[12]

M. GolubitskyW. HaoK.-Y. Lam and Y. Lou, Dimorphism by singularity theory in a model for river ecology, Bull. Math. Biol., 79 (2017), 1051-1069.  doi: 10.1007/s11538-017-0268-3.  Google Scholar

[13]

R. Hambrock and Y. Lou, The evolution of conditional dispersal strategy in spatially heterogeneous habitats, Bull. Math. Biol., 71 (2009), 1793-1817.  doi: 10.1007/s11538-009-9425-7.  Google Scholar

[14]

W. Hao and C. Zheng, An adaptive homotopy method for computing bifurcations of nonlinear parametric systems, J. Sci. Comp., 82 (2020), 1-19.  doi: 10.1007/s10915-020-01160-w.  Google Scholar

[15]

A. Hastings, Can spatial variation alone lead to selection for dispersal?, Theoretical Population Biology, 24 (1983), 244-251.   Google Scholar

[16]

P. Hess, Periodic-Parabolic Boundary Value Problems and Positivity, Pitman Research Notes in Mathematics Series, 247. Longman Scientific & Technical, Harlow, copublished in the United States with John Wiley & Sons, Inc., New York, 1991.  Google Scholar

[17]

S. B. Hsu, H. L. Smith and P. Waltman, Competitive exclusion and coexistence for competitive systems on ordered Banach spaces, Trans. Amer. Math. Soc., 348 (1996), 4083-4094. doi: 10.1090/S0002-9947-96-01724-2.  Google Scholar

[18]

S.-B. Hsu and Y. Lou, Single phytoplankton species growth with light and advection in a water column, SIAM J. Appl. Math., 70 (2010), 2942-2974.  doi: 10.1137/100782358.  Google Scholar

[19]

J. HuismanM. ArrayàsU. Ebert and B. Sommeijer, How do sinking phytoplankton species manage to persist?, Amer. Nat., 159 (2002), 245-254.  doi: 10.1086/338511.  Google Scholar

[20]

T. KolokolnikovC. Ou and Y. Yuan, Profiles of self-shading, sinking phytoplankton with finite depth, J. Math. Biol., 59 (2009), 105-122.   Google Scholar

[21]

K.-Y. Lam and Y. Lou, Evolutionarily stable and convergent stable strategies in reaction-diffusion models for conditional dispersal, Bull. Math. Biol., 76 (2014), 261-291.  doi: 10.1007/s11538-013-9901-y.  Google Scholar

[22]

K.-Y. Lam and Y. Lou, Persistence, competition, and evolution, The Dynamics of Biological Systems, Math. Planet Earth, Springer, Cham, 4 (2019), 205–238.  Google Scholar

[23]

K.-Y. Lam, Y. Lou and F. Lutscher, Evolution of dispersal in closed advective environments, J. Biol. Dyn., 9 (2015), Suppl. 1,188–212. doi: 10.1080/17513758.2014.969336.  Google Scholar

[24]

K.-Y. Lam and D. Munther, A remark on the global dynamics of competitive systems on ordered Banach spaces, Proc. Amer. Math. Soc., 144 (2016), 1153-1159.  doi: 10.1090/proc12768.  Google Scholar

[25]

Y. Lou and F. Lutscher, Evolution of dispersal in open advective environments, J. Math. Biol., 69 (2014), 1319-1342.  doi: 10.1007/s00285-013-0730-2.  Google Scholar

[26]

Y. Lou and P. Zhou, Evolution of dispersal in advective homogeneous environment: The effect of boundary conditions, J. Differential Equations, 259 (2015), 141-171.  doi: 10.1016/j.jde.2015.02.004.  Google Scholar

[27]

D. LudwigD. G. Aronson and H. F. Weinberger, Spatial patterning of the spruce budworm, J. Math. Biol., 8 (1979), 217-258.  doi: 10.1007/BF00276310.  Google Scholar

[28]

F. LutscherM. A. Lewis and E. McCauley, Effects of heterogeneity on spread and persistence in rivers, Bull. Math. Biol., 68 (2006), 2129-2160.  doi: 10.1007/s11538-006-9100-1.  Google Scholar

[29]

F. LutscherE. Pachepsky and M. A. Lewis, The effect of dispersal patterns on stream populations, SIAM Rev., 47 (2005), 749-772.  doi: 10.1137/050636152.  Google Scholar

[30]

J. Maynard-Smith and G. R. Price, The logic of animal conflict, Nature, 246 (1973), 15-18.   Google Scholar

[31]

B. J. McGill and J. S. Brown, Evolutionary game theory and adaptive dynamics of continuous traits, Annu. Rev. Ecol. Evol. Syst., 38 (2007), 403-435.  doi: 10.1146/annurev.ecolsys.36.091704.175517.  Google Scholar

[32]

K. Müller, Investigations on the Organic Drift in North Swedish Streams, Tech. Report 34, Institute of Freshwater Research, Drottningholm, Sweden, 1954. Google Scholar

[33]

K. Müller, The colonization cycle of freshwater insects, Oecologica, 53 (1982), 202-207.   Google Scholar

[34]

A. Okubo and S. A. Levin, Diffusion and Ecological Problems: Modern Perspectives, Second edition, Interdisciplinary Applied Mathematics, 14, Springer-Verlag, New York, 2001. doi: 10.1007/978-1-4757-4978-6.  Google Scholar

[35]

A. B. Potapov and M. A. Lewis, Climate and competition: The effect of moving range boundaries on habitat invasibility, Bull. Math. Biol., 66 (2004), 975-1008.  doi: 10.1016/j.bulm.2003.10.010.  Google Scholar

[36] N. Shigesada and K. Kawasaki, Biological Invasions: Theory and Practice, Oxford Series in Ecology and Evolution, Oxford University Press, Oxford, New York, Tokyo, 1997.   Google Scholar
[37]

D. C. Speirs and W. S. C. Gurney, Population persistence in rivers and estuaries, Ecology, 82 (2001), 1219-1237.   Google Scholar

[38]

O. Vasilyeva and F. Lutscher, Population dynamics in rivers: Analysis of steady states, Can. Appl. Math. Quart., 18 (2010), 439-469.   Google Scholar

[39]

A. Vutha and M. Golubitsky, Normal forms and unfoldings of singular strategy functions, Dyn. Games Appl., 5 (2015), 180-213.  doi: 10.1007/s13235-014-0116-0.  Google Scholar

[40]

D. Waxman and S. Gavrilets, 20 questions on adaptive dynamics, J Evol. Biol., 18 (2005), 1139-1154.  doi: 10.1111/j.1420-9101.2005.00948.x.  Google Scholar

Figure 1.  Normal form diagrams of $ \ell^* $ against $ \mu $ for different cases of $ b $, as the illustrations of Proposition 1.3. The value of $ \mu_{\min} $ is given in (1.4)
Figure 2.  The above normal form diagrams summarize the analytical results from Theorems 1.7, 1.9 and 1.11. They illustrate the transition of 9 qualitatively different pairwise invasibility plots, i.e. nullclines of $ \Lambda(\xi,\tau) $, as parameters $ b $ and $ \ell $ vary. For a pair of strategies $ (\xi,\tau) $, if it lies on a region marked with a plus (resp. minus) sign, then it indicates that the species with strategy $ \tau $ can (resp. cannot) invade the species with strategy $ \xi $ when rare. A red circle stands for an ESS and CvSS; a red square stands for an ESS and non-CvSS; a green square stands for a non-ESS and non-CvSS
Figure 3.  Numerical simulation of the pairwise invasibility plots (i.e. the nullclines of $ \Lambda(\xi,\tau) $) for parameter values $ b = 1.49, 1.5, 1.51 $ and $ \ell = 10, 20, 50 $. The horizontal axis is $ \xi $ and the vertical axis is $ \tau $
Table 1.  Signs of the second derivatives of $ \Lambda $ at $ (\xi, \tau) = (0,0) $ when $ b = \frac{3}{2} $
$ \Lambda_{\tau\tau}(0,0) $ $ (\Lambda_{\tau\tau} + \Lambda_{\tau\xi})(0,0) $ $ \Lambda_{\xi\xi}(0,0) $
$ \ell> {51}/{2} $ $<0 $ (ESS) $>0 $ (not CvSS) $<0 $
$ {27}/{2}<\ell< {51}/{2} $ $<0 $ (ESS) $<0 $ (CvSS) $<0 $
$ {3}/{2}<\ell< {27}/{2} $ $<0 $ (ESS) $<0 $ (CvSS) $>0 $
$ \Lambda_{\tau\tau}(0,0) $ $ (\Lambda_{\tau\tau} + \Lambda_{\tau\xi})(0,0) $ $ \Lambda_{\xi\xi}(0,0) $
$ \ell> {51}/{2} $ $<0 $ (ESS) $>0 $ (not CvSS) $<0 $
$ {27}/{2}<\ell< {51}/{2} $ $<0 $ (ESS) $<0 $ (CvSS) $<0 $
$ {3}/{2}<\ell< {27}/{2} $ $<0 $ (ESS) $<0 $ (CvSS) $>0 $
[1]

Shin-Ichiro Ei, Hiroshi Ishii. The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 173-190. doi: 10.3934/dcdsb.2020329

[2]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[3]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[4]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

[5]

Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164

[6]

Xiaofeng Ren, David Shoup. The impact of the domain boundary on an inhibitory system: Interior discs and boundary half discs. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3957-3979. doi: 10.3934/dcds.2020048

[7]

Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405

[8]

Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021008

[9]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[10]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028

[11]

Cheng Peng, Zhaohui Tang, Weihua Gui, Qing Chen, Jing He. A bidirectional weighted boundary distance algorithm for time series similarity computation based on optimized sliding window size. Journal of Industrial & Management Optimization, 2021, 17 (1) : 205-220. doi: 10.3934/jimo.2019107

[12]

Hirofumi Izuhara, Shunsuke Kobayashi. Spatio-temporal coexistence in the cross-diffusion competition system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 919-933. doi: 10.3934/dcdss.2020228

[13]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[14]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[15]

Masaharu Taniguchi. Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3981-3995. doi: 10.3934/dcds.2020126

[16]

Alexandra Köthe, Anna Marciniak-Czochra, Izumi Takagi. Hysteresis-driven pattern formation in reaction-diffusion-ODE systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3595-3627. doi: 10.3934/dcds.2020170

[17]

Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049

[18]

Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053

[19]

Qing Li, Yaping Wu. Existence and instability of some nontrivial steady states for the SKT competition model with large cross diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3657-3682. doi: 10.3934/dcds.2020051

[20]

Xueli Bai, Fang Li. Global dynamics of competition models with nonsymmetric nonlocal dispersals when one diffusion rate is small. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3075-3092. doi: 10.3934/dcds.2020035

2019 Impact Factor: 1.27

Article outline

Figures and Tables

[Back to Top]