
-
Previous Article
Stochastic modelling and analysis of harvesting model: Application to "summer fishing moratorium" by intermittent control
- DCDS-B Home
- This Issue
-
Next Article
Existence-uniqueness and stability of the mild periodic solutions to a class of delayed stochastic partial differential equations and its applications
A flow on $ S^2 $ presenting the ball as its minimal set
1. | Departamento de Computação e Matemática, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900, zip code 14040-901, Ribeirão Preto, SP, Brazil |
2. | Instituto Federal de Educação, Ciência e Tecnologia de Minas Gerais, Rua São Luiz Gonzaga, zip code 35577-020, Formiga, MG, Brazil |
The main goal of this paper is to present the existence of a vector field tangent to the unit sphere $ S^2 $ such that $ S^2 $ itself is a minimal set. This is reached using a piecewise smooth (discontinuous) vector field and following the Filippov's convention on the switching manifold. As a consequence, none regularization process applied to the initial model can be topologically equivalent to it and we obtain a vector field tangent to $ S^2 $ without equilibria.
References:
[1] |
D. C. Braga, A. F. da Fonseca and L. F. Mello,
Study of limit cycles in piecewise smooth perturbations of Hamiltonian centers via regularization method, Electronic Journal of Qualitative Theory of Differential Equations, 79 (2017), 1-13.
doi: 10.14232/ejqtde.2017.1.79. |
[2] |
L. E. J. Brouwer, On continuous vector distributions on surfaces, in Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), 11 (1909), 850–858, https://www.dwc.knaw.nl/DL/publications/PU00013599.pdf. Google Scholar |
[3] |
C. A. Buzzi, T. de Carvalho and R. D. Euzébio,
Chaotic planar piecewise smooth vector fields with non-trivial minimal sets, Ergodic Theory and Dynamical Systems, 36 (2016), 458-469.
doi: 10.1017/etds.2014.67. |
[4] |
C. A. Buzzi, T. Carvalho and R. D. Euzébio,
On Poincaré-Bendixson theorem and non-trivial minimal sets in planar nonsmooth vector fields, Publicacions Matemàtiques, 62 (2018), 113-131.
doi: 10.5565/PUBLMAT6211806. |
[5] |
T. Carvalho and L. F. Gonçalves,
Combing the hairy ball using a vector field without equilibria, Journal of Dynamical and Control Systems, 26 (2020), 233-242.
doi: 10.1007/s10883-019-09446-5. |
[6] |
R. Cristiano, T. Carvalho, D. J. Tonon and D. J. Pagano,
Hopf and Homoclinic bifurcations on the sliding vector field of switching systems in $\mathbb{R}^3$: A case study in power electronics, Physica D: Nonlinear Phenomena, 347 (2017), 12-20.
doi: 10.1016/j.physd.2017.02.005. |
[7] |
T. Carvalho, D. D. Novaes and L. F. Gonçalves, Sliding Shilnikov connection in Filippov-type predator-prey model, Nonlinear Dynamics, 100 (2020), 2973-2987. Google Scholar |
[8] |
T. de Carvalho,
On the closing lemma for planar piecewise smooth vector fields, Journal de Mathématiques Pures et Appliquées, 106 (2016), 1174-1185.
doi: 10.1016/j.matpur.2016.04.006. |
[9] |
T. de Carvalho and D. J. Tonon,
Generic bifurcations of planar Filippov systems via geometric singular perturbations, Bull. Belg. Math. Soc. Simon Stevin, 18 (2011), 861-881.
|
[10] |
A. Denjoy, Sur les courbes définies par les équations différentielles à la surface du tore, Journal de Mathématiques Pures et Appliquées, 11 (1932), 333–376, http://eudml.org/doc/234887. Google Scholar |
[11] |
M. di Bernardo, K. H. Johansson and F. Vasca, Self-oscillations and sliding in relay feedback systems: Symmetry and bifurcations, International Journal of Bifurcation and Chaos, 11 (2001), 1121-1140. Google Scholar |
[12] |
D. D. Dixon,
Piecewise deterministic dynamics from the application of noise to singular equations of motion, Journal of Physics A: Mathematical and General, 28 (1995), 5539-5551.
|
[13] |
N. M. Drissa, Fixed Point, Game and Selection Theory: From the Hairy Ball Theorem to A Non Hair-Pulling Conversation, PhD thesis, Université Paris 1 Panthéon-Sorbonne, 2016, http://hdl.handle.net/10579/8840. Google Scholar |
[14] |
A. F. Filippov, Differential Equations with Discontinuous Righthand Sides, Mathematics and its Applications, 1st edition, Springer Netherlands, 1988.
doi: 10.1007/978-94-015-7793-9. |
[15] |
C. Gutiérrez,
Smoothing continuous flows on two-manifolds and recurrences, Ergodic Theory and Dynamical Systems, 6 (1986), 17-44.
doi: 10.1017/S0143385700003278. |
[16] |
A. Jacquemard and D. J. Tonon,
Coupled systems of non-smooth differential equations, Bulletin des Sciences Mathématiques, 136 (2012), 239-255.
doi: 10.1016/j.bulsci.2012.01.006. |
[17] |
T. Kousaka, T. Kido, T. Ueta, H. Kawakami and M. Abe, Analysis of border-collision bifurcation in a simple circuit, 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353), 2 (2000), 481-484. Google Scholar |
[18] |
V. Křivan,
On the gause predator-prey model with a refuge: A fresh look at the history, Journal of Theoretical Biology, 274 (2011), 67-73.
doi: 10.1016/j.jtbi.2011.01.016. |
[19] |
R. Leine and H. Nijmeijer, Dynamics and Bifurcations of Non-Smooth Mechanical Systems, Lecture Notes in Applied and Computational Mechanics, 1st edition, Springer-Verlag Berlin Heidelberg, 2004. Google Scholar |
[20] |
J. Llibre, P. R. Silva and M. A. Teixeira, Regularization of discontinuous vector fields on $\mathbb{R}^3$ via singular perturbation, Journal of Dynamics and Differential Equations, 19 (2007), 309-331. Google Scholar |
[21] |
J. Llibre and M. A. Teixeira,
Regularization of discontinuous vector fields in dimension three, Discrete & Continuous Dynamical Systems - A, 3 (1997), 235-241.
doi: 10.3934/dcds.1997.3.235. |
[22] |
J. Milnor,
Analytic proofs of the "hairy ball theorem" and the brouwer fixed point theorem, The American Mathematical Monthly, 85 (1978), 521-524.
doi: 10.2307/2320860. |
[23] |
L. Perko, Differential Equations and Dynamical Systems, Texts in Applied Mathematics, 3rd edition, Springer-Verlag New York, 2001.
doi: 10.1007/978-1-4613-0003-8. |
[24] |
S. H. Piltz, M. A. Porter and P. K. Maini,
Prey switching with a linear preference trade-off, SIAM Journal on Applied Dynamical Systems, 13 (2014), 658-682.
doi: 10.1137/130910920. |
[25] |
D. S. Rodrigues, P. F. A. Mancera, T. Carvalho and L. F. Gonçalves, Sliding mode control in a mathematical model to chemoimmunotherapy: The occurrence of typical singularities, Applied Mathematics and Computation, 387 (2020), 124782.
doi: 10.1016/j.amc.2019.124782. |
[26] |
F. D. Rossa and F. Dercole, Generic and generalized boundary operating points in piecewise-linear (discontinuous) control systems, in 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), (2012), 7714–7719. Google Scholar |
[27] |
A. J. Schwartz,
A generalization of a Poincaré-Bendixson Theorem to closed two-dimensional manifolds, American Journal of Mathematics, 85 (1963), 453-458.
|
[28] |
P. A. Schweitzer,
Counterexamples to the Seifert Conjecture and opening closed leaves of foliations, Annals of Mathematics, 100 (1974), 386-400.
doi: 10.2307/1971077. |
[29] |
J. Sotomayor and A. L. F. Machado,
Structurally stable discontinuous vector fields in the plane, Qualitative Theory of Dynamical Systems, 3 (2002), 227-250.
doi: 10.1007/BF02969339. |
[30] |
J. Sotomayor and M. A. Teixeira, Regularization of discontinuous vector fields, in International Conference on Differential Equations, Lisboa, 1995, World Scientific Publishing, (1998), 207–223. |
[31] |
E. T. Whittaker and G. Robinson, The Calculus of Observations: A Treatise on Numerical Mathematics, 4th edition, Blackie & Son limited, 1954. Google Scholar |
show all references
References:
[1] |
D. C. Braga, A. F. da Fonseca and L. F. Mello,
Study of limit cycles in piecewise smooth perturbations of Hamiltonian centers via regularization method, Electronic Journal of Qualitative Theory of Differential Equations, 79 (2017), 1-13.
doi: 10.14232/ejqtde.2017.1.79. |
[2] |
L. E. J. Brouwer, On continuous vector distributions on surfaces, in Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), 11 (1909), 850–858, https://www.dwc.knaw.nl/DL/publications/PU00013599.pdf. Google Scholar |
[3] |
C. A. Buzzi, T. de Carvalho and R. D. Euzébio,
Chaotic planar piecewise smooth vector fields with non-trivial minimal sets, Ergodic Theory and Dynamical Systems, 36 (2016), 458-469.
doi: 10.1017/etds.2014.67. |
[4] |
C. A. Buzzi, T. Carvalho and R. D. Euzébio,
On Poincaré-Bendixson theorem and non-trivial minimal sets in planar nonsmooth vector fields, Publicacions Matemàtiques, 62 (2018), 113-131.
doi: 10.5565/PUBLMAT6211806. |
[5] |
T. Carvalho and L. F. Gonçalves,
Combing the hairy ball using a vector field without equilibria, Journal of Dynamical and Control Systems, 26 (2020), 233-242.
doi: 10.1007/s10883-019-09446-5. |
[6] |
R. Cristiano, T. Carvalho, D. J. Tonon and D. J. Pagano,
Hopf and Homoclinic bifurcations on the sliding vector field of switching systems in $\mathbb{R}^3$: A case study in power electronics, Physica D: Nonlinear Phenomena, 347 (2017), 12-20.
doi: 10.1016/j.physd.2017.02.005. |
[7] |
T. Carvalho, D. D. Novaes and L. F. Gonçalves, Sliding Shilnikov connection in Filippov-type predator-prey model, Nonlinear Dynamics, 100 (2020), 2973-2987. Google Scholar |
[8] |
T. de Carvalho,
On the closing lemma for planar piecewise smooth vector fields, Journal de Mathématiques Pures et Appliquées, 106 (2016), 1174-1185.
doi: 10.1016/j.matpur.2016.04.006. |
[9] |
T. de Carvalho and D. J. Tonon,
Generic bifurcations of planar Filippov systems via geometric singular perturbations, Bull. Belg. Math. Soc. Simon Stevin, 18 (2011), 861-881.
|
[10] |
A. Denjoy, Sur les courbes définies par les équations différentielles à la surface du tore, Journal de Mathématiques Pures et Appliquées, 11 (1932), 333–376, http://eudml.org/doc/234887. Google Scholar |
[11] |
M. di Bernardo, K. H. Johansson and F. Vasca, Self-oscillations and sliding in relay feedback systems: Symmetry and bifurcations, International Journal of Bifurcation and Chaos, 11 (2001), 1121-1140. Google Scholar |
[12] |
D. D. Dixon,
Piecewise deterministic dynamics from the application of noise to singular equations of motion, Journal of Physics A: Mathematical and General, 28 (1995), 5539-5551.
|
[13] |
N. M. Drissa, Fixed Point, Game and Selection Theory: From the Hairy Ball Theorem to A Non Hair-Pulling Conversation, PhD thesis, Université Paris 1 Panthéon-Sorbonne, 2016, http://hdl.handle.net/10579/8840. Google Scholar |
[14] |
A. F. Filippov, Differential Equations with Discontinuous Righthand Sides, Mathematics and its Applications, 1st edition, Springer Netherlands, 1988.
doi: 10.1007/978-94-015-7793-9. |
[15] |
C. Gutiérrez,
Smoothing continuous flows on two-manifolds and recurrences, Ergodic Theory and Dynamical Systems, 6 (1986), 17-44.
doi: 10.1017/S0143385700003278. |
[16] |
A. Jacquemard and D. J. Tonon,
Coupled systems of non-smooth differential equations, Bulletin des Sciences Mathématiques, 136 (2012), 239-255.
doi: 10.1016/j.bulsci.2012.01.006. |
[17] |
T. Kousaka, T. Kido, T. Ueta, H. Kawakami and M. Abe, Analysis of border-collision bifurcation in a simple circuit, 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353), 2 (2000), 481-484. Google Scholar |
[18] |
V. Křivan,
On the gause predator-prey model with a refuge: A fresh look at the history, Journal of Theoretical Biology, 274 (2011), 67-73.
doi: 10.1016/j.jtbi.2011.01.016. |
[19] |
R. Leine and H. Nijmeijer, Dynamics and Bifurcations of Non-Smooth Mechanical Systems, Lecture Notes in Applied and Computational Mechanics, 1st edition, Springer-Verlag Berlin Heidelberg, 2004. Google Scholar |
[20] |
J. Llibre, P. R. Silva and M. A. Teixeira, Regularization of discontinuous vector fields on $\mathbb{R}^3$ via singular perturbation, Journal of Dynamics and Differential Equations, 19 (2007), 309-331. Google Scholar |
[21] |
J. Llibre and M. A. Teixeira,
Regularization of discontinuous vector fields in dimension three, Discrete & Continuous Dynamical Systems - A, 3 (1997), 235-241.
doi: 10.3934/dcds.1997.3.235. |
[22] |
J. Milnor,
Analytic proofs of the "hairy ball theorem" and the brouwer fixed point theorem, The American Mathematical Monthly, 85 (1978), 521-524.
doi: 10.2307/2320860. |
[23] |
L. Perko, Differential Equations and Dynamical Systems, Texts in Applied Mathematics, 3rd edition, Springer-Verlag New York, 2001.
doi: 10.1007/978-1-4613-0003-8. |
[24] |
S. H. Piltz, M. A. Porter and P. K. Maini,
Prey switching with a linear preference trade-off, SIAM Journal on Applied Dynamical Systems, 13 (2014), 658-682.
doi: 10.1137/130910920. |
[25] |
D. S. Rodrigues, P. F. A. Mancera, T. Carvalho and L. F. Gonçalves, Sliding mode control in a mathematical model to chemoimmunotherapy: The occurrence of typical singularities, Applied Mathematics and Computation, 387 (2020), 124782.
doi: 10.1016/j.amc.2019.124782. |
[26] |
F. D. Rossa and F. Dercole, Generic and generalized boundary operating points in piecewise-linear (discontinuous) control systems, in 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), (2012), 7714–7719. Google Scholar |
[27] |
A. J. Schwartz,
A generalization of a Poincaré-Bendixson Theorem to closed two-dimensional manifolds, American Journal of Mathematics, 85 (1963), 453-458.
|
[28] |
P. A. Schweitzer,
Counterexamples to the Seifert Conjecture and opening closed leaves of foliations, Annals of Mathematics, 100 (1974), 386-400.
doi: 10.2307/1971077. |
[29] |
J. Sotomayor and A. L. F. Machado,
Structurally stable discontinuous vector fields in the plane, Qualitative Theory of Dynamical Systems, 3 (2002), 227-250.
doi: 10.1007/BF02969339. |
[30] |
J. Sotomayor and M. A. Teixeira, Regularization of discontinuous vector fields, in International Conference on Differential Equations, Lisboa, 1995, World Scientific Publishing, (1998), 207–223. |
[31] |
E. T. Whittaker and G. Robinson, The Calculus of Observations: A Treatise on Numerical Mathematics, 4th edition, Blackie & Son limited, 1954. Google Scholar |






[1] |
Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257 |
[2] |
Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020368 |
[3] |
Jesús A. Álvarez López, Ramón Barral Lijó, John Hunton, Hiraku Nozawa, John R. Parker. Chaotic Delone sets. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021016 |
[4] |
Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304 |
[5] |
Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005 |
[6] |
Vito Napolitano, Ferdinando Zullo. Codes with few weights arising from linear sets. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020129 |
[7] |
Lisa Hernandez Lucas. Properties of sets of Subspaces with Constant Intersection Dimension. Advances in Mathematics of Communications, 2021, 15 (1) : 191-206. doi: 10.3934/amc.2020052 |
[8] |
Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020381 |
[9] |
Tinghua Hu, Yang Yang, Zhengchun Zhou. Golay complementary sets with large zero odd-periodic correlation zones. Advances in Mathematics of Communications, 2021, 15 (1) : 23-33. doi: 10.3934/amc.2020040 |
[10] |
Nicola Pace, Angelo Sonnino. On the existence of PD-sets: Algorithms arising from automorphism groups of codes. Advances in Mathematics of Communications, 2021, 15 (2) : 267-277. doi: 10.3934/amc.2020065 |
[11] |
Theresa Lange, Wilhelm Stannat. Mean field limit of ensemble square root filters - discrete and continuous time. Foundations of Data Science, 2021 doi: 10.3934/fods.2021003 |
[12] |
Jianfeng Huang, Haihua Liang. Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 861-873. doi: 10.3934/dcdsb.2020145 |
[13] |
Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076 |
[14] |
Magdalena Foryś-Krawiec, Jiří Kupka, Piotr Oprocha, Xueting Tian. On entropy of $ \Phi $-irregular and $ \Phi $-level sets in maps with the shadowing property. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1271-1296. doi: 10.3934/dcds.2020317 |
[15] |
Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020374 |
[16] |
Gernot Holler, Karl Kunisch. Learning nonlocal regularization operators. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021003 |
[17] |
Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020385 |
[18] |
Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218 |
[19] |
Ole Løseth Elvetun, Bjørn Fredrik Nielsen. A regularization operator for source identification for elliptic PDEs. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021006 |
[20] |
Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020176 |
2019 Impact Factor: 1.27
Tools
Article outline
Figures and Tables
[Back to Top]