doi: 10.3934/dcdsb.2020288

Asymptotics in a two-species chemotaxis system with logistic source

School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China

* Corresponding author: Pengcheng Niu

Received  May 2020 Revised  August 2020 Published  October 2020

This paper deals with nonnegative solutions of a fully parabolic two-species chemotaxis system with competitive kinetics under homogeneous Neumann boundary conditions in a N-dimensional bounded smooth domain with reasonably smooth nonnegative initial data. In a previous paper of Bai & Winkler (2016), the equilibrium of the global bounded classical solution was shown in both coexistence and extinction cases. We extend this result to weak solutions and prove these solutions globally exist and finally converge to the same semi-trivial steady state in a certain sense.

Citation: Wenji Zhang, Pengcheng Niu. Asymptotics in a two-species chemotaxis system with logistic source. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020288
References:
[1]

S. Ahmad, Convergence and ultimate bounds of solutions of the nonautonomous Volterra-Lotka competition equations, J. Math. Anal. Appl., 127 (1987), 377-387.  doi: 10.1016/0022-247X(87)90116-8.  Google Scholar

[2]

H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, in Function Spaces, Differential Operators and Nonlinear Analysis (eds. Schmeisser, H. and Triebel, H.), Teubner-Texte Math., Teubner, Stuttgart, 133 (1993), 9–126. doi: 10.1007/978-3-663-11336-2_1.  Google Scholar

[3]

X. Bai and M. Winkler, Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J., 65 (2016), 553-583.  doi: 10.1512/iumj.2016.65.5776.  Google Scholar

[4]

N. BellomoA. BellouquidY. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.  doi: 10.1142/S021820251550044X.  Google Scholar

[5]

X. Cao, An interpolation inequality and its application in Keller-Segel model, preprint, arXiv: 1707.09235. Google Scholar

[6]

X. Cao, Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces, Discrete Contin. Dyn. Syst., 35 (2015), 1891-1904.  doi: 10.3934/dcds.2015.35.1891.  Google Scholar

[7]

X. Cao, Large time behavior in the logistic Keller-Segel model via maximal Sobolev regularity, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 3369-3378.  doi: 10.3934/dcdsb.2017141.  Google Scholar

[8]

X. ChenA. Jüngel and J.-G. Liu, A note on Aubin-Lions-Dubinskiĭ lemmas, Acta Appl. Math., 133 (2014), 33-43.  doi: 10.1007/s10440-013-9858-8.  Google Scholar

[9]

L. Corrias and B. Perthame, Asymptotic decay for the solutions of the parabolic-parabolic Keller-Segel chemotaxis system in critical spaces, Math. Comput. Model., 47 (2008), 755-764.  doi: 10.1016/j.mcm.2007.06.005.  Google Scholar

[10]

X. He and S. Zheng, Convergence rate estimates of solutions in a higher dimensional chemotaxis system with logistic source, J. Math. Anal. Appl., 436 (2016), 970-982.  doi: 10.1016/j.jmaa.2015.12.058.  Google Scholar

[11]

M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 24 (1997), 633-683.   Google Scholar

[12]

D. Horstmann and G. Wang, Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl. Math., 12 (2001), 159-177.  doi: 10.1017/S0956792501004363.  Google Scholar

[13]

H.-Y. Jin and Z.-A. Wang, Boundedness, blowup and critical mass phenomenon in competing chemotaxis, J. Differential Equations, 260 (2016), 162-196.  doi: 10.1016/j.jde.2015.08.040.  Google Scholar

[14]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[15]

J. Lankeit, Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source, J. Differential Equations, 258 (2015), 1158-1191.  doi: 10.1016/j.jde.2014.10.016.  Google Scholar

[16]

J. Lankeit and Y. Wang, Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption, Discrete Contin. Dyn. Syst., 37 (2017), 6099-6121.  doi: 10.3934/dcds.2017262.  Google Scholar

[17]

T. NagaiT. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433.   Google Scholar

[18]

K. Osaki and A. Yagi, Finite dimensional attractors for one-dimensional Keller-Segel equations, Funkcial. Ekvac., 44 (2001), 441-469.   Google Scholar

[19]

K. Osaki and A. Yagi, Global existence of a chemotaxis-growth system in ${\Bbb R}^2$, Adv. Math. Sci. Appl., 12 (2002), 587-606.   Google Scholar

[20]

C. StinnerJ. I. Tello and M. Winkler, Competitive exclusion in a two-species chemotaxis model, J. Math. Biol., 68 (2014), 1607-1626.  doi: 10.1007/s00285-013-0681-7.  Google Scholar

[21]

Y. Tao and M. Winkler, Boundedness vs. blow-up in a two-species chemotaxis system with two chemicals, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 3165-3183.  doi: 10.3934/dcdsb.2015.20.3165.  Google Scholar

[22]

J. I. Tello and M. Winkler, Stabilization in a two-species chemotaxis system with a logistic source, Nonlinearity, 25 (2012), 1413-1425.  doi: 10.1088/0951-7715/25/5/1413.  Google Scholar

[23]

L. WangY. Li and C. Mu, Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source, Discrete Contin. Dyn. Syst., 34 (2014), 789-802.  doi: 10.3934/dcds.2014.34.789.  Google Scholar

[24]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008.  Google Scholar

[25]

M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Partial Differential Equations, 35 (2010), 1516-1537.  doi: 10.1080/03605300903473426.  Google Scholar

[26]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748-767.  doi: 10.1016/j.matpur.2013.01.020.  Google Scholar

[27]

M. Winkler, Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening, J. Differential Equations, 257 (2014), 1056-1077.  doi: 10.1016/j.jde.2014.04.023.  Google Scholar

[28]

M. Winkler, Large-data global generalized solutions in a chemotaxis system with tensor-valued sensitivities, SIAM. J. Math. Anal., 47 (2015), 3092-3115.  doi: 10.1137/140979708.  Google Scholar

[29]

C. YangX. CaoZ. Jiang and S. Zheng, Boundedness in a quasilinear fully parabolic Keller-Segel system of higher dimension with logistic source, J. Math. Anal. Appl., 430 (2015), 585-591.  doi: 10.1016/j.jmaa.2015.04.093.  Google Scholar

[30]

M. L. Zeeman, Extinction in competitive Lotka-Volterra systems, Proc. Amer. Math. Soc., 123 (1995), 87-96.  doi: 10.1090/S0002-9939-1995-1264833-2.  Google Scholar

[31]

Q. Zhang and Y. Li, Global boundedness of solutions to a two-species chemotaxis system, Z. Angew. Math. Phys., 66 (2015), 83-93.  doi: 10.1007/s00033-013-0383-4.  Google Scholar

show all references

References:
[1]

S. Ahmad, Convergence and ultimate bounds of solutions of the nonautonomous Volterra-Lotka competition equations, J. Math. Anal. Appl., 127 (1987), 377-387.  doi: 10.1016/0022-247X(87)90116-8.  Google Scholar

[2]

H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, in Function Spaces, Differential Operators and Nonlinear Analysis (eds. Schmeisser, H. and Triebel, H.), Teubner-Texte Math., Teubner, Stuttgart, 133 (1993), 9–126. doi: 10.1007/978-3-663-11336-2_1.  Google Scholar

[3]

X. Bai and M. Winkler, Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J., 65 (2016), 553-583.  doi: 10.1512/iumj.2016.65.5776.  Google Scholar

[4]

N. BellomoA. BellouquidY. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.  doi: 10.1142/S021820251550044X.  Google Scholar

[5]

X. Cao, An interpolation inequality and its application in Keller-Segel model, preprint, arXiv: 1707.09235. Google Scholar

[6]

X. Cao, Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces, Discrete Contin. Dyn. Syst., 35 (2015), 1891-1904.  doi: 10.3934/dcds.2015.35.1891.  Google Scholar

[7]

X. Cao, Large time behavior in the logistic Keller-Segel model via maximal Sobolev regularity, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 3369-3378.  doi: 10.3934/dcdsb.2017141.  Google Scholar

[8]

X. ChenA. Jüngel and J.-G. Liu, A note on Aubin-Lions-Dubinskiĭ lemmas, Acta Appl. Math., 133 (2014), 33-43.  doi: 10.1007/s10440-013-9858-8.  Google Scholar

[9]

L. Corrias and B. Perthame, Asymptotic decay for the solutions of the parabolic-parabolic Keller-Segel chemotaxis system in critical spaces, Math. Comput. Model., 47 (2008), 755-764.  doi: 10.1016/j.mcm.2007.06.005.  Google Scholar

[10]

X. He and S. Zheng, Convergence rate estimates of solutions in a higher dimensional chemotaxis system with logistic source, J. Math. Anal. Appl., 436 (2016), 970-982.  doi: 10.1016/j.jmaa.2015.12.058.  Google Scholar

[11]

M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 24 (1997), 633-683.   Google Scholar

[12]

D. Horstmann and G. Wang, Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl. Math., 12 (2001), 159-177.  doi: 10.1017/S0956792501004363.  Google Scholar

[13]

H.-Y. Jin and Z.-A. Wang, Boundedness, blowup and critical mass phenomenon in competing chemotaxis, J. Differential Equations, 260 (2016), 162-196.  doi: 10.1016/j.jde.2015.08.040.  Google Scholar

[14]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[15]

J. Lankeit, Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source, J. Differential Equations, 258 (2015), 1158-1191.  doi: 10.1016/j.jde.2014.10.016.  Google Scholar

[16]

J. Lankeit and Y. Wang, Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption, Discrete Contin. Dyn. Syst., 37 (2017), 6099-6121.  doi: 10.3934/dcds.2017262.  Google Scholar

[17]

T. NagaiT. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433.   Google Scholar

[18]

K. Osaki and A. Yagi, Finite dimensional attractors for one-dimensional Keller-Segel equations, Funkcial. Ekvac., 44 (2001), 441-469.   Google Scholar

[19]

K. Osaki and A. Yagi, Global existence of a chemotaxis-growth system in ${\Bbb R}^2$, Adv. Math. Sci. Appl., 12 (2002), 587-606.   Google Scholar

[20]

C. StinnerJ. I. Tello and M. Winkler, Competitive exclusion in a two-species chemotaxis model, J. Math. Biol., 68 (2014), 1607-1626.  doi: 10.1007/s00285-013-0681-7.  Google Scholar

[21]

Y. Tao and M. Winkler, Boundedness vs. blow-up in a two-species chemotaxis system with two chemicals, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 3165-3183.  doi: 10.3934/dcdsb.2015.20.3165.  Google Scholar

[22]

J. I. Tello and M. Winkler, Stabilization in a two-species chemotaxis system with a logistic source, Nonlinearity, 25 (2012), 1413-1425.  doi: 10.1088/0951-7715/25/5/1413.  Google Scholar

[23]

L. WangY. Li and C. Mu, Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source, Discrete Contin. Dyn. Syst., 34 (2014), 789-802.  doi: 10.3934/dcds.2014.34.789.  Google Scholar

[24]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008.  Google Scholar

[25]

M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Partial Differential Equations, 35 (2010), 1516-1537.  doi: 10.1080/03605300903473426.  Google Scholar

[26]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748-767.  doi: 10.1016/j.matpur.2013.01.020.  Google Scholar

[27]

M. Winkler, Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening, J. Differential Equations, 257 (2014), 1056-1077.  doi: 10.1016/j.jde.2014.04.023.  Google Scholar

[28]

M. Winkler, Large-data global generalized solutions in a chemotaxis system with tensor-valued sensitivities, SIAM. J. Math. Anal., 47 (2015), 3092-3115.  doi: 10.1137/140979708.  Google Scholar

[29]

C. YangX. CaoZ. Jiang and S. Zheng, Boundedness in a quasilinear fully parabolic Keller-Segel system of higher dimension with logistic source, J. Math. Anal. Appl., 430 (2015), 585-591.  doi: 10.1016/j.jmaa.2015.04.093.  Google Scholar

[30]

M. L. Zeeman, Extinction in competitive Lotka-Volterra systems, Proc. Amer. Math. Soc., 123 (1995), 87-96.  doi: 10.1090/S0002-9939-1995-1264833-2.  Google Scholar

[31]

Q. Zhang and Y. Li, Global boundedness of solutions to a two-species chemotaxis system, Z. Angew. Math. Phys., 66 (2015), 83-93.  doi: 10.1007/s00033-013-0383-4.  Google Scholar

[1]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[2]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[3]

Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154

[4]

Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315

[5]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[6]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

[7]

Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021017

[8]

Lu Xu, Chunlai Mu, Qiao Xin. Global boundedness of solutions to the two-dimensional forager-exploiter model with logistic source. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020396

[9]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[10]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

[11]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

[12]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[13]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318

[14]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[15]

Mengting Fang, Yuanshi Wang, Mingshu Chen, Donald L. DeAngelis. Asymptotic population abundance of a two-patch system with asymmetric diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3411-3425. doi: 10.3934/dcds.2020031

[16]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

[17]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020405

[18]

Bilel Elbetch, Tounsia Benzekri, Daniel Massart, Tewfik Sari. The multi-patch logistic equation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021025

[19]

Ole Løseth Elvetun, Bjørn Fredrik Nielsen. A regularization operator for source identification for elliptic PDEs. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021006

[20]

Hui Zhao, Zhengrong Liu, Yiren Chen. Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021011

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (41)
  • HTML views (105)
  • Cited by (0)

Other articles
by authors

[Back to Top]