-
Previous Article
Upper semi-continuity of attractors for non-autonomous fractional stochastic parabolic equations with delay
- DCDS-B Home
- This Issue
-
Next Article
Asymptotics in a two-species chemotaxis system with logistic source
On initial value and terminal value problems for subdiffusive stochastic Rayleigh-Stokes equation
1. | Dpto. Ecuaciones Diferenciales y Análisis Numérico, , Facultad de Matemáticas, Universidad de Sevilla, C/ Tarfia s/n, 41012 - Sevilla, Spain |
2. | Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam |
3. | Applied Analysis Research Group, Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam |
4. | Department of Mathematics and Computer Science, University of Science, Ho Chi Minh City, Vietnam, Vietnam National University, Ho Chi Minh City, Vietnam |
In this paper, we study two stochastic problems for time-fractional Rayleigh-Stokes equation including the initial value problem and the terminal value problem. Here, two problems are perturbed by Wiener process, the fractional derivative are taken in the sense of Riemann-Liouville, the source function and the time-spatial noise are nonlinear and satisfy the globally Lipschitz conditions. We attempt to give some existence results and regularity properties for the mild solution of each problem.
References:
[1] |
E. Bazhlekova, B. Jin, R. Lazarov and Z. Zhou,
An analysis of the Rayleigh-Stokes problem for a generalized second-grade fluid, Numer Math., 131 (2015), 1-31.
doi: 10.1007/s00211-014-0685-2. |
[2] |
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, 44. Cambridge University Press, Cambridge, 1992.
doi: 10.1017/CBO9780511666223.![]() ![]() ![]() |
[3] |
L. Debbi,
Well-posedness of the multidimensional fractional stochastic Navier-Stokes equations on the torus and on bounded domains., J. Math. Fluid Mech., 18 (2016), 25-69.
doi: 10.1007/s00021-015-0234-5. |
[4] |
M. Dehghan,
A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specifications., Numer. Methods Partial Differential Equations, 22 (2006), 220-257.
doi: 10.1002/num.20071. |
[5] |
M. Dehghan,
The one-dimensional heat equation subject to a boundary integral specification, Chaos Solitons Fract., 32 (2007), 661-675.
doi: 10.1016/j.chaos.2005.11.010. |
[6] |
M. Dehghan and M. Abbaszadeh,
A finite element method for the numerical solution of Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivatives, Eng Comput., 33 (2017), 587-605.
|
[7] |
C. Fetecau, M. Jamil, C. Fetecau and D. Vieru,
The Rayleigh-Stokes problem for an edge in a generalized Oldroyd-B fluid, Z. Angew. Math. Phys., 60 (2009), 921-933.
doi: 10.1007/s00033-008-8055-5. |
[8] |
G. Hu, Y. Lou and P. D. Christofides,
Dynamic output feedback covariance control of stochastic dissipative partial differential equations, Chem. Eng. Sci., 63 (2008), 4531-4542.
|
[9] |
Y. Jiang, T. Wei and X. Zhou,
Stochastic generalized Burgers equations driven by fractional noises, J. Differ. Equ., 252 (2012), 1934-1961.
doi: 10.1016/j.jde.2011.07.032. |
[10] |
M. Khan,
The Rayleigh-Stokes problem for an edge in a viscoelastic fluid with a fractional derivative model, Nonlinear Anal. Real World Appl., 10 (2009), 3190-3195.
doi: 10.1016/j.nonrwa.2008.10.002. |
[11] |
R. Kruse, Strong and Weak Approximation of Semilinear Stochastic Evolution Equations, Springer, 2014.
doi: 10.1007/978-3-319-02231-4. |
[12] |
M. Lakestani and M. Dehghan,
The use of Chebyshev cardinal functions for the solution of a partial differential equation with an unknown time-dependent coefficient subject to an extra measurement, J. Comput. Appl. Math., 235 (2010), 669-678.
doi: 10.1016/j.cam.2010.06.020. |
[13] |
P. D. Lax, Functional Analysis, Wiley Interscience, New York, 2002. |
[14] |
F. Li, Y. Li and R. Wang,
Regular measurable dynamics for reaction-diffusion equations on narrow domains with rough noise, Discrete Contin. Dyn. Syst., 38 (2018), 3663-3685.
doi: 10.3934/dcds.2018158. |
[15] |
F. Li, Y. Li and R. Wang,
Limiting dynamics for stochastic reaction-diffusion equations on the Sobolev space with thin domains, Comput. Math. Appl., 79 (2020), 457-475.
doi: 10.1016/j.camwa.2019.07.009. |
[16] |
Y. Li and Y. Wang.,
The existence and asymptotic behavior of solutions to fractional stochastic evolution equations with infinite delay., J. Differential Equations, 266 (2019), 3514-3558.
doi: 10.1016/j.jde.2018.09.009. |
[17] |
J. Liang, X. Qian, T. Shen and S. Song,
Analysis of time fractional and space nonlocal stochastic nonlinear Schrödinger equation driven by multiplicative white noise, J. Math. Anal. Appl., 466 (2018), 1525-1544.
doi: 10.1016/j.jmaa.2018.06.066. |
[18] |
T. B. Ngoc, N. H. Luc, V. V. Au, N. H. Tuan and Z. Yong, Existence and regularity of inverse problem for the nonlinear fractional Rayleigh-Stokes equations, Math. Meth. Appl. Sci., (2020), 1–27. |
[19] |
H. L. Nguyen, H. T. Nguyen, K. Mokhtar and X. T. Duong Dang,
Identifying initial condition of the Rayleigh-Stokes problem with random noise, Math. Meth. Appl. Sci., 42 (2019), 1561-1571.
doi: 10.1002/mma.5455. |
[20] |
H. L. Nguyen, H. T. Nguyen and Y. Zhou,
Regularity of the solution for a final value problem for the Rayleigh-Stokes equation, Math. Methods Appl. Sci., 42 (2019), 3481-3495.
doi: 10.1002/mma.5593. |
[21] |
P. Niu, T. Helin and Z. Zhang, An inverse random source problem in a stochastic fractional diffusion equation, Inverse Problems, 36 (2020), 045002, 23 pp.
doi: 10.1088/1361-6420/ab532c. |
[22] |
J.-C. Pedjeu and G. S. Ladde,
Stochastic fractional differential equations: Modeling, method and analysis, Chaos Solitons Fractals, 45 (2012), 279-293.
doi: 10.1016/j.chaos.2011.12.009. |
[23] |
I. Podlubny, Fractional Differential Equations, Academic Press, Inc., San Diego, CA, 1999.
![]() ![]() |
[24] |
C. Prévôt and M. Röckner, A Concise Course on Stochastic Partial Differential Equations, Springer, 2007. |
[25] |
S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993. |
[26] |
F. Shen, W. Tan, Y. Zhao and T. Masuoka,
The Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivative model., Nonlinear Anal. Real World Appl., 7 (2006), 1072-1080.
doi: 10.1016/j.nonrwa.2005.09.007. |
[27] |
X. Su and M. Li,
The regularity of fractional stochastic evolution equations in Hilbert space, Stoch. Anal. Appl., 36 (2018), 639-653.
doi: 10.1080/07362994.2018.1436973. |
[28] |
N. H. Tuan, Y. Zhou, T. N. Thach and N. H. Can, Initial inverse problem for the nonlinear fractional Rayleigh-Stokes equation with random discrete data., Commun. Nonlinear Sci. Numer. Simul., 78 (2019), 104873, 18 pp.
doi: 10.1016/j.cnsns.2019.104873. |
[29] |
R. Wang, Y. Li and B. Wang,
Random dynamics of fractional nonclassical diffusion equations driven by colored noise, Discrete Contin. Dyn. Syst., 39 (2019), 4091-4126.
doi: 10.3934/dcds.2019165. |
[30] |
R. Wang, L. Shi and B. Wang,
Asymptotic behavior of fractional nonclassical diffusion equations driven by nonlinear colored noise on $\Bbb R^N$, Nonlinearity, 32 (2019), 4524-4556.
doi: 10.1088/1361-6544/ab32d7. |
[31] |
C. Xue and J. Nie,
Exact solutions of the Rayleigh-Stokes problem for a heated generalized second grade fluid in a porous half-space, App. Math. Model, 33 (2009), 524-531.
doi: 10.1016/j.apm.2007.11.015. |
[32] |
H. Ye, J. Gao and Y. Ding,
A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081.
doi: 10.1016/j.jmaa.2006.05.061. |
[33] |
M. A. Zaky,
An improved tau method for the multi-dimensional fractional Rayleigh-Stokes problem for a heated generalized second grade fluid, Comput. Math. Appl., 75 (2018), 2243-2258.
doi: 10.1016/j.camwa.2017.12.004. |
[34] |
C. Zhao and C. Yang,
Exact solutions for electro-osmotic flow of viscoelastic fluids in rectangular micro-channels, Appl. Math. Comput., 211 (2009), 502-509.
doi: 10.1016/j.amc.2009.01.068. |
[35] |
G. Zou, G. Lv and J.-L. Wu,
Stochastic Navier–Stokes equations with Caputo derivative driven by fractional noises, J. Math. Anal. Appl., 461 (2018), 595-609.
doi: 10.1016/j.jmaa.2018.01.027. |
[36] |
G. Zou and B. Wang,
Stochastic Burgers' equation with fractional derivative driven by multiplicative noise, Comput. Math. Appl., 74 (2017), 3195-3208.
doi: 10.1016/j.camwa.2017.08.023. |
show all references
References:
[1] |
E. Bazhlekova, B. Jin, R. Lazarov and Z. Zhou,
An analysis of the Rayleigh-Stokes problem for a generalized second-grade fluid, Numer Math., 131 (2015), 1-31.
doi: 10.1007/s00211-014-0685-2. |
[2] |
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, 44. Cambridge University Press, Cambridge, 1992.
doi: 10.1017/CBO9780511666223.![]() ![]() ![]() |
[3] |
L. Debbi,
Well-posedness of the multidimensional fractional stochastic Navier-Stokes equations on the torus and on bounded domains., J. Math. Fluid Mech., 18 (2016), 25-69.
doi: 10.1007/s00021-015-0234-5. |
[4] |
M. Dehghan,
A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specifications., Numer. Methods Partial Differential Equations, 22 (2006), 220-257.
doi: 10.1002/num.20071. |
[5] |
M. Dehghan,
The one-dimensional heat equation subject to a boundary integral specification, Chaos Solitons Fract., 32 (2007), 661-675.
doi: 10.1016/j.chaos.2005.11.010. |
[6] |
M. Dehghan and M. Abbaszadeh,
A finite element method for the numerical solution of Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivatives, Eng Comput., 33 (2017), 587-605.
|
[7] |
C. Fetecau, M. Jamil, C. Fetecau and D. Vieru,
The Rayleigh-Stokes problem for an edge in a generalized Oldroyd-B fluid, Z. Angew. Math. Phys., 60 (2009), 921-933.
doi: 10.1007/s00033-008-8055-5. |
[8] |
G. Hu, Y. Lou and P. D. Christofides,
Dynamic output feedback covariance control of stochastic dissipative partial differential equations, Chem. Eng. Sci., 63 (2008), 4531-4542.
|
[9] |
Y. Jiang, T. Wei and X. Zhou,
Stochastic generalized Burgers equations driven by fractional noises, J. Differ. Equ., 252 (2012), 1934-1961.
doi: 10.1016/j.jde.2011.07.032. |
[10] |
M. Khan,
The Rayleigh-Stokes problem for an edge in a viscoelastic fluid with a fractional derivative model, Nonlinear Anal. Real World Appl., 10 (2009), 3190-3195.
doi: 10.1016/j.nonrwa.2008.10.002. |
[11] |
R. Kruse, Strong and Weak Approximation of Semilinear Stochastic Evolution Equations, Springer, 2014.
doi: 10.1007/978-3-319-02231-4. |
[12] |
M. Lakestani and M. Dehghan,
The use of Chebyshev cardinal functions for the solution of a partial differential equation with an unknown time-dependent coefficient subject to an extra measurement, J. Comput. Appl. Math., 235 (2010), 669-678.
doi: 10.1016/j.cam.2010.06.020. |
[13] |
P. D. Lax, Functional Analysis, Wiley Interscience, New York, 2002. |
[14] |
F. Li, Y. Li and R. Wang,
Regular measurable dynamics for reaction-diffusion equations on narrow domains with rough noise, Discrete Contin. Dyn. Syst., 38 (2018), 3663-3685.
doi: 10.3934/dcds.2018158. |
[15] |
F. Li, Y. Li and R. Wang,
Limiting dynamics for stochastic reaction-diffusion equations on the Sobolev space with thin domains, Comput. Math. Appl., 79 (2020), 457-475.
doi: 10.1016/j.camwa.2019.07.009. |
[16] |
Y. Li and Y. Wang.,
The existence and asymptotic behavior of solutions to fractional stochastic evolution equations with infinite delay., J. Differential Equations, 266 (2019), 3514-3558.
doi: 10.1016/j.jde.2018.09.009. |
[17] |
J. Liang, X. Qian, T. Shen and S. Song,
Analysis of time fractional and space nonlocal stochastic nonlinear Schrödinger equation driven by multiplicative white noise, J. Math. Anal. Appl., 466 (2018), 1525-1544.
doi: 10.1016/j.jmaa.2018.06.066. |
[18] |
T. B. Ngoc, N. H. Luc, V. V. Au, N. H. Tuan and Z. Yong, Existence and regularity of inverse problem for the nonlinear fractional Rayleigh-Stokes equations, Math. Meth. Appl. Sci., (2020), 1–27. |
[19] |
H. L. Nguyen, H. T. Nguyen, K. Mokhtar and X. T. Duong Dang,
Identifying initial condition of the Rayleigh-Stokes problem with random noise, Math. Meth. Appl. Sci., 42 (2019), 1561-1571.
doi: 10.1002/mma.5455. |
[20] |
H. L. Nguyen, H. T. Nguyen and Y. Zhou,
Regularity of the solution for a final value problem for the Rayleigh-Stokes equation, Math. Methods Appl. Sci., 42 (2019), 3481-3495.
doi: 10.1002/mma.5593. |
[21] |
P. Niu, T. Helin and Z. Zhang, An inverse random source problem in a stochastic fractional diffusion equation, Inverse Problems, 36 (2020), 045002, 23 pp.
doi: 10.1088/1361-6420/ab532c. |
[22] |
J.-C. Pedjeu and G. S. Ladde,
Stochastic fractional differential equations: Modeling, method and analysis, Chaos Solitons Fractals, 45 (2012), 279-293.
doi: 10.1016/j.chaos.2011.12.009. |
[23] |
I. Podlubny, Fractional Differential Equations, Academic Press, Inc., San Diego, CA, 1999.
![]() ![]() |
[24] |
C. Prévôt and M. Röckner, A Concise Course on Stochastic Partial Differential Equations, Springer, 2007. |
[25] |
S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993. |
[26] |
F. Shen, W. Tan, Y. Zhao and T. Masuoka,
The Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivative model., Nonlinear Anal. Real World Appl., 7 (2006), 1072-1080.
doi: 10.1016/j.nonrwa.2005.09.007. |
[27] |
X. Su and M. Li,
The regularity of fractional stochastic evolution equations in Hilbert space, Stoch. Anal. Appl., 36 (2018), 639-653.
doi: 10.1080/07362994.2018.1436973. |
[28] |
N. H. Tuan, Y. Zhou, T. N. Thach and N. H. Can, Initial inverse problem for the nonlinear fractional Rayleigh-Stokes equation with random discrete data., Commun. Nonlinear Sci. Numer. Simul., 78 (2019), 104873, 18 pp.
doi: 10.1016/j.cnsns.2019.104873. |
[29] |
R. Wang, Y. Li and B. Wang,
Random dynamics of fractional nonclassical diffusion equations driven by colored noise, Discrete Contin. Dyn. Syst., 39 (2019), 4091-4126.
doi: 10.3934/dcds.2019165. |
[30] |
R. Wang, L. Shi and B. Wang,
Asymptotic behavior of fractional nonclassical diffusion equations driven by nonlinear colored noise on $\Bbb R^N$, Nonlinearity, 32 (2019), 4524-4556.
doi: 10.1088/1361-6544/ab32d7. |
[31] |
C. Xue and J. Nie,
Exact solutions of the Rayleigh-Stokes problem for a heated generalized second grade fluid in a porous half-space, App. Math. Model, 33 (2009), 524-531.
doi: 10.1016/j.apm.2007.11.015. |
[32] |
H. Ye, J. Gao and Y. Ding,
A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081.
doi: 10.1016/j.jmaa.2006.05.061. |
[33] |
M. A. Zaky,
An improved tau method for the multi-dimensional fractional Rayleigh-Stokes problem for a heated generalized second grade fluid, Comput. Math. Appl., 75 (2018), 2243-2258.
doi: 10.1016/j.camwa.2017.12.004. |
[34] |
C. Zhao and C. Yang,
Exact solutions for electro-osmotic flow of viscoelastic fluids in rectangular micro-channels, Appl. Math. Comput., 211 (2009), 502-509.
doi: 10.1016/j.amc.2009.01.068. |
[35] |
G. Zou, G. Lv and J.-L. Wu,
Stochastic Navier–Stokes equations with Caputo derivative driven by fractional noises, J. Math. Anal. Appl., 461 (2018), 595-609.
doi: 10.1016/j.jmaa.2018.01.027. |
[36] |
G. Zou and B. Wang,
Stochastic Burgers' equation with fractional derivative driven by multiplicative noise, Comput. Math. Appl., 74 (2017), 3195-3208.
doi: 10.1016/j.camwa.2017.08.023. |
[1] |
Kim-Ngan Le, William McLean, Martin Stynes. Existence, uniqueness and regularity of the solution of the time-fractional Fokker–Planck equation with general forcing. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2765-2787. doi: 10.3934/cpaa.2019124 |
[2] |
Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations and Control Theory, 2022, 11 (1) : 259-282. doi: 10.3934/eect.2021002 |
[3] |
Yalçin Sarol, Frederi Viens. Time regularity of the evolution solution to fractional stochastic heat equation. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 895-910. doi: 10.3934/dcdsb.2006.6.895 |
[4] |
Qing Tang. On an optimal control problem of time-fractional advection-diffusion equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 761-779. doi: 10.3934/dcdsb.2019266 |
[5] |
Jaan Janno, Kairi Kasemets. Uniqueness for an inverse problem for a semilinear time-fractional diffusion equation. Inverse Problems and Imaging, 2017, 11 (1) : 125-149. doi: 10.3934/ipi.2017007 |
[6] |
Nguyen Huy Tuan, Nguyen Duc Phuong, Tran Ngoc Thach. New well-posedness results for stochastic delay Rayleigh-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022079 |
[7] |
Arnaud Debussche, Sylvain De Moor, Julien Vovelle. Diffusion limit for the radiative transfer equation perturbed by a Wiener process. Kinetic and Related Models, 2015, 8 (3) : 467-492. doi: 10.3934/krm.2015.8.467 |
[8] |
Moulay Rchid Sidi Ammi, Ismail Jamiai. Finite difference and Legendre spectral method for a time-fractional diffusion-convection equation for image restoration. Discrete and Continuous Dynamical Systems - S, 2018, 11 (1) : 103-117. doi: 10.3934/dcdss.2018007 |
[9] |
Xiaozhong Yang, Xinlong Liu. Numerical analysis of two new finite difference methods for time-fractional telegraph equation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3921-3942. doi: 10.3934/dcdsb.2020269 |
[10] |
Fabio Camilli, Serikbolsyn Duisembay, Qing Tang. Approximation of an optimal control problem for the time-fractional Fokker-Planck equation. Journal of Dynamics and Games, 2021, 8 (4) : 381-402. doi: 10.3934/jdg.2021013 |
[11] |
Xinchi Huang, Atsushi Kawamoto. Inverse problems for a half-order time-fractional diffusion equation in arbitrary dimension by Carleman estimates. Inverse Problems and Imaging, 2022, 16 (1) : 39-67. doi: 10.3934/ipi.2021040 |
[12] |
Zhiyuan Li, Yikan Liu, Masahiro Yamamoto. Inverse source problem for a one-dimensional time-fractional diffusion equation and unique continuation for weak solutions. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022027 |
[13] |
Imtiaz Ahmad, Siraj-ul-Islam, Mehnaz, Sakhi Zaman. Local meshless differential quadrature collocation method for time-fractional PDEs. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2641-2654. doi: 10.3934/dcdss.2020223 |
[14] |
Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137 |
[15] |
Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure and Applied Analysis, 2021, 20 (2) : 583-621. doi: 10.3934/cpaa.2020282 |
[16] |
Mohamed Jleli, Bessem Samet. Nonexistence for time-fractional wave inequalities on Riemannian manifolds. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022115 |
[17] |
Dong Li, Chaoyu Quan, Jiao Xu. Energy-dissipation for time-fractional phase-field equations. Communications on Pure and Applied Analysis, 2022, 21 (10) : 3371-3387. doi: 10.3934/cpaa.2022104 |
[18] |
Út V. Lê. Regularity of the solution of a nonlinear wave equation. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1099-1115. doi: 10.3934/cpaa.2010.9.1099 |
[19] |
Massimiliano Tamborrino. Approximation of the first passage time density of a Wiener process to an exponentially decaying boundary by two-piecewise linear threshold. Application to neuronal spiking activity. Mathematical Biosciences & Engineering, 2016, 13 (3) : 613-629. doi: 10.3934/mbe.2016011 |
[20] |
Masahiro Yamamoto. Uniqueness for inverse problem of determining fractional orders for time-fractional advection-diffusion equations. Mathematical Control and Related Fields, 2022 doi: 10.3934/mcrf.2022017 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]