August  2021, 26(8): 4325-4357. doi: 10.3934/dcdsb.2020290

Upper semi-continuity of attractors for non-autonomous fractional stochastic parabolic equations with delay

Department of Mathematics, Northwest Normal University, Lanzhou 730070, China

* Corresponding author: Pengyu Chen

Received  July 2020 Published  August 2021 Early access  October 2020

Fund Project: Chen was supported by the National Natural Science Foundation of China (No. 12061063), Project of NWNU-LKQN2019-3 and China Scholarship Council (No. 201908625016). Zhang was supported by Science Research Project for Colleges and Universities of Gansu Province (No. 2019B-047), Project of NWNU-LKQN2019-13 and Doctoral Research Fund of Northwest Normal University (No. 6014/0002020209)

This paper is concerned with the asymptotic behavior of the solutions to a class of non-autonomous nonlocal fractional stochastic parabolic equations with delay defined on bounded domain. We first prove the existence of a continuous non-autonomous random dynamical system for the equations as well as the uniform estimates of solutions with respect to the delay time and noise intensity. We then show pullback asymptotical compactness of solutions as well as the existence and uniqueness of tempered random attractors by utilizing the Arzela-Ascoli theorem and the uniform estimates of solutions in fractional Sobolev space $ H^\alpha(\mathbb{R}^n) $ with $ \alpha\in (0,1) $ as well as their time derivatives in $ L^2(\mathbb{R}^n) $. Finally, we establish the upper semi-continuity of the random attractors when noise intensity and time delay approaches zero, respectively.

Citation: Pengyu Chen, Xuping Zhang. Upper semi-continuity of attractors for non-autonomous fractional stochastic parabolic equations with delay. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4325-4357. doi: 10.3934/dcdsb.2020290
References:
[1]

A. Adili and B. Wang, Random attractors for stochastic FitzHugh-Nagumo systems driven by deterministic non-autonomous forcing, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 643-666.  doi: 10.3934/dcdsb.2013.18.643.

[2]

L. Arnold, Random Dynamical Systems, Springer-Verlag, New York, 1998. doi: 10.1007/978-3-662-12878-7.

[3]

P. W. BatesK. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869.  doi: 10.1016/j.jde.2008.05.017.

[4]

P. W. Bates, K. Lu and B. Wang, Tempered random attractors for parabolic equations in weighted spaces, J. Math. Phys., 54 (2013), 081505, 26 pp. doi: 10.1063/1.4817597.

[5]

P. W. BatesK. Lu and B. Wang, Attractors of non-autonomous stochastic lattice systems in weighted spaces, Phys. D, 289 (2014), 32-50.  doi: 10.1016/j.physd.2014.08.004.

[6]

L. A. CaffarelliJ.-M. Roquejoffre and Y. Sire, Variational problems for free boundaries for the fractional Laplacian, J. Eur. Math. Soc., 12 (2010), 1151-1179.  doi: 10.4171/JEMS/226.

[7]

T. Caraballo and J. Real, Attractors for 2D-Navier-Stokes models with delays, J. Differential Equations, 205 (2004), 271-297.  doi: 10.1016/j.jde.2004.04.012.

[8]

T. CaraballoM. J. Garrido-AtienzaB. Schmalfuss and J. Valero, Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 439-455.  doi: 10.3934/dcdsb.2010.14.439.

[9]

T. CaraballoM. J. Garrido-Atienza and T. Taniguchi, The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion, Nonlinear Anal., 74 (2011), 3671-3684.  doi: 10.1016/j.na.2011.02.047.

[10]

T. Caraballo and A. M. Márquez-Durán, Existence, uniqueness and asymptotic behavior of solutions for a nonclassical diffusion equation with delay, Dyn. Partial Differ. Equ., 10 (2013), 267-281.  doi: 10.4310/DPDE.2013.v10.n3.a3.

[11]

T. CaraballoM. J. Garrido-AtienzaB. Schmalfuss and J. Valero, Attractors for a random evolution equation with infinite memory: Theoretical results, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1779-1800.  doi: 10.3934/dcdsb.2017106.

[12]

P. Chen, Y. Li and X. Zhang, Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families, Discrete Contin. Dyn. Syst. Ser. B, published online, 2020. doi: 10.3934/dcdsb.2020171.

[13]

P. ChenX. Zhang and Y. Li, Existence and approximate controllability of fractional evolution equations with nonlocal conditions via resolvent operators, Fract. Calcu. Appl. Anal., 23 (2020), 268-291.  doi: 10.1515/fca-2020-0011.

[14]

Z. Chen and B. Wang, Invariant measures of fractional stochastic delay reaction-diffusion equations on unbounded domains, submitted.

[15]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341.  doi: 10.1007/BF02219225.

[16]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.

[17]

J. Duan and B. Schmalfuss, The 3D quasigeostrophic fluid dynamics under random forcing on boundary, Commun. Math. Sci., 1 (2003), 133-151. 

[18]

M. J. Garrido-AtienzaA. Ogrowsky and B. Schmalfuss, Random differential equations with random delays, Stoch. Dyn., 11 (2011), 369-388.  doi: 10.1142/S0219493711003358.

[19]

M. J. Garrido-Atienza and B. Schmalfuss, Ergodicity of the infinite dimensional fractional Brownian motion, J. Dynam. Differential Equations, 23 (2011), 671-681.  doi: 10.1007/s10884-011-9222-5.

[20]

B. Gess, Random attractors for singular stochastic evolution equations, J. Differential Equations, 255 (2013), 524-559.  doi: 10.1016/j.jde.2013.04.023.

[21]

A. GuD. LiB. Wang and H. Yang, Regularity of random attractors for fractional stochastic reaction-diffusion equations on $\mathbb{R}^n$, J. Differential Equations, 264 (2018), 7094-7137.  doi: 10.1016/j.jde.2018.02.011.

[22]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4342-7.

[23]

X. HanP. E. Kloden and B. Usman, Upper semi-continuous convergence of attractors for a Hopfield-type lattice model, Nonlinearity, 33 (2020), 1881-1906.  doi: 10.1088/1361-6544/ab6813.

[24]

J. HuangT. Shen and Y. Li, Dynamics of stochastic fractional Boussinesq equations, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2051-2067.  doi: 10.3934/dcdsb.2015.20.2051.

[25]

P. E. Kloeden, Upper semicontinuity of attractors of delay differential equations in the delay, Bull. Austral. Math. Soc., 73 (2006), 299-306.  doi: 10.1017/S0004972700038880.

[26]

P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463 (2007), 163-181.  doi: 10.1098/rspa.2006.1753.

[27]

P. E. Kloeden and T. Lorenz, Pullback attractors of reaction-diffusion inclusions with space-dependent delay, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1909-1964.  doi: 10.3934/dcdsb.2017114.

[28]

D. LiK. LuB. Wang and X. Wang, Limiting dynamics for non-autonomous stochastic retarded reaction-diffusion equations on thin domains, Discrete Contin. Dyn. Syst., 39 (2019), 3717-3747.  doi: 10.3934/dcds.2019151.

[29]

D. LiL. Shi and X. Wang, Long term behavior of stochastic discrete complex Ginzburg-Landau equations with time delays in weighted spaces, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 5121-5148.  doi: 10.3934/dcdsb.2019046.

[30]

Y. Li and Y. Wang, The existence and asymptotic behavior of solutions to fractional stochastic evolution equations with infinite delay, J. Differential Equations, 266 (2019), 3514-3558.  doi: 10.1016/j.jde.2018.09.009.

[31]

D. Li, B. Wang and X. Wang, Random dynamics of fractional stochastic reaction-diffusion equations on $\mathbb{R}^{n}$ without uniqueness, J. Math. Phys., 60 (2019), 072704, 21 pp. doi: 10.1063/1.5063840.

[32]

H. LuP. W. BatesS. Lü and M. Zhang, Dynamics of 3-D fractional complex Ginzburg-Landau equation, J. Differential Equations, 259 (2015), 5276-5301.  doi: 10.1016/j.jde.2015.06.028.

[33]

H. LuP. W. BatesS. Lü and M. Zhang, Dynamics of the 3D fractional Ginzburg-Landau equation with multiplicative noise on an unbounded domain, Commun. Math. Sci., 14 (2016), 273-295. 

[34]

H. LuP. W. BatesJ. Xin and M. Zhang, Asymptotic behavior of stochastic fractional power dissipative equations on $\mathbb{R}^{n}$, Nonlinear Anal., 128 (2015), 176-198.  doi: 10.1016/j.na.2015.06.033.

[35]

H. LuJ. QiB. Wang and M. Zhang, Random attractors for non-autonomous fractional stochastic parabolic equations on unbounded domains, Discrete Contin. Dyn. Syst., 39 (2019), 683-706.  doi: 10.3934/dcds.2019028.

[36]

X. Mao, Stochastic Differential Equations and Applications, Second Edition, Horwood Publishing Limited, Chichester, 2008. doi: 10.1533/9780857099402.

[37]

S. E. A. Mohammed, Stochastic Functional Differential Equations, Research Notes in Mathematics, 99, Pitman, Boston, 1984.

[38]

C. Morosi and L. Pizzocchero, On the constants for some fractional Gagliardo-Nirenberg and Sobolev inequalities, Expo. Math., 36 (2018), 32-77.  doi: 10.1016/j.exmath.2017.08.007.

[39]

X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pures Appl., 101 (2014), 275-302.  doi: 10.1016/j.matpur.2013.06.003.

[40]

R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 831-855.  doi: 10.1017/S0308210512001783.

[41]

M. Sui and Y. Wang, Upper semicontinuity of pullback attractors for lattice nonclassical diffusion delay equations under singular perturbations, Appl. Math. Comput., 242 (2014), 315-327.  doi: 10.1016/j.amc.2014.05.045.

[42]

B. Wang, Random attractors for the stochastic Benjamin-Bona-Mahony equation on unbounded domains, J. Differential Equations, 246 (2009), 2506-2537.  doi: 10.1016/j.jde.2008.10.012.

[43]

B. Wang, Asymptotic behavior of stochastic wave equations with critical exponents on $\mathbb{R}^{3}$, Tran. Amer. Math. Soc., 363 (2011), 3639-3663.  doi: 10.1090/S0002-9947-2011-05247-5.

[44]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.  doi: 10.1016/j.jde.2012.05.015.

[45]

B. Wang, Existence and upper semicontinuity of attractors for stochastic equations with deterministic non-autonomous terms, Stoch. Dyn., 14 (2014), 1450009, 31 pp. doi: 10.1142/S0219493714500099.

[46]

B. Wang, Asymptotic behavior of non-autonomous fractional stochastic reaction-diffusion equations, Nonlinear Anal., 158 (2017), 60-82.  doi: 10.1016/j.na.2017.04.006.

[47]

B. Wang, Weak pullback attractors for mean random dynamical systems in Bochner spaces, J. Dynam. Differential Equations, 31 (2019), 2177-2204.  doi: 10.1007/s10884-018-9696-5.

[48]

B. Wang, Dynamics of fractional stochastic reaction-diffusion equations on unbounded domains driven by nonlinear noise, J. Differential Equations, 268 (2019), 1-59.  doi: 10.1016/j.jde.2019.08.007.

[49]

R. WangY. Li and B. Wang, Random dynamics of fractional nonclassical diffusion equations driven by colored noise, Discrete Contin. Dyn. Syst., 39 (2019), 4091-4126.  doi: 10.3934/dcds.2019165.

[50]

X. WangK. Lu and B. Wang, Random attractors for delay parabolic equations with additive noise and deterministic nonautonomous forcing, SIAM J. Appl. Dyn. Syst., 14 (2015), 1018-1047. 

[51]

X. WangK. Lu and B. Wang, Exponential stability of non-autonomous stochastic delay lattice systems with multiplicative noise, J. Dynam. Differential Equations, 28 (2016), 1309-1335.  doi: 10.1007/s10884-015-9448-8.

[52]

R. WangL. Shi and B. Wang, Asymptotic behavior of fractional nonclassical diffusion equations driven by nonlinear colored noise on $\mathbb{R}^N$, Nonlinearity, 32 (2019), 4524-4556.  doi: 10.1088/1361-6544/ab32d7.

[53]

L. Wang and D. Xu, Asymptotic behavior of a class of reaction-diffusion equations with delays, J. Math. Anal. Appl., 281 (2003), 439-453.  doi: 10.1016/S0022-247X(03)00112-4.

[54]

J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer, New York, 1996. doi: 10.1007/978-1-4612-4050-1.

[55]

F. Wu and P. E. Kloeden, Mean-square random attractors of stochastic delay differential equations with random delay, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1715-1734.  doi: 10.3934/dcdsb.2013.18.1715.

[56]

L. XuJ. Huang and Q. Ma, Upper semicontinuity of random attractors for the stochastic non-autonomous suspension bridge equation with memory, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 5959-5979.  doi: 10.3934/dcdsb.2019115.

[57]

W. Yan, Y. Li and S. Ji, Random attractors for first order stochastic retarded lattice dynamical systems, J. Math. Phys., 51 (2010), 032702, 17 pp. doi: 10.1063/1.3319566.

show all references

References:
[1]

A. Adili and B. Wang, Random attractors for stochastic FitzHugh-Nagumo systems driven by deterministic non-autonomous forcing, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 643-666.  doi: 10.3934/dcdsb.2013.18.643.

[2]

L. Arnold, Random Dynamical Systems, Springer-Verlag, New York, 1998. doi: 10.1007/978-3-662-12878-7.

[3]

P. W. BatesK. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869.  doi: 10.1016/j.jde.2008.05.017.

[4]

P. W. Bates, K. Lu and B. Wang, Tempered random attractors for parabolic equations in weighted spaces, J. Math. Phys., 54 (2013), 081505, 26 pp. doi: 10.1063/1.4817597.

[5]

P. W. BatesK. Lu and B. Wang, Attractors of non-autonomous stochastic lattice systems in weighted spaces, Phys. D, 289 (2014), 32-50.  doi: 10.1016/j.physd.2014.08.004.

[6]

L. A. CaffarelliJ.-M. Roquejoffre and Y. Sire, Variational problems for free boundaries for the fractional Laplacian, J. Eur. Math. Soc., 12 (2010), 1151-1179.  doi: 10.4171/JEMS/226.

[7]

T. Caraballo and J. Real, Attractors for 2D-Navier-Stokes models with delays, J. Differential Equations, 205 (2004), 271-297.  doi: 10.1016/j.jde.2004.04.012.

[8]

T. CaraballoM. J. Garrido-AtienzaB. Schmalfuss and J. Valero, Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 439-455.  doi: 10.3934/dcdsb.2010.14.439.

[9]

T. CaraballoM. J. Garrido-Atienza and T. Taniguchi, The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion, Nonlinear Anal., 74 (2011), 3671-3684.  doi: 10.1016/j.na.2011.02.047.

[10]

T. Caraballo and A. M. Márquez-Durán, Existence, uniqueness and asymptotic behavior of solutions for a nonclassical diffusion equation with delay, Dyn. Partial Differ. Equ., 10 (2013), 267-281.  doi: 10.4310/DPDE.2013.v10.n3.a3.

[11]

T. CaraballoM. J. Garrido-AtienzaB. Schmalfuss and J. Valero, Attractors for a random evolution equation with infinite memory: Theoretical results, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1779-1800.  doi: 10.3934/dcdsb.2017106.

[12]

P. Chen, Y. Li and X. Zhang, Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families, Discrete Contin. Dyn. Syst. Ser. B, published online, 2020. doi: 10.3934/dcdsb.2020171.

[13]

P. ChenX. Zhang and Y. Li, Existence and approximate controllability of fractional evolution equations with nonlocal conditions via resolvent operators, Fract. Calcu. Appl. Anal., 23 (2020), 268-291.  doi: 10.1515/fca-2020-0011.

[14]

Z. Chen and B. Wang, Invariant measures of fractional stochastic delay reaction-diffusion equations on unbounded domains, submitted.

[15]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341.  doi: 10.1007/BF02219225.

[16]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.

[17]

J. Duan and B. Schmalfuss, The 3D quasigeostrophic fluid dynamics under random forcing on boundary, Commun. Math. Sci., 1 (2003), 133-151. 

[18]

M. J. Garrido-AtienzaA. Ogrowsky and B. Schmalfuss, Random differential equations with random delays, Stoch. Dyn., 11 (2011), 369-388.  doi: 10.1142/S0219493711003358.

[19]

M. J. Garrido-Atienza and B. Schmalfuss, Ergodicity of the infinite dimensional fractional Brownian motion, J. Dynam. Differential Equations, 23 (2011), 671-681.  doi: 10.1007/s10884-011-9222-5.

[20]

B. Gess, Random attractors for singular stochastic evolution equations, J. Differential Equations, 255 (2013), 524-559.  doi: 10.1016/j.jde.2013.04.023.

[21]

A. GuD. LiB. Wang and H. Yang, Regularity of random attractors for fractional stochastic reaction-diffusion equations on $\mathbb{R}^n$, J. Differential Equations, 264 (2018), 7094-7137.  doi: 10.1016/j.jde.2018.02.011.

[22]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4342-7.

[23]

X. HanP. E. Kloden and B. Usman, Upper semi-continuous convergence of attractors for a Hopfield-type lattice model, Nonlinearity, 33 (2020), 1881-1906.  doi: 10.1088/1361-6544/ab6813.

[24]

J. HuangT. Shen and Y. Li, Dynamics of stochastic fractional Boussinesq equations, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2051-2067.  doi: 10.3934/dcdsb.2015.20.2051.

[25]

P. E. Kloeden, Upper semicontinuity of attractors of delay differential equations in the delay, Bull. Austral. Math. Soc., 73 (2006), 299-306.  doi: 10.1017/S0004972700038880.

[26]

P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463 (2007), 163-181.  doi: 10.1098/rspa.2006.1753.

[27]

P. E. Kloeden and T. Lorenz, Pullback attractors of reaction-diffusion inclusions with space-dependent delay, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1909-1964.  doi: 10.3934/dcdsb.2017114.

[28]

D. LiK. LuB. Wang and X. Wang, Limiting dynamics for non-autonomous stochastic retarded reaction-diffusion equations on thin domains, Discrete Contin. Dyn. Syst., 39 (2019), 3717-3747.  doi: 10.3934/dcds.2019151.

[29]

D. LiL. Shi and X. Wang, Long term behavior of stochastic discrete complex Ginzburg-Landau equations with time delays in weighted spaces, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 5121-5148.  doi: 10.3934/dcdsb.2019046.

[30]

Y. Li and Y. Wang, The existence and asymptotic behavior of solutions to fractional stochastic evolution equations with infinite delay, J. Differential Equations, 266 (2019), 3514-3558.  doi: 10.1016/j.jde.2018.09.009.

[31]

D. Li, B. Wang and X. Wang, Random dynamics of fractional stochastic reaction-diffusion equations on $\mathbb{R}^{n}$ without uniqueness, J. Math. Phys., 60 (2019), 072704, 21 pp. doi: 10.1063/1.5063840.

[32]

H. LuP. W. BatesS. Lü and M. Zhang, Dynamics of 3-D fractional complex Ginzburg-Landau equation, J. Differential Equations, 259 (2015), 5276-5301.  doi: 10.1016/j.jde.2015.06.028.

[33]

H. LuP. W. BatesS. Lü and M. Zhang, Dynamics of the 3D fractional Ginzburg-Landau equation with multiplicative noise on an unbounded domain, Commun. Math. Sci., 14 (2016), 273-295. 

[34]

H. LuP. W. BatesJ. Xin and M. Zhang, Asymptotic behavior of stochastic fractional power dissipative equations on $\mathbb{R}^{n}$, Nonlinear Anal., 128 (2015), 176-198.  doi: 10.1016/j.na.2015.06.033.

[35]

H. LuJ. QiB. Wang and M. Zhang, Random attractors for non-autonomous fractional stochastic parabolic equations on unbounded domains, Discrete Contin. Dyn. Syst., 39 (2019), 683-706.  doi: 10.3934/dcds.2019028.

[36]

X. Mao, Stochastic Differential Equations and Applications, Second Edition, Horwood Publishing Limited, Chichester, 2008. doi: 10.1533/9780857099402.

[37]

S. E. A. Mohammed, Stochastic Functional Differential Equations, Research Notes in Mathematics, 99, Pitman, Boston, 1984.

[38]

C. Morosi and L. Pizzocchero, On the constants for some fractional Gagliardo-Nirenberg and Sobolev inequalities, Expo. Math., 36 (2018), 32-77.  doi: 10.1016/j.exmath.2017.08.007.

[39]

X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pures Appl., 101 (2014), 275-302.  doi: 10.1016/j.matpur.2013.06.003.

[40]

R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 831-855.  doi: 10.1017/S0308210512001783.

[41]

M. Sui and Y. Wang, Upper semicontinuity of pullback attractors for lattice nonclassical diffusion delay equations under singular perturbations, Appl. Math. Comput., 242 (2014), 315-327.  doi: 10.1016/j.amc.2014.05.045.

[42]

B. Wang, Random attractors for the stochastic Benjamin-Bona-Mahony equation on unbounded domains, J. Differential Equations, 246 (2009), 2506-2537.  doi: 10.1016/j.jde.2008.10.012.

[43]

B. Wang, Asymptotic behavior of stochastic wave equations with critical exponents on $\mathbb{R}^{3}$, Tran. Amer. Math. Soc., 363 (2011), 3639-3663.  doi: 10.1090/S0002-9947-2011-05247-5.

[44]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.  doi: 10.1016/j.jde.2012.05.015.

[45]

B. Wang, Existence and upper semicontinuity of attractors for stochastic equations with deterministic non-autonomous terms, Stoch. Dyn., 14 (2014), 1450009, 31 pp. doi: 10.1142/S0219493714500099.

[46]

B. Wang, Asymptotic behavior of non-autonomous fractional stochastic reaction-diffusion equations, Nonlinear Anal., 158 (2017), 60-82.  doi: 10.1016/j.na.2017.04.006.

[47]

B. Wang, Weak pullback attractors for mean random dynamical systems in Bochner spaces, J. Dynam. Differential Equations, 31 (2019), 2177-2204.  doi: 10.1007/s10884-018-9696-5.

[48]

B. Wang, Dynamics of fractional stochastic reaction-diffusion equations on unbounded domains driven by nonlinear noise, J. Differential Equations, 268 (2019), 1-59.  doi: 10.1016/j.jde.2019.08.007.

[49]

R. WangY. Li and B. Wang, Random dynamics of fractional nonclassical diffusion equations driven by colored noise, Discrete Contin. Dyn. Syst., 39 (2019), 4091-4126.  doi: 10.3934/dcds.2019165.

[50]

X. WangK. Lu and B. Wang, Random attractors for delay parabolic equations with additive noise and deterministic nonautonomous forcing, SIAM J. Appl. Dyn. Syst., 14 (2015), 1018-1047. 

[51]

X. WangK. Lu and B. Wang, Exponential stability of non-autonomous stochastic delay lattice systems with multiplicative noise, J. Dynam. Differential Equations, 28 (2016), 1309-1335.  doi: 10.1007/s10884-015-9448-8.

[52]

R. WangL. Shi and B. Wang, Asymptotic behavior of fractional nonclassical diffusion equations driven by nonlinear colored noise on $\mathbb{R}^N$, Nonlinearity, 32 (2019), 4524-4556.  doi: 10.1088/1361-6544/ab32d7.

[53]

L. Wang and D. Xu, Asymptotic behavior of a class of reaction-diffusion equations with delays, J. Math. Anal. Appl., 281 (2003), 439-453.  doi: 10.1016/S0022-247X(03)00112-4.

[54]

J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer, New York, 1996. doi: 10.1007/978-1-4612-4050-1.

[55]

F. Wu and P. E. Kloeden, Mean-square random attractors of stochastic delay differential equations with random delay, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1715-1734.  doi: 10.3934/dcdsb.2013.18.1715.

[56]

L. XuJ. Huang and Q. Ma, Upper semicontinuity of random attractors for the stochastic non-autonomous suspension bridge equation with memory, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 5959-5979.  doi: 10.3934/dcdsb.2019115.

[57]

W. Yan, Y. Li and S. Ji, Random attractors for first order stochastic retarded lattice dynamical systems, J. Math. Phys., 51 (2010), 032702, 17 pp. doi: 10.1063/1.3319566.

[1]

Xiaohui Zhang, Xuping Zhang. Upper semi-continuity of non-autonomous fractional stochastic $ p $-Laplacian equation driven by additive noise on $ \mathbb{R}^n $. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022081

[2]

Xiaoming Wang. Upper semi-continuity of stationary statistical properties of dissipative systems. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 521-540. doi: 10.3934/dcds.2009.23.521

[3]

Xuping Zhang. Pullback random attractors for fractional stochastic $ p $-Laplacian equation with delay and multiplicative noise. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1695-1724. doi: 10.3934/dcdsb.2021107

[4]

Renhai Wang, Yangrong Li. Backward compactness and periodicity of random attractors for stochastic wave equations with varying coefficients. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4145-4167. doi: 10.3934/dcdsb.2019054

[5]

Yangrong Li, Shuang Yang, Guangqing Long. Continuity of random attractors on a topological space and fractional delayed FitzHugh-Nagumo equations with WZ-noise. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021303

[6]

Fuke Wu, Peter E. Kloeden. Mean-square random attractors of stochastic delay differential equations with random delay. Discrete and Continuous Dynamical Systems - B, 2013, 18 (6) : 1715-1734. doi: 10.3934/dcdsb.2013.18.1715

[7]

Jingyu Wang, Yejuan Wang, Lin Yang, Tomás Caraballo. Random attractors for stochastic delay wave equations on $ \mathbb{R}^n $ with linear memory and nonlinear damping. Discrete and Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021141

[8]

Ji Shu. Random attractors for stochastic discrete Klein-Gordon-Schrödinger equations driven by fractional Brownian motions. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1587-1599. doi: 10.3934/dcdsb.2017077

[9]

Hong Lu, Jiangang Qi, Bixiang Wang, Mingji Zhang. Random attractors for non-autonomous fractional stochastic parabolic equations on unbounded domains. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 683-706. doi: 10.3934/dcds.2019028

[10]

Yangrong Li, Fengling Wang, Shuang Yang. Part-convergent cocycles and semi-convergent attractors of stochastic 2D-Ginzburg-Landau delay equations toward zero-memory. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3643-3665. doi: 10.3934/dcdsb.2020250

[11]

Linfang Liu, Xianlong Fu. Existence and upper semicontinuity of (L2, Lq) pullback attractors for a stochastic p-laplacian equation. Communications on Pure and Applied Analysis, 2017, 6 (2) : 443-474. doi: 10.3934/cpaa.2017023

[12]

Ling Xu, Jianhua Huang, Qiaozhen Ma. Upper semicontinuity of random attractors for the stochastic non-autonomous suspension bridge equation with memory. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 5959-5979. doi: 10.3934/dcdsb.2019115

[13]

Zhaojuan Wang, Shengfan Zhou. Existence and upper semicontinuity of attractors for non-autonomous stochastic lattice systems with random coupled coefficients. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2221-2245. doi: 10.3934/cpaa.2016035

[14]

Zhaojuan Wang, Shengfan Zhou. Existence and upper semicontinuity of random attractors for non-autonomous stochastic strongly damped wave equation with multiplicative noise. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2787-2812. doi: 10.3934/dcds.2017120

[15]

Hua Chen, Hong-Ge Chen. Estimates the upper bounds of Dirichlet eigenvalues for fractional Laplacian. Discrete and Continuous Dynamical Systems, 2022, 42 (1) : 301-317. doi: 10.3934/dcds.2021117

[16]

Bixiang Wang. Random attractors for non-autonomous stochastic wave equations with multiplicative noise. Discrete and Continuous Dynamical Systems, 2014, 34 (1) : 269-300. doi: 10.3934/dcds.2014.34.269

[17]

Xiaojun Li, Xiliang Li, Kening Lu. Random attractors for stochastic parabolic equations with additive noise in weighted spaces. Communications on Pure and Applied Analysis, 2018, 17 (3) : 729-749. doi: 10.3934/cpaa.2018038

[18]

Tomás Caraballo, M. J. Garrido-Atienza, B. Schmalfuss, José Valero. Non--autonomous and random attractors for delay random semilinear equations without uniqueness. Discrete and Continuous Dynamical Systems, 2008, 21 (2) : 415-443. doi: 10.3934/dcds.2008.21.415

[19]

Anhui Gu. Weak pullback mean random attractors for non-autonomous $ p $-Laplacian equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3863-3878. doi: 10.3934/dcdsb.2020266

[20]

Pavel Jirásek. On Compactness Conditions for the $p$-Laplacian. Communications on Pure and Applied Analysis, 2016, 15 (3) : 715-726. doi: 10.3934/cpaa.2016.15.715

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (337)
  • HTML views (241)
  • Cited by (0)

Other articles
by authors

[Back to Top]