doi: 10.3934/dcdsb.2020296

Lyapunov functions for disease models with immigration of infected hosts

Department of Mathematics, Wilfrid Laurier University, Waterloo, Ontario, Canada

Received  June 2020 Revised  July 2020 Published  October 2020

Fund Project: The author is supported by an NSERC Discovery Grant

Recent work has produced examples where models of the spread of infectious disease with immigration of infected hosts are shown to be globally asymptotically stable through the use of Lyapunov functions. In each case, the Lyapunov function was similar to a Lyapunov function that worked for the corresponding model without immigration of infected hosts.

We distill the calculations from the individual examples into a general result, finding algebraic conditions under which the Lyapunov function for a model without immigration of infected hosts extends to be a valid Lyapunov function for the corresponding system with immigration of infected hosts.

Finally, the method is applied to a multi-group $ SIR $ model.

Citation: Connell McCluskey. Lyapunov functions for disease models with immigration of infected hosts. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020296
References:
[1]

R. M. Almarashi and C. C. McCluskey, The effect of immigration of infectives on disease-free equilibria, J. Math. Biol., 79 (2019), 1015-1028.  doi: 10.1007/s00285-019-01387-8.  Google Scholar

[2]

S. M. BlowerA. R. McLeanT. C. PorcoP. M. SmallP. C. HopwellM. A. Sanchez and A. R. Moss, The intrinsic transmission dynamics of tuberculosis epidemics, Nature Medicine, 1 (1995), 815-821.  doi: 10.1038/nm0895-815.  Google Scholar

[3]

F. Brauer and P. van den Driessche, Models for transmission of disease with immigration of infectives, Math. Biosci., 171 (2001), 143-154.  doi: 10.1016/S0025-5564(01)00057-8.  Google Scholar

[4]

H. Guo and M. Y. Li, Global dynamics of a staged progression model with amelioration for infectious diseases, J. Biol. Dyn., 2 (2008), 154-168.  doi: 10.1080/17513750802120877.  Google Scholar

[5]

H. Guo and M. Y. Li, Impacts of migration and immigration on disease transmission dynamics in heterogeneous populations, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2413-2430.  doi: 10.3934/dcdsb.2012.17.2413.  Google Scholar

[6]

H. GuoM. Y. Li and Z. Shuai, Global stability of the endemic equilibrium of multigroup SIR epidemic models, Can. Appl. Math. Q., 14 (2006), 259-284.   Google Scholar

[7]

J. K. Hale, Ordinary Differential Equations, Pure and Applied Mathematics, 21, John Wiley & Sons, New York-London-Sydney, 1969.  Google Scholar

[8]

S. Henshaw and C. C. McCluskey, Global stability of a vaccination model with immigration, Electron J. Differential Equations, 2015 (2015), 1-10.   Google Scholar

[9]

A. Iggidr, J. Mbang, G. Sallet and J.-J. Tewa, Multi-compartment models, Discrete Contin. Dyn. Syst., Proceedings of the 6th AIMS International Conference, 2007,506–519. doi: 10.3934/proc.2007.2007.506.  Google Scholar

[10]

A. Korobeinikov, Lyapunov functions and global properties for SEIR and SEIS epidemic models, Math. Med. Biol., 21 (2004), 75-83.  doi: 10.1093/imammb/21.2.75.  Google Scholar

[11]

J. P. LaSalle, The Stability of Dynamical Systems, Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1976.  Google Scholar

[12]

C. C. McCluskey, Lyapunov functions for tuberculosis models with fast and slow progression, Math. Biosci. Eng., 3 (2006), 603-614.  doi: 10.3934/mbe.2006.3.603.  Google Scholar

[13]

C. C. McCluskey, Global stability for an SEI model of infectious disease with age structure and immigration of infecteds, Math. Biosci. Eng., 13 (2016), 381-400.  doi: 10.3934/mbe.2015008.  Google Scholar

[14]

R. P. Sigdel and C. C. McCluskey, Global stability for an SEI model of infectious disease with immigration, Appl. Math. Comput., 243 (2014), 684-689.  doi: 10.1016/j.amc.2014.06.020.  Google Scholar

[15]

R. ZhangD. Li and S. Liu, Global analysis of an age-structured SEIR model with immigration of population and nonlinear incidence rate, J. Appl. Anal. Comput., 9 (2019), 1470-1492.  doi: 10.11948/2156-907X.20180281.  Google Scholar

show all references

References:
[1]

R. M. Almarashi and C. C. McCluskey, The effect of immigration of infectives on disease-free equilibria, J. Math. Biol., 79 (2019), 1015-1028.  doi: 10.1007/s00285-019-01387-8.  Google Scholar

[2]

S. M. BlowerA. R. McLeanT. C. PorcoP. M. SmallP. C. HopwellM. A. Sanchez and A. R. Moss, The intrinsic transmission dynamics of tuberculosis epidemics, Nature Medicine, 1 (1995), 815-821.  doi: 10.1038/nm0895-815.  Google Scholar

[3]

F. Brauer and P. van den Driessche, Models for transmission of disease with immigration of infectives, Math. Biosci., 171 (2001), 143-154.  doi: 10.1016/S0025-5564(01)00057-8.  Google Scholar

[4]

H. Guo and M. Y. Li, Global dynamics of a staged progression model with amelioration for infectious diseases, J. Biol. Dyn., 2 (2008), 154-168.  doi: 10.1080/17513750802120877.  Google Scholar

[5]

H. Guo and M. Y. Li, Impacts of migration and immigration on disease transmission dynamics in heterogeneous populations, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2413-2430.  doi: 10.3934/dcdsb.2012.17.2413.  Google Scholar

[6]

H. GuoM. Y. Li and Z. Shuai, Global stability of the endemic equilibrium of multigroup SIR epidemic models, Can. Appl. Math. Q., 14 (2006), 259-284.   Google Scholar

[7]

J. K. Hale, Ordinary Differential Equations, Pure and Applied Mathematics, 21, John Wiley & Sons, New York-London-Sydney, 1969.  Google Scholar

[8]

S. Henshaw and C. C. McCluskey, Global stability of a vaccination model with immigration, Electron J. Differential Equations, 2015 (2015), 1-10.   Google Scholar

[9]

A. Iggidr, J. Mbang, G. Sallet and J.-J. Tewa, Multi-compartment models, Discrete Contin. Dyn. Syst., Proceedings of the 6th AIMS International Conference, 2007,506–519. doi: 10.3934/proc.2007.2007.506.  Google Scholar

[10]

A. Korobeinikov, Lyapunov functions and global properties for SEIR and SEIS epidemic models, Math. Med. Biol., 21 (2004), 75-83.  doi: 10.1093/imammb/21.2.75.  Google Scholar

[11]

J. P. LaSalle, The Stability of Dynamical Systems, Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1976.  Google Scholar

[12]

C. C. McCluskey, Lyapunov functions for tuberculosis models with fast and slow progression, Math. Biosci. Eng., 3 (2006), 603-614.  doi: 10.3934/mbe.2006.3.603.  Google Scholar

[13]

C. C. McCluskey, Global stability for an SEI model of infectious disease with age structure and immigration of infecteds, Math. Biosci. Eng., 13 (2016), 381-400.  doi: 10.3934/mbe.2015008.  Google Scholar

[14]

R. P. Sigdel and C. C. McCluskey, Global stability for an SEI model of infectious disease with immigration, Appl. Math. Comput., 243 (2014), 684-689.  doi: 10.1016/j.amc.2014.06.020.  Google Scholar

[15]

R. ZhangD. Li and S. Liu, Global analysis of an age-structured SEIR model with immigration of population and nonlinear incidence rate, J. Appl. Anal. Comput., 9 (2019), 1470-1492.  doi: 10.11948/2156-907X.20180281.  Google Scholar

[1]

Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020  doi: 10.3934/jcd.2021006

[2]

Peter Giesl, Sigurdur Hafstein. System specific triangulations for the construction of CPA Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020378

[3]

Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331

[4]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[5]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

[6]

Bimal Mandal, Aditi Kar Gangopadhyay. A note on generalization of bent boolean functions. Advances in Mathematics of Communications, 2021, 15 (2) : 329-346. doi: 10.3934/amc.2020069

[7]

Andreas Koutsogiannis. Multiple ergodic averages for tempered functions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1177-1205. doi: 10.3934/dcds.2020314

[8]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[9]

Xinpeng Wang, Bingo Wing-Kuen Ling, Wei-Chao Kuang, Zhijing Yang. Orthogonal intrinsic mode functions via optimization approach. Journal of Industrial & Management Optimization, 2021, 17 (1) : 51-66. doi: 10.3934/jimo.2019098

[10]

Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021015

[11]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[12]

Meihua Dong, Keonhee Lee, Carlos Morales. Gromov-Hausdorff stability for group actions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1347-1357. doi: 10.3934/dcds.2020320

[13]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[14]

Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015

[15]

Tahir Aliyev Azeroğlu, Bülent Nafi Örnek, Timur Düzenli. Some results on the behaviour of transfer functions at the right half plane. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020106

[16]

Meenakshi Rana, Shruti Sharma. Combinatorics of some fifth and sixth order mock theta functions. Electronic Research Archive, 2021, 29 (1) : 1803-1818. doi: 10.3934/era.2020092

[17]

Kalikinkar Mandal, Guang Gong. On ideal $ t $-tuple distribution of orthogonal functions in filtering de bruijn generators. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020125

[18]

Jong Yoon Hyun, Boran Kim, Minwon Na. Construction of minimal linear codes from multi-variable functions. Advances in Mathematics of Communications, 2021, 15 (2) : 227-240. doi: 10.3934/amc.2020055

[19]

Tomasz Szostok. Inequalities of Hermite-Hadamard type for higher order convex functions, revisited. Communications on Pure & Applied Analysis, 2021, 20 (2) : 903-914. doi: 10.3934/cpaa.2020296

[20]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

2019 Impact Factor: 1.27

Article outline

[Back to Top]