-
Previous Article
When do Keller–Segel systems with heterogeneous logistic sources admit generalized solutions?
- DCDS-B Home
- This Issue
-
Next Article
Asymptotics in a two-species chemotaxis system with logistic source
Scattering and strong instability of the standing waves for dipolar quantum gases
School of Mathematical Science, and V.C. & V.R. Key Lab of Sichuan Province, Sichuan Normal University, Chengdu 610068, China |
This paper concerns the nonlinear Schrödinger equation which describes the dipolar quantum gases. When the energy plus mass is lower than the mass of the ground state, we find we can use the kinetic energy and mass of the initial data to divide the subspace into two parts. If the initial data are in one of the parts, the solutions exist globally. Moreover, by using the Kening-Merle roadmap method, we find that these solutions will scatter. If initial data are in the other part, the solutions will collapse. And hence, the standing waves are strong unstable.
References:
[1] |
P. Antonelli and C. Sparber,
Existence of solitary waves in dipolar quantum gases, Phys. D, 240 (2011), 426-431.
doi: 10.1016/j.physd.2010.10.004. |
[2] |
W. Bao, Y. Cai and H. Wang,
Efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates, J. Comput. Phys., 229 (2010), 7874-7892.
doi: 10.1016/j.jcp.2010.07.001. |
[3] |
J. Bellazzini and L. Forcella,
Asymptotic dynamic for dipolar quantum gases below the ground state energy threshold, J. Funct. Anal., 277 (2019), 1958-1998.
doi: 10.1016/j.jfa.2019.04.005. |
[4] |
J. Bourgain, Scattering in the energy space and below for 3D NLS, J. Anal. Math., 75 (1998), 267–297.
doi: 10.1007/BF02788703. |
[5] |
R. Carles and H. Hajaiej,
Complementary study of the standing wave solutions of the Gross-Pitaevskii equation in dipolar quantum gases, Bull. Lond. Math. Soc., 47 (2015), 509-518.
doi: 10.1112/blms/bdv024. |
[6] |
R. Carles, P. A. Markowich and C. Sparber,
On the Gross-Pitaevskii equation for trapped dipolar quantum gases, Nonlinearity, 21 (2008), 2569-2590.
doi: 10.1088/0951-7715/21/11/006. |
[7] |
T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes, 10, American Mathematical Society, Providence, RI, 2003.
doi: 10.1090/cln/010. |
[8] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao,
Global existence and scattering for rough solutions of a nonlinear Schrödinger equation on $\mathbb{R}^3$, Comm. Pure Appl. Math., 57 (2004), 987-1014.
doi: 10.1002/cpa.20029. |
[9] |
T. Duyckaerts, J. Holmer and S. Roudenko,
Scattering for the non-radial 3D cubic nonlinear Schrödinger equation, Math. Res. Lett., 15 (2008), 1233-1250.
doi: 10.4310/MRL.2008.v15.n6.a13. |
[10] |
M. S. Ellio, J. J. Valentini and D. W. Chandler,
Subkelvin cooling NO molecules via "billiard-like" collisions with argon, Science, 302 (2003), 1940-1943.
doi: 10.1126/science.1090679. |
[11] |
R. T. Glassey,
On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys., 18 (1977), 1794-1797.
doi: 10.1063/1.523491. |
[12] |
J. Ginibre and G. Velo,
Scattering theory in the energy space for a class of nonlinear Schrödinger equations, J. Math. Pures Appl., 64 (1985), 363-401.
|
[13] |
J. Holmer and S. Roudenko,
A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation, Comm. Math. Phys., 282 (2008), 435-467.
doi: 10.1007/s00220-008-0529-y. |
[14] |
J. Huang and J. Zhang,
Exact value of cross-constrain problem and strong instability of standing waves in trapped dipolar quantum gases, Appl. Math. Lett., 70 (2017), 32-38.
doi: 10.1016/j.aml.2017.03.002. |
[15] |
S. Ibrahim, N. Masmoudi and K. Nakanishi,
Scattering threshold for the focusing nonlinear Klein-Gordon equation, Anal. PDE, 4 (2011), 405-460.
doi: 10.2140/apde.2011.4.405. |
[16] |
C. E. Kenig and F. Merle,
Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.
doi: 10.1007/s00222-006-0011-4. |
[17] |
C. E. Kenig, G. Ponce and L. Vega,
Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620.
doi: 10.1002/cpa.3160460405. |
[18] |
L. Ma and P. Cao,
The threshold for the focusing Gross-Pitaevskii equation with trapped dipolar quantum gases, J. Math. Anal. Appl., 381 (2011), 240-246.
doi: 10.1016/j.jmaa.2011.02.031. |
[19] |
L. Ma and J. Wang,
Sharp threshold of the Gross-Pitaevskii equation with trapped dipolar quantum gases, Canad. Math. Bull., 56 (2013), 378-387.
doi: 10.4153/CMB-2011-181-2. |
[20] |
J. Rauch, Partial Differential Equations, Graduate Texts in Mathematics, 128, Springer-Verlag, New York, 1991.
doi: 10.1007/978-1-4612-0953-9. |
[21] |
M. Vengalattore, S. R. Leslie, J. Guzman and D. M. Stamper-Kurn, Spontaneously modulated spin textures in a dipolar spinor Bose-Einstein condensate, Phys. Rev. Lett., 100 (2008), 170403.
doi: 10.1103/PhysRevLett.100.170403. |
[22] |
M. I. Weinstein,
Nonlinear Schrödinger equations and sharp interpolations estimates, Comm. Math. Phys., 87 (1982/83), 567-576.
doi: 10.1007/BF01208265. |
[23] |
S. Yi and L. You, Trapped atomic condensates with anisotropic interactions, Phys. Rev. A, 61 (2000).
doi: 10.1103/PhysRevA.61.041604. |
show all references
References:
[1] |
P. Antonelli and C. Sparber,
Existence of solitary waves in dipolar quantum gases, Phys. D, 240 (2011), 426-431.
doi: 10.1016/j.physd.2010.10.004. |
[2] |
W. Bao, Y. Cai and H. Wang,
Efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates, J. Comput. Phys., 229 (2010), 7874-7892.
doi: 10.1016/j.jcp.2010.07.001. |
[3] |
J. Bellazzini and L. Forcella,
Asymptotic dynamic for dipolar quantum gases below the ground state energy threshold, J. Funct. Anal., 277 (2019), 1958-1998.
doi: 10.1016/j.jfa.2019.04.005. |
[4] |
J. Bourgain, Scattering in the energy space and below for 3D NLS, J. Anal. Math., 75 (1998), 267–297.
doi: 10.1007/BF02788703. |
[5] |
R. Carles and H. Hajaiej,
Complementary study of the standing wave solutions of the Gross-Pitaevskii equation in dipolar quantum gases, Bull. Lond. Math. Soc., 47 (2015), 509-518.
doi: 10.1112/blms/bdv024. |
[6] |
R. Carles, P. A. Markowich and C. Sparber,
On the Gross-Pitaevskii equation for trapped dipolar quantum gases, Nonlinearity, 21 (2008), 2569-2590.
doi: 10.1088/0951-7715/21/11/006. |
[7] |
T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes, 10, American Mathematical Society, Providence, RI, 2003.
doi: 10.1090/cln/010. |
[8] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao,
Global existence and scattering for rough solutions of a nonlinear Schrödinger equation on $\mathbb{R}^3$, Comm. Pure Appl. Math., 57 (2004), 987-1014.
doi: 10.1002/cpa.20029. |
[9] |
T. Duyckaerts, J. Holmer and S. Roudenko,
Scattering for the non-radial 3D cubic nonlinear Schrödinger equation, Math. Res. Lett., 15 (2008), 1233-1250.
doi: 10.4310/MRL.2008.v15.n6.a13. |
[10] |
M. S. Ellio, J. J. Valentini and D. W. Chandler,
Subkelvin cooling NO molecules via "billiard-like" collisions with argon, Science, 302 (2003), 1940-1943.
doi: 10.1126/science.1090679. |
[11] |
R. T. Glassey,
On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys., 18 (1977), 1794-1797.
doi: 10.1063/1.523491. |
[12] |
J. Ginibre and G. Velo,
Scattering theory in the energy space for a class of nonlinear Schrödinger equations, J. Math. Pures Appl., 64 (1985), 363-401.
|
[13] |
J. Holmer and S. Roudenko,
A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation, Comm. Math. Phys., 282 (2008), 435-467.
doi: 10.1007/s00220-008-0529-y. |
[14] |
J. Huang and J. Zhang,
Exact value of cross-constrain problem and strong instability of standing waves in trapped dipolar quantum gases, Appl. Math. Lett., 70 (2017), 32-38.
doi: 10.1016/j.aml.2017.03.002. |
[15] |
S. Ibrahim, N. Masmoudi and K. Nakanishi,
Scattering threshold for the focusing nonlinear Klein-Gordon equation, Anal. PDE, 4 (2011), 405-460.
doi: 10.2140/apde.2011.4.405. |
[16] |
C. E. Kenig and F. Merle,
Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675.
doi: 10.1007/s00222-006-0011-4. |
[17] |
C. E. Kenig, G. Ponce and L. Vega,
Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620.
doi: 10.1002/cpa.3160460405. |
[18] |
L. Ma and P. Cao,
The threshold for the focusing Gross-Pitaevskii equation with trapped dipolar quantum gases, J. Math. Anal. Appl., 381 (2011), 240-246.
doi: 10.1016/j.jmaa.2011.02.031. |
[19] |
L. Ma and J. Wang,
Sharp threshold of the Gross-Pitaevskii equation with trapped dipolar quantum gases, Canad. Math. Bull., 56 (2013), 378-387.
doi: 10.4153/CMB-2011-181-2. |
[20] |
J. Rauch, Partial Differential Equations, Graduate Texts in Mathematics, 128, Springer-Verlag, New York, 1991.
doi: 10.1007/978-1-4612-0953-9. |
[21] |
M. Vengalattore, S. R. Leslie, J. Guzman and D. M. Stamper-Kurn, Spontaneously modulated spin textures in a dipolar spinor Bose-Einstein condensate, Phys. Rev. Lett., 100 (2008), 170403.
doi: 10.1103/PhysRevLett.100.170403. |
[22] |
M. I. Weinstein,
Nonlinear Schrödinger equations and sharp interpolations estimates, Comm. Math. Phys., 87 (1982/83), 567-576.
doi: 10.1007/BF01208265. |
[23] |
S. Yi and L. You, Trapped atomic condensates with anisotropic interactions, Phys. Rev. A, 61 (2000).
doi: 10.1103/PhysRevA.61.041604. |
[1] |
Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259 |
[2] |
Claude-Michel Brauner, Luca Lorenzi. Instability of free interfaces in premixed flame propagation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 575-596. doi: 10.3934/dcdss.2020363 |
[3] |
Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020451 |
[4] |
Gökhan Mutlu. On the quotient quantum graph with respect to the regular representation. Communications on Pure & Applied Analysis, 2021, 20 (2) : 885-902. doi: 10.3934/cpaa.2020295 |
[5] |
Yoshihisa Morita, Kunimochi Sakamoto. Turing type instability in a diffusion model with mass transport on the boundary. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3813-3836. doi: 10.3934/dcds.2020160 |
[6] |
José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091 |
[7] |
Philipp Harms. Strong convergence rates for markovian representations of fractional processes. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020367 |
[8] |
Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021015 |
[9] |
Xiuli Xu, Xueke Pu. Optimal convergence rates of the magnetohydrodynamic model for quantum plasmas with potential force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 987-1010. doi: 10.3934/dcdsb.2020150 |
[10] |
Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331 |
[11] |
Xinlin Cao, Huaian Diao, Jinhong Li. Some recent progress on inverse scattering problems within general polyhedral geometry. Electronic Research Archive, 2021, 29 (1) : 1753-1782. doi: 10.3934/era.2020090 |
[12] |
Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004 |
[13] |
Qing Li, Yaping Wu. Existence and instability of some nontrivial steady states for the SKT competition model with large cross diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3657-3682. doi: 10.3934/dcds.2020051 |
[14] |
Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020440 |
[15] |
José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020376 |
[16] |
Pedro Branco. A post-quantum UC-commitment scheme in the global random oracle model from code-based assumptions. Advances in Mathematics of Communications, 2021, 15 (1) : 113-130. doi: 10.3934/amc.2020046 |
[17] |
Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020348 |
[18] |
Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105 |
[19] |
Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 61-79. doi: 10.3934/dcdsb.2020351 |
[20] |
Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258 |
2019 Impact Factor: 1.27
Tools
Article outline
[Back to Top]