
-
Previous Article
Long-time dynamics of a diffusive epidemic model with free boundaries
- DCDS-B Home
- This Issue
-
Next Article
Analytical study of resonance regions for second kind commensurate fractional systems
Periodic solutions of a tumor-immune system interaction under a periodic immunotherapy
Grupo de Investigación en Sistemas Dinámicos y Aplicaciones-GISDA, Departamento de Matemática, Facultad de Ciencias, Universidad del Bío-Bío, Concepción, Chile |
In this paper, we consider a mathematical model of a tumor-immune system interaction when a periodic immunotherapy treatment is applied. We give sufficient conditions, using averaging theory, for the existence and stability of periodic solutions in such system as a function of the six parameters associated to this problem. Finally, we provide examples where our results are applied.
References:
[1] |
P. Amster, L. Berezansky and L. Idels,
Periodic solutions of angiogenesis models with time lags, Nonlinear Analysis: Real World Applications, 13 (2012), 299-311.
doi: 10.1016/j.nonrwa.2011.07.035. |
[2] |
A. d'Onofrio,
A general framework for modeling tumor-inmune system competition and immunotherapy: Mathematical analysis and biomedical inferences, Physica D: Nonlinear Phenomena, 208 (2005), 220-235.
doi: 10.1016/j.physd.2005.06.032. |
[3] |
A. d'Onofrio,
Metamodeling tumor-immune system interaction, tumor evasion and immunotherapy, Math. Comput. Model., 47 (2008), 614-637.
doi: 10.1016/j.mcm.2007.02.032. |
[4] |
D. I. Gabrilovich,
Combination of chemotherapy and immunotherapy for cancer: A paradigm revisited, Lancet Oncology, 8 (2007), 2-3.
doi: 10.1016/S1470-2045(06)70985-8. |
[5] |
V. A. Kuznetsov, I. A. Makalkin, M. Taylor and A. Perelson,
Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis, Bull. Math. Biol., 56 (1994), 295-321.
doi: 10.1007/BF02460644. |
[6] |
Z. Liu and C. Yang,
A mathematical model of cancer treatment by radiotherapy, Comput. Math. Meth. Med., 124 (2014), 1-12.
doi: 10.1155/2014/172923. |
[7] |
O. Sotolongo-Costa, L. Morales-Molina, D. Rodríguez-Pérez, J. C. Antonraz and M. Chacón-Reyes,
Behaviour of tumors under nonstationary therapy, Physica D: Nonlinear Phenomena, 178 (2003), 242-253.
doi: 10.1016/S0167-2789(03)00005-8. |
[8] |
F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, 2$^{nd}$ edition, Universitext, Springer-Verlag, Berlin Heidelberg, 1996.
doi: 10.1007/978-3-642-61453-8. |
show all references
References:
[1] |
P. Amster, L. Berezansky and L. Idels,
Periodic solutions of angiogenesis models with time lags, Nonlinear Analysis: Real World Applications, 13 (2012), 299-311.
doi: 10.1016/j.nonrwa.2011.07.035. |
[2] |
A. d'Onofrio,
A general framework for modeling tumor-inmune system competition and immunotherapy: Mathematical analysis and biomedical inferences, Physica D: Nonlinear Phenomena, 208 (2005), 220-235.
doi: 10.1016/j.physd.2005.06.032. |
[3] |
A. d'Onofrio,
Metamodeling tumor-immune system interaction, tumor evasion and immunotherapy, Math. Comput. Model., 47 (2008), 614-637.
doi: 10.1016/j.mcm.2007.02.032. |
[4] |
D. I. Gabrilovich,
Combination of chemotherapy and immunotherapy for cancer: A paradigm revisited, Lancet Oncology, 8 (2007), 2-3.
doi: 10.1016/S1470-2045(06)70985-8. |
[5] |
V. A. Kuznetsov, I. A. Makalkin, M. Taylor and A. Perelson,
Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis, Bull. Math. Biol., 56 (1994), 295-321.
doi: 10.1007/BF02460644. |
[6] |
Z. Liu and C. Yang,
A mathematical model of cancer treatment by radiotherapy, Comput. Math. Meth. Med., 124 (2014), 1-12.
doi: 10.1155/2014/172923. |
[7] |
O. Sotolongo-Costa, L. Morales-Molina, D. Rodríguez-Pérez, J. C. Antonraz and M. Chacón-Reyes,
Behaviour of tumors under nonstationary therapy, Physica D: Nonlinear Phenomena, 178 (2003), 242-253.
doi: 10.1016/S0167-2789(03)00005-8. |
[8] |
F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, 2$^{nd}$ edition, Universitext, Springer-Verlag, Berlin Heidelberg, 1996.
doi: 10.1007/978-3-642-61453-8. |













Functions | Biological meaning |
Growth rate of the tumor | |
Functional response | |
External inflow of effector cells | |
Tumor-stimulated proliferation rate of effector cells | |
Tumor-induced loss of effector cells | |
Influx of effector cells | |
Immunotherapy |
Functions | Biological meaning |
Growth rate of the tumor | |
Functional response | |
External inflow of effector cells | |
Tumor-stimulated proliferation rate of effector cells | |
Tumor-induced loss of effector cells | |
Influx of effector cells | |
Immunotherapy |
Parameter | Biological meaning |
Intrinsic growth rate of the tumor | |
Death malignant cells rate due to interaction with lymphocyte cells | |
Increased lymphocyte rate due to interaction with malignant cells | |
Death rate of the lymphocytes | |
Immunosuppression coefficient | |
Influx external of effector cells | |
Immunotherapy dosage frequency |
Parameter | Biological meaning |
Intrinsic growth rate of the tumor | |
Death malignant cells rate due to interaction with lymphocyte cells | |
Increased lymphocyte rate due to interaction with malignant cells | |
Death rate of the lymphocytes | |
Immunosuppression coefficient | |
Influx external of effector cells | |
Immunotherapy dosage frequency |
[1] |
Shigui Ruan. Nonlinear dynamics in tumor-immune system interaction models with delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 541-602. doi: 10.3934/dcdsb.2020282 |
[2] |
Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020341 |
[3] |
Shujing Shi, Jicai Huang, Yang Kuang. Global dynamics in a tumor-immune model with an immune checkpoint inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1149-1170. doi: 10.3934/dcdsb.2020157 |
[4] |
Yi Guan, Michal Fečkan, Jinrong Wang. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1157-1176. doi: 10.3934/dcds.2020313 |
[5] |
Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087 |
[6] |
Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127 |
[7] |
Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021026 |
[8] |
Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020458 |
[9] |
Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037 |
[10] |
Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292 |
[11] |
Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315 |
[12] |
Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003 |
[13] |
Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276 |
[14] |
Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291 |
[15] |
Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266 |
[16] |
Sishu Shankar Muni, Robert I. McLachlan, David J. W. Simpson. Homoclinic tangencies with infinitely many asymptotically stable single-round periodic solutions. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021010 |
[17] |
Michal Fečkan, Kui Liu, JinRong Wang. $ (\omega,\mathbb{T}) $-periodic solutions of impulsive evolution equations. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021006 |
[18] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
[19] |
Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020400 |
[20] |
Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]