doi: 10.3934/dcdsb.2020301

Periodic solutions of a tumor-immune system interaction under a periodic immunotherapy

Grupo de Investigación en Sistemas Dinámicos y Aplicaciones-GISDA, Departamento de Matemática, Facultad de Ciencias, Universidad del Bío-Bío, Concepción, Chile

* Corresponding author: Gladis Torres-Espino

Received  February 2020 Revised  August 2020 Published  October 2020

In this paper, we consider a mathematical model of a tumor-immune system interaction when a periodic immunotherapy treatment is applied. We give sufficient conditions, using averaging theory, for the existence and stability of periodic solutions in such system as a function of the six parameters associated to this problem. Finally, we provide examples where our results are applied.

Citation: Gladis Torres-Espino, Claudio Vidal. Periodic solutions of a tumor-immune system interaction under a periodic immunotherapy. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020301
References:
[1]

P. AmsterL. Berezansky and L. Idels, Periodic solutions of angiogenesis models with time lags, Nonlinear Analysis: Real World Applications, 13 (2012), 299-311.  doi: 10.1016/j.nonrwa.2011.07.035.  Google Scholar

[2]

A. d'Onofrio, A general framework for modeling tumor-inmune system competition and immunotherapy: Mathematical analysis and biomedical inferences, Physica D: Nonlinear Phenomena, 208 (2005), 220-235.  doi: 10.1016/j.physd.2005.06.032.  Google Scholar

[3]

A. d'Onofrio, Metamodeling tumor-immune system interaction, tumor evasion and immunotherapy, Math. Comput. Model., 47 (2008), 614-637.  doi: 10.1016/j.mcm.2007.02.032.  Google Scholar

[4]

D. I. Gabrilovich, Combination of chemotherapy and immunotherapy for cancer: A paradigm revisited, Lancet Oncology, 8 (2007), 2-3.  doi: 10.1016/S1470-2045(06)70985-8.  Google Scholar

[5]

V. A. KuznetsovI. A. MakalkinM. Taylor and A. Perelson, Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis, Bull. Math. Biol., 56 (1994), 295-321.  doi: 10.1007/BF02460644.  Google Scholar

[6]

Z. Liu and C. Yang, A mathematical model of cancer treatment by radiotherapy, Comput. Math. Meth. Med., 124 (2014), 1-12.  doi: 10.1155/2014/172923.  Google Scholar

[7]

O. Sotolongo-CostaL. Morales-MolinaD. Rodríguez-PérezJ. C. Antonraz and M. Chacón-Reyes, Behaviour of tumors under nonstationary therapy, Physica D: Nonlinear Phenomena, 178 (2003), 242-253.  doi: 10.1016/S0167-2789(03)00005-8.  Google Scholar

[8]

F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, 2$^{nd}$ edition, Universitext, Springer-Verlag, Berlin Heidelberg, 1996. doi: 10.1007/978-3-642-61453-8.  Google Scholar

show all references

References:
[1]

P. AmsterL. Berezansky and L. Idels, Periodic solutions of angiogenesis models with time lags, Nonlinear Analysis: Real World Applications, 13 (2012), 299-311.  doi: 10.1016/j.nonrwa.2011.07.035.  Google Scholar

[2]

A. d'Onofrio, A general framework for modeling tumor-inmune system competition and immunotherapy: Mathematical analysis and biomedical inferences, Physica D: Nonlinear Phenomena, 208 (2005), 220-235.  doi: 10.1016/j.physd.2005.06.032.  Google Scholar

[3]

A. d'Onofrio, Metamodeling tumor-immune system interaction, tumor evasion and immunotherapy, Math. Comput. Model., 47 (2008), 614-637.  doi: 10.1016/j.mcm.2007.02.032.  Google Scholar

[4]

D. I. Gabrilovich, Combination of chemotherapy and immunotherapy for cancer: A paradigm revisited, Lancet Oncology, 8 (2007), 2-3.  doi: 10.1016/S1470-2045(06)70985-8.  Google Scholar

[5]

V. A. KuznetsovI. A. MakalkinM. Taylor and A. Perelson, Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis, Bull. Math. Biol., 56 (1994), 295-321.  doi: 10.1007/BF02460644.  Google Scholar

[6]

Z. Liu and C. Yang, A mathematical model of cancer treatment by radiotherapy, Comput. Math. Meth. Med., 124 (2014), 1-12.  doi: 10.1155/2014/172923.  Google Scholar

[7]

O. Sotolongo-CostaL. Morales-MolinaD. Rodríguez-PérezJ. C. Antonraz and M. Chacón-Reyes, Behaviour of tumors under nonstationary therapy, Physica D: Nonlinear Phenomena, 178 (2003), 242-253.  doi: 10.1016/S0167-2789(03)00005-8.  Google Scholar

[8]

F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, 2$^{nd}$ edition, Universitext, Springer-Verlag, Berlin Heidelberg, 1996. doi: 10.1007/978-3-642-61453-8.  Google Scholar

Figure 1.  Intersection between the graph of the function $ g(X) $ and the line $ l_2:\, Y = \frac{KA}{BS}X-\frac{\overline{\beta}}{S} $.
Figure 2.  Intersection between the graph of the function $ g(X) $ and the line $ l_2:\, Y = \frac{KA}{BS}X+\frac{FA}{BS}-\frac{\overline{\beta}}{S} $, when $ 0<\frac{FA}{BS}-\frac{\overline{\beta}}{S}<1 $ and $ \frac{FA}{BS}-\frac{\overline{\beta}}{S}<0 $
Figure 3.  Intersection between the graph of the function $ g(X) $ and the line $ l_2:\, Y = (K-D)\frac{A}{BS}X-\frac{\overline{\beta}}{S} $, when $ K-D>0 $
Figure 4.  Intersection between the graph of the function $ g(X) $ and the line $ l_2:\, Y = (K-D)\frac{A}{BS}X+\frac{FA}{BS}-\frac{\overline{\beta}}{S} $, when $ 0<\frac{FA}{BS}-\frac{\overline{\beta}}{S}<1 $ and $ \frac{FA}{BS}-\frac{\overline{\beta}}{S}<0 $.
Figure 5.  Intersection between the graph of the function $ g(X) $ and the line $ l_2:\, Y = (K-D)\frac{A}{BS}X+\frac{FA}{BS}-\frac{\overline{\beta}}{S} $.
Figure 6.  Intersection between the graph of the function $ g(X) $ and the line $ l_2:\, Y = -\frac{DA}{BS}X+\frac{FA}{BS}-\frac{\overline{\beta}}{S} $
Figure 7.  Malignant cells $ x(t) $ and Lymphocyte Cells $ y(t) $ for the periodic solution of Theorem 2.1, with initial conditions $ x_0 = 1/19+10^{-40} $ and $ y_0 = 100000+10^{-40} $
Figure 8.  Malignant cells $ x(t) $ and Lymphocyte Cells $ y(t) $ for the periodic solution of Theorem 2.2, with initial conditions $ x_0 = 5/32(-3+\sqrt{73})+10^{-40} $ and $ y_0 = 80000+10^{-40} $
Figure 9.  Malignant cells $ x(t) $ and Lymphocyte Cells $ y(t) $ for the periodic solution of Theorem 2.3, with initial conditions $ x_0 = 1/60 (-27 + \sqrt{1009})+10^{-40} $ and $ y_0 = 50000+10^{-40} $
Figure 10.  Malignant cells $ x(t) $ and Lymphocyte Cells $ y(t) $ for the periodic solution of Theorem 2.4, with initial conditions $ x_0 = 1.0099381+10^{-40} $ and $ y_0 = 25000+10^{-40} $
Figure 11.  Malignant cells $ x(t) $ and Lymphocyte Cells $ y(t) $ for the periodic solution of Theorem 2.5, with initial conditions $ x_0 = 1.15201+10^{-40} $ and $ y_0 = 25000+10^{-40} $
Figure 12.  Malignant cells $ x(t) $ and Lymphocyte Cells $ y(t) $ for the periodic solution of Theorem 2.5, with initial conditions $ x_0 = 9.99873+10^{-40} $ and $ y_0 = 25000+10^{-40} $
Figure 13.  Malignant cells $ x(t) $ and Lymphocyte Cells $ y(t) $ for the periodic solution of Theorem 2.6, with initial conditions $ x_0 = 0.0123435+10^{-40} $ and $ y_0 = 25000+10^{-40} $
Table 1.  Definition of the parameters in model (2)
Functions Biological meaning
$ \xi(x) $ Growth rate of the tumor
$ \phi(x)y $ Functional response
$ g(x) $ External inflow of effector cells
$ \beta(x) $ Tumor-stimulated proliferation rate of effector cells
$ \mu(x) $ Tumor-induced loss of effector cells
$ \sigma g(x) $ Influx of effector cells
$ \theta(\omega t) $ Immunotherapy
Functions Biological meaning
$ \xi(x) $ Growth rate of the tumor
$ \phi(x)y $ Functional response
$ g(x) $ External inflow of effector cells
$ \beta(x) $ Tumor-stimulated proliferation rate of effector cells
$ \mu(x) $ Tumor-induced loss of effector cells
$ \sigma g(x) $ Influx of effector cells
$ \theta(\omega t) $ Immunotherapy
Table 2.  Definition of the parameters in model (3)
Parameter Biological meaning
$ a $ Intrinsic growth rate of the tumor
$ b $ Death malignant cells rate due to interaction with lymphocyte cells
$ d $ Increased lymphocyte rate due to interaction with malignant cells
$ f $ Death rate of the lymphocytes
$ \kappa $ Immunosuppression coefficient
$ \sigma g(x) $ Influx external of effector cells
$ \omega $ Immunotherapy dosage frequency
Parameter Biological meaning
$ a $ Intrinsic growth rate of the tumor
$ b $ Death malignant cells rate due to interaction with lymphocyte cells
$ d $ Increased lymphocyte rate due to interaction with malignant cells
$ f $ Death rate of the lymphocytes
$ \kappa $ Immunosuppression coefficient
$ \sigma g(x) $ Influx external of effector cells
$ \omega $ Immunotherapy dosage frequency
[1]

Shigui Ruan. Nonlinear dynamics in tumor-immune system interaction models with delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 541-602. doi: 10.3934/dcdsb.2020282

[2]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[3]

Shujing Shi, Jicai Huang, Yang Kuang. Global dynamics in a tumor-immune model with an immune checkpoint inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1149-1170. doi: 10.3934/dcdsb.2020157

[4]

Yi Guan, Michal Fečkan, Jinrong Wang. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1157-1176. doi: 10.3934/dcds.2020313

[5]

Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087

[6]

Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127

[7]

Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021026

[8]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[9]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[10]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[11]

Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315

[12]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[13]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[14]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[15]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[16]

Sishu Shankar Muni, Robert I. McLachlan, David J. W. Simpson. Homoclinic tangencies with infinitely many asymptotically stable single-round periodic solutions. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021010

[17]

Michal Fečkan, Kui Liu, JinRong Wang. $ (\omega,\mathbb{T}) $-periodic solutions of impulsive evolution equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021006

[18]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[19]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020400

[20]

Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (30)
  • HTML views (116)
  • Cited by (0)

Other articles
by authors

[Back to Top]