August  2021, 26(8): 4587-4612. doi: 10.3934/dcdsb.2020304

A dynamical theory for singular stochastic delay differential equations Ⅱ: nonlinear equations and invariant manifolds

1. 

Technische Universität Berlin, Institut für Mathematik, Straße des 17. Juni 136, 10623 Berlin, Germany

2. 

Sharif University of Technology, Azadi Ave, Tehran, Iran

3. 

Weierstraß-Institut, Mohrenstr. 39, 10117 Berlin, Germany

* Corresponding author: Sebastian Riedel

Received  March 2020 Published  August 2021 Early access  October 2020

Building on results obtained in [21], we prove Local Stable and Unstable Manifold Theorems for nonlinear, singular stochastic delay differential equations. The main tools are rough paths theory and a semi-invertible Multiplicative Ergodic Theorem for cocycles acting on measurable fields of Banach spaces obtained in [20].

Citation: Mazyar Ghani Varzaneh, Sebastian Riedel. A dynamical theory for singular stochastic delay differential equations Ⅱ: nonlinear equations and invariant manifolds. Discrete & Continuous Dynamical Systems - B, 2021, 26 (8) : 4587-4612. doi: 10.3934/dcdsb.2020304
References:
[1]

R. Abraham, J. E. Marsden and T. Ratiu, Manifolds, Tensor Analysis, and Applications, Second edition, Applied Mathematical Sciences, 75. Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-1029-0.  Google Scholar

[2]

L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.  Google Scholar

[3]

I. Bailleul, Regularity of the Itô-Lyons map, Confluentes Math., 7 (2015), 3-11.  doi: 10.5802/cml.15.  Google Scholar

[4]

P. Boxler, A stochastic version of center manifold theory, Probab. Theory Related Fields, 83 (1989), 509-545.  doi: 10.1007/BF01845701.  Google Scholar

[5]

T. CaraballoJ. DuanK. Lu and B. Schmalfuß, Invariant manifolds for random and stochastic partial differential equations, Adv. Nonlinear Stud., 10 (2010), 23-52.  doi: 10.1515/ans-2010-0102.  Google Scholar

[6]

T. CaraballoJ. A. Langa and J. C. Robinson, A stochastic pitchfork bifurcation in a reaction-diffusion equation, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 2041-2061.  doi: 10.1098/rspa.2001.0819.  Google Scholar

[7]

A. Carverhill, Flows of stochastic dynamical systems: Ergodic theory, Stochastics, 14 (1985), 273-317.  doi: 10.1080/17442508508833343.  Google Scholar

[8]

M. D. Chekroun, H. Liu and S. Wang, Approximation of Stochastic Invariant Manifolds. Stochastic Manifolds for Nonlinear SPDEs. Ⅰ, SpringerBriefs in Mathematics, Springer, Cham, 2015. doi: 10.1007/978-3-319-12496-4.  Google Scholar

[9]

M. D. Chekroun, H. Liu and S. Wang, Stochastic Parameterizing Manifolds and Non-Markovian Reduced Equations. Stochastic Manifolds for Nonlinear SPDEs. Ⅱ, SpringerBriefs in Mathematics, Springer, Cham, 2015. doi: 10.1007/978-3-319-12520-6.  Google Scholar

[10]

X. ChenA. J. Roberts and J. Duan, Centre manifolds for stochastic evolution equations, J. Difference Equ. Appl., 21 (2015), 606-632.  doi: 10.1080/10236198.2015.1045889.  Google Scholar

[11]

X. ChenA. J. Roberts and J. Duan, Centre manifolds for infinite dimensional random dynamical systems, Dyn. Syst., 34 (2019), 334-355.  doi: 10.1080/14689367.2018.1531972.  Google Scholar

[12]

L. Coutin and A. Lejay, Sensitivity of rough differential equations: An approach through the omega lemma, J. Differential Equations, 264 (2018), 3899-3917.  doi: 10.1016/j.jde.2017.11.031.  Google Scholar

[13]

A. Du and J. Duan, Invariant manifold reduction for stochastic dynamical systems, Dynam. Systems Appl., 16 (2007), 681-696.   Google Scholar

[14]

J. DuanK. Lu and B. Schmalfuss, Invariant manifolds for stochastic partial differential equations, Ann. Probab., 31 (2003), 2109-2135.  doi: 10.1214/aop/1068646380.  Google Scholar

[15]

J. DuanK. Lu and B. Schmalfuss, Smooth stable and unstable manifolds for stochastic evolutionary equations, J. Dynam. Differential Equations, 16 (2004), 949-972.  doi: 10.1007/s10884-004-7830-z.  Google Scholar

[16]

J. Duan and W. Wang, Effective Dynamics of Stochastic Partial Differential Equations, Elsevier Insights, Elsevier, Amsterdam, 2014.  Google Scholar

[17]

P. K. Friz and M. Hairer, A Course on Rough Paths. With an Introduction to Regularity Structures, Universitext, Springer, Berlin, 2014. doi: 10.1007/978-3-319-08332-2.  Google Scholar

[18] P. K. Friz and N. B. Victoir, Multidimensional Stochastic Processes as Rough Paths. Theory and Applications, Cambridge Studies in Advanced Mathematics, 120. Cambridge University Press, Cambridge, 2010.  doi: 10.1017/CBO9780511845079.  Google Scholar
[19]

M. J. Garrido-AtienzaK. Lu and B. Schmalfuß, Unstable invariant manifolds for stochastic PDEs driven by a fractional Brownian motion, J. Differential Equations, 248 (2010), 1637-1667.  doi: 10.1016/j.jde.2009.11.006.  Google Scholar

[20]

M. G. Varzaneh and S. Riedel, Oseledets splitting and invariant manifolds on fields of Banach spaces, 2019, arXiv: 1912.07985. Google Scholar

[21]

M. G. Varzaneh, S. Riedel and M. Scheutzow, A dynamical theory for singular stochastic delay differential equations Ⅰ: Linear equations and a Multiplicative Ergodic Theorem on fields of Banach spaces, 2019, arXiv: 1903.01172v3. Google Scholar

[22]

M. Gubinelli, Controlling rough paths, J. Funct. Anal., 216 (2004), 86-140.  doi: 10.1016/j.jfa.2004.01.002.  Google Scholar

[23]

E. Knobloch and K. A. Wiesenfeld, Bifurcations in fluctuating systems: The center-manifold approach, J. Statist. Phys., 33 (1983), 611-637.  doi: 10.1007/BF01018837.  Google Scholar

[24]

C. Kuehn and A. Neamţu, Rough center manifolds, 2018, arXiv: 1811.10037. Google Scholar

[25]

K. LuA. Neamţu and B. Schmalfuss, On the Oseledets-splitting for infinite-dimensional random dynamical systems, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 1219-1242.  doi: 10.3934/dcdsb.2018149.  Google Scholar

[26]

T. J. Lyons, Differential equations driven by rough signals, Rev. Mat. Iberoamericana, 14 (1998), 215-310.  doi: 10.4171/RMI/240.  Google Scholar

[27]

S. E. A. Mohammed, Nonlinear flows of stochastic linear delay equations, Stochastics, 17 (1986), 207-213.  doi: 10.1080/17442508608833390.  Google Scholar

[28]

S. E. A. Mohammed and M. K. R. Scheutzow, Lyapunov exponents and stationary solutions for affine stochastic delay equations, Stochastics Stochastics Rep., 29 (1990), 259-283.  doi: 10.1080/17442509008833617.  Google Scholar

[29]

S.-E. A. Mohammed and M. K. R. Scheutzow, Lyapunov exponents of linear stochastic functional differential equations driven by semimartingales. Ⅰ. The multiplicative ergodic theory, Ann. Inst. H. Poincaré Probab. Statist., 32 (1996), 69-105.   Google Scholar

[30]

S.-E. A. Mohammed and M. K. R. Scheutzow, Lyapunov exponents of linear stochastic functional-differential equations. Ⅱ. Examples and case studies, Ann. Probab., 25 (1997), 1210-1240.  doi: 10.1214/aop/1024404511.  Google Scholar

[31]

S.-E. A. Mohammed and M. K. R. Scheutzow, The stable manifold theorem for stochastic differential equations, Ann. Probab., 27 (1999), 615-652.  doi: 10.1214/aop/1022677380.  Google Scholar

[32]

S.-E. A. Mohammed and M. K. R. Scheutzow, The stable manifold theorem for non-linear stochastic systems with memory. Ⅰ. Existence of the semiflow, J. Funct. Anal., 205 (2003), 271-305.  doi: 10.1016/j.jfa.2002.04.001.  Google Scholar

[33]

S.-E. A. Mohammed and M. K. R. Scheutzow, The stable manifold theorem for non-linear stochastic systems with memory. Ⅱ. The local stable manifold theorem, J. Funct. Anal., 206 (2004), 253-306.  doi: 10.1016/j.jfa.2003.06.002.  Google Scholar

[34]

S. Mohammed and T. Zhang, Dynamics of stochastic 2D Navier-Stokes equations, J. Funct. Anal., 258 (2010), 3543-3591.  doi: 10.1016/j.jfa.2009.11.007.  Google Scholar

[35]

S.-E. A. Mohammed, T. Zhang and H. Zhao, The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations, Mem. Amer. Math. Soc., 196 (2008), vi+105 pp. doi: 10.1090/memo/0917.  Google Scholar

[36]

A. Neamţu, Random invariant manifolds for ill-posed stochastic evolution equations, Stochastics and Dynamics, 20 (2020), 2050013, 31 pp. doi: 10.1142/S0219493720500136.  Google Scholar

[37]

A. NeuenkirchI. Nourdin and S. Tindel, Delay equations driven by rough paths, Electron. J. Probab., 13 (2008), 2031-2068.  doi: 10.1214/EJP.v13-575.  Google Scholar

[38]

S. Riedel and M. Scheutzow, Rough differential equations with unbounded drift term, J. Differential Equations, 262 (2017), 283-312.  doi: 10.1016/j.jde.2016.09.021.  Google Scholar

[39]

T. Wanner, Linearization of random dynamical systems, Dynamics Reported, Dynam. Report. Expositions Dynam. Systems (N.S.), Springer, Berlin, 4 (1995), 203-269.   Google Scholar

show all references

References:
[1]

R. Abraham, J. E. Marsden and T. Ratiu, Manifolds, Tensor Analysis, and Applications, Second edition, Applied Mathematical Sciences, 75. Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-1029-0.  Google Scholar

[2]

L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.  Google Scholar

[3]

I. Bailleul, Regularity of the Itô-Lyons map, Confluentes Math., 7 (2015), 3-11.  doi: 10.5802/cml.15.  Google Scholar

[4]

P. Boxler, A stochastic version of center manifold theory, Probab. Theory Related Fields, 83 (1989), 509-545.  doi: 10.1007/BF01845701.  Google Scholar

[5]

T. CaraballoJ. DuanK. Lu and B. Schmalfuß, Invariant manifolds for random and stochastic partial differential equations, Adv. Nonlinear Stud., 10 (2010), 23-52.  doi: 10.1515/ans-2010-0102.  Google Scholar

[6]

T. CaraballoJ. A. Langa and J. C. Robinson, A stochastic pitchfork bifurcation in a reaction-diffusion equation, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 2041-2061.  doi: 10.1098/rspa.2001.0819.  Google Scholar

[7]

A. Carverhill, Flows of stochastic dynamical systems: Ergodic theory, Stochastics, 14 (1985), 273-317.  doi: 10.1080/17442508508833343.  Google Scholar

[8]

M. D. Chekroun, H. Liu and S. Wang, Approximation of Stochastic Invariant Manifolds. Stochastic Manifolds for Nonlinear SPDEs. Ⅰ, SpringerBriefs in Mathematics, Springer, Cham, 2015. doi: 10.1007/978-3-319-12496-4.  Google Scholar

[9]

M. D. Chekroun, H. Liu and S. Wang, Stochastic Parameterizing Manifolds and Non-Markovian Reduced Equations. Stochastic Manifolds for Nonlinear SPDEs. Ⅱ, SpringerBriefs in Mathematics, Springer, Cham, 2015. doi: 10.1007/978-3-319-12520-6.  Google Scholar

[10]

X. ChenA. J. Roberts and J. Duan, Centre manifolds for stochastic evolution equations, J. Difference Equ. Appl., 21 (2015), 606-632.  doi: 10.1080/10236198.2015.1045889.  Google Scholar

[11]

X. ChenA. J. Roberts and J. Duan, Centre manifolds for infinite dimensional random dynamical systems, Dyn. Syst., 34 (2019), 334-355.  doi: 10.1080/14689367.2018.1531972.  Google Scholar

[12]

L. Coutin and A. Lejay, Sensitivity of rough differential equations: An approach through the omega lemma, J. Differential Equations, 264 (2018), 3899-3917.  doi: 10.1016/j.jde.2017.11.031.  Google Scholar

[13]

A. Du and J. Duan, Invariant manifold reduction for stochastic dynamical systems, Dynam. Systems Appl., 16 (2007), 681-696.   Google Scholar

[14]

J. DuanK. Lu and B. Schmalfuss, Invariant manifolds for stochastic partial differential equations, Ann. Probab., 31 (2003), 2109-2135.  doi: 10.1214/aop/1068646380.  Google Scholar

[15]

J. DuanK. Lu and B. Schmalfuss, Smooth stable and unstable manifolds for stochastic evolutionary equations, J. Dynam. Differential Equations, 16 (2004), 949-972.  doi: 10.1007/s10884-004-7830-z.  Google Scholar

[16]

J. Duan and W. Wang, Effective Dynamics of Stochastic Partial Differential Equations, Elsevier Insights, Elsevier, Amsterdam, 2014.  Google Scholar

[17]

P. K. Friz and M. Hairer, A Course on Rough Paths. With an Introduction to Regularity Structures, Universitext, Springer, Berlin, 2014. doi: 10.1007/978-3-319-08332-2.  Google Scholar

[18] P. K. Friz and N. B. Victoir, Multidimensional Stochastic Processes as Rough Paths. Theory and Applications, Cambridge Studies in Advanced Mathematics, 120. Cambridge University Press, Cambridge, 2010.  doi: 10.1017/CBO9780511845079.  Google Scholar
[19]

M. J. Garrido-AtienzaK. Lu and B. Schmalfuß, Unstable invariant manifolds for stochastic PDEs driven by a fractional Brownian motion, J. Differential Equations, 248 (2010), 1637-1667.  doi: 10.1016/j.jde.2009.11.006.  Google Scholar

[20]

M. G. Varzaneh and S. Riedel, Oseledets splitting and invariant manifolds on fields of Banach spaces, 2019, arXiv: 1912.07985. Google Scholar

[21]

M. G. Varzaneh, S. Riedel and M. Scheutzow, A dynamical theory for singular stochastic delay differential equations Ⅰ: Linear equations and a Multiplicative Ergodic Theorem on fields of Banach spaces, 2019, arXiv: 1903.01172v3. Google Scholar

[22]

M. Gubinelli, Controlling rough paths, J. Funct. Anal., 216 (2004), 86-140.  doi: 10.1016/j.jfa.2004.01.002.  Google Scholar

[23]

E. Knobloch and K. A. Wiesenfeld, Bifurcations in fluctuating systems: The center-manifold approach, J. Statist. Phys., 33 (1983), 611-637.  doi: 10.1007/BF01018837.  Google Scholar

[24]

C. Kuehn and A. Neamţu, Rough center manifolds, 2018, arXiv: 1811.10037. Google Scholar

[25]

K. LuA. Neamţu and B. Schmalfuss, On the Oseledets-splitting for infinite-dimensional random dynamical systems, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 1219-1242.  doi: 10.3934/dcdsb.2018149.  Google Scholar

[26]

T. J. Lyons, Differential equations driven by rough signals, Rev. Mat. Iberoamericana, 14 (1998), 215-310.  doi: 10.4171/RMI/240.  Google Scholar

[27]

S. E. A. Mohammed, Nonlinear flows of stochastic linear delay equations, Stochastics, 17 (1986), 207-213.  doi: 10.1080/17442508608833390.  Google Scholar

[28]

S. E. A. Mohammed and M. K. R. Scheutzow, Lyapunov exponents and stationary solutions for affine stochastic delay equations, Stochastics Stochastics Rep., 29 (1990), 259-283.  doi: 10.1080/17442509008833617.  Google Scholar

[29]

S.-E. A. Mohammed and M. K. R. Scheutzow, Lyapunov exponents of linear stochastic functional differential equations driven by semimartingales. Ⅰ. The multiplicative ergodic theory, Ann. Inst. H. Poincaré Probab. Statist., 32 (1996), 69-105.   Google Scholar

[30]

S.-E. A. Mohammed and M. K. R. Scheutzow, Lyapunov exponents of linear stochastic functional-differential equations. Ⅱ. Examples and case studies, Ann. Probab., 25 (1997), 1210-1240.  doi: 10.1214/aop/1024404511.  Google Scholar

[31]

S.-E. A. Mohammed and M. K. R. Scheutzow, The stable manifold theorem for stochastic differential equations, Ann. Probab., 27 (1999), 615-652.  doi: 10.1214/aop/1022677380.  Google Scholar

[32]

S.-E. A. Mohammed and M. K. R. Scheutzow, The stable manifold theorem for non-linear stochastic systems with memory. Ⅰ. Existence of the semiflow, J. Funct. Anal., 205 (2003), 271-305.  doi: 10.1016/j.jfa.2002.04.001.  Google Scholar

[33]

S.-E. A. Mohammed and M. K. R. Scheutzow, The stable manifold theorem for non-linear stochastic systems with memory. Ⅱ. The local stable manifold theorem, J. Funct. Anal., 206 (2004), 253-306.  doi: 10.1016/j.jfa.2003.06.002.  Google Scholar

[34]

S. Mohammed and T. Zhang, Dynamics of stochastic 2D Navier-Stokes equations, J. Funct. Anal., 258 (2010), 3543-3591.  doi: 10.1016/j.jfa.2009.11.007.  Google Scholar

[35]

S.-E. A. Mohammed, T. Zhang and H. Zhao, The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations, Mem. Amer. Math. Soc., 196 (2008), vi+105 pp. doi: 10.1090/memo/0917.  Google Scholar

[36]

A. Neamţu, Random invariant manifolds for ill-posed stochastic evolution equations, Stochastics and Dynamics, 20 (2020), 2050013, 31 pp. doi: 10.1142/S0219493720500136.  Google Scholar

[37]

A. NeuenkirchI. Nourdin and S. Tindel, Delay equations driven by rough paths, Electron. J. Probab., 13 (2008), 2031-2068.  doi: 10.1214/EJP.v13-575.  Google Scholar

[38]

S. Riedel and M. Scheutzow, Rough differential equations with unbounded drift term, J. Differential Equations, 262 (2017), 283-312.  doi: 10.1016/j.jde.2016.09.021.  Google Scholar

[39]

T. Wanner, Linearization of random dynamical systems, Dynamics Reported, Dynam. Report. Expositions Dynam. Systems (N.S.), Springer, Berlin, 4 (1995), 203-269.   Google Scholar

[1]

C. M. Groothedde, J. D. Mireles James. Parameterization method for unstable manifolds of delay differential equations. Journal of Computational Dynamics, 2017, 4 (1&2) : 21-70. doi: 10.3934/jcd.2017002

[2]

Robert Hesse, Alexandra Neamţu. Global solutions and random dynamical systems for rough evolution equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (7) : 2723-2748. doi: 10.3934/dcdsb.2020029

[3]

Janusz Mierczyński, Sylvia Novo, Rafael Obaya. Lyapunov exponents and Oseledets decomposition in random dynamical systems generated by systems of delay differential equations. Communications on Pure & Applied Analysis, 2020, 19 (4) : 2235-2255. doi: 10.3934/cpaa.2020098

[4]

María J. Garrido–Atienza, Kening Lu, Björn Schmalfuss. Random dynamical systems for stochastic partial differential equations driven by a fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 473-493. doi: 10.3934/dcdsb.2010.14.473

[5]

Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324

[6]

Arne Ogrowsky, Björn Schmalfuss. Unstable invariant manifolds for a nonautonomous differential equation with nonautonomous unbounded delay. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1663-1681. doi: 10.3934/dcdsb.2013.18.1663

[7]

Fuke Wu, Peter E. Kloeden. Mean-square random attractors of stochastic delay differential equations with random delay. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1715-1734. doi: 10.3934/dcdsb.2013.18.1715

[8]

Neville J. Ford, Stewart J. Norton. Predicting changes in dynamical behaviour in solutions to stochastic delay differential equations. Communications on Pure & Applied Analysis, 2006, 5 (2) : 367-382. doi: 10.3934/cpaa.2006.5.367

[9]

Xinsheng Wang, Weisheng Wu, Yujun Zhu. Local unstable entropy and local unstable pressure for random partially hyperbolic dynamical systems. Discrete & Continuous Dynamical Systems, 2020, 40 (1) : 81-105. doi: 10.3934/dcds.2020004

[10]

Tomás Caraballo, Francisco Morillas, José Valero. On differential equations with delay in Banach spaces and attractors for retarded lattice dynamical systems. Discrete & Continuous Dynamical Systems, 2014, 34 (1) : 51-77. doi: 10.3934/dcds.2014.34.51

[11]

Michihiro Hirayama, Naoya Sumi. Hyperbolic measures with transverse intersections of stable and unstable manifolds. Discrete & Continuous Dynamical Systems, 2013, 33 (4) : 1451-1476. doi: 10.3934/dcds.2013.33.1451

[12]

Tibor Krisztin. A local unstable manifold for differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems, 2003, 9 (4) : 993-1028. doi: 10.3934/dcds.2003.9.993

[13]

Ludwig Arnold, Igor Chueshov. Cooperative random and stochastic differential equations. Discrete & Continuous Dynamical Systems, 2001, 7 (1) : 1-33. doi: 10.3934/dcds.2001.7.1

[14]

Eric Benoît. Bifurcation delay - the case of the sequence: Stable focus - unstable focus - unstable node. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 911-929. doi: 10.3934/dcdss.2009.2.911

[15]

Redouane Qesmi, Hans-Otto Walther. Center-stable manifolds for differential equations with state-dependent delays. Discrete & Continuous Dynamical Systems, 2009, 23 (3) : 1009-1033. doi: 10.3934/dcds.2009.23.1009

[16]

Mahdi Khajeh Salehani. Identification of generic stable dynamical systems taking a nonlinear differential approach. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4541-4555. doi: 10.3934/dcdsb.2018175

[17]

Vera Ignatenko. Homoclinic and stable periodic solutions for differential delay equations from physiology. Discrete & Continuous Dynamical Systems, 2018, 38 (7) : 3637-3661. doi: 10.3934/dcds.2018157

[18]

Jun Shen, Kening Lu, Bixiang Wang. Invariant manifolds and foliations for random differential equations driven by colored noise. Discrete & Continuous Dynamical Systems, 2020, 40 (11) : 6201-6246. doi: 10.3934/dcds.2020276

[19]

Igor Chueshov, Michael Scheutzow. Invariance and monotonicity for stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1533-1554. doi: 10.3934/dcdsb.2013.18.1533

[20]

Abed Bounemoura, Edouard Pennamen. Instability for a priori unstable Hamiltonian systems: A dynamical approach. Discrete & Continuous Dynamical Systems, 2012, 32 (3) : 753-793. doi: 10.3934/dcds.2012.32.753

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (155)
  • HTML views (242)
  • Cited by (0)

Other articles
by authors

[Back to Top]