
-
Previous Article
A flow on $ S^2 $ presenting the ball as its minimal set
- DCDS-B Home
- This Issue
-
Next Article
Numerical analysis and simulation of an adhesive contact problem with damage and long memory
Existence-uniqueness and stability of the mild periodic solutions to a class of delayed stochastic partial differential equations and its applications
1. | School of Mathematical Sciences, Ocean University of China, Qingdao, Shandong 266100, China |
2. | Department of Mathematics, University of Dundee, Dundee DD1 4HN, UK |
3. | Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266100, China |
In this paper, we focus on the mild periodic solutions to a class of delayed stochastic reaction-diffusion differential equations. First, the key issues of Markov property in Banach space $ C $, $ p $-uniformly boundedness, and $ p $-point dissipativity of mild solutions $ \boldsymbol{u}_t $ to the equations are discussed. Then, the theorems of existence-uniqueness and exponential stability in the mean-square sense of the mild periodic solutions are established by using the dissipative theory and the operator semigroup technique, and the relevant results about the existence of mild periodic solutions in the quoted literature are generalized. Next, the given theoretical results are successfully applied to the delayed stochastic reaction-diffusion Hopfield neural networks, and some easy-to-test criteria of exponential stability for the mild periodic solution to the networks are obtained. Finally, some examples are presented to demonstrate the feasibility of our results.
References:
[1] |
G. Adomian and R. Rach,
Nonlinear stochastic differential delay equations, J. Math. Anal. Appl., 91 (1983), 94-101.
doi: 10.1016/0022-247X(83)90094-X. |
[2] |
L. Arnold, Stochastic Differential Equations: Theory and Applications, John Wiley & Sons, New York, 1974. |
[3] |
H. Bao and J. Cao, Delay-distribution-dependent state estimation for discrete-time stochastic neural networks with random delay, Neural Networks, 24 (2011), 19-28. Google Scholar |
[4] |
E. Buckwar,
Introduction to the numerical analysis of stochastic delay differential equations, J. Comput. Appl. Math., 125 (2000), 297-307.
doi: 10.1016/S0377-0427(00)00475-1. |
[5] |
J. Cao,
New results concerning exponential stability and periodic solutions of delayed cellular neural networks, Phys. Lett. A, 307 (2003), 136-147.
doi: 10.1016/S0375-9601(02)01720-6. |
[6] |
T. Caraballo and K. Liu,
Exponential stability of mild solutions of stochastic partial differential equations with delays, Stochastic Anal. Appl., 17 (1999), 743-763.
doi: 10.1080/07362999908809633. |
[7] |
W. H. Chen, L. Liu and X. Lu,
Intermittent synchronization of reaction-diffusion neural networks with mixed delays via Razumikhin technique, Nonlinear Dynam., 87 (2017), 535-551.
doi: 10.1007/s11071-016-3059-8. |
[8] |
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge university press, Cambridge, 2014.
doi: 10.1017/CBO9781107295513.![]() ![]() |
[9] |
J. Duan, K. Lu and B. Schmalfuss,
Smooth stable and unstable manifolds for stochastic evolutionary equations, J. Dynam. Differential Equations, 16 (2004), 949-972.
doi: 10.1007/s10884-004-7830-z. |
[10] |
A. Friedman, Stochastic Differential Equations and Applications, Academic Press, New York, 1975.
![]() |
[11] |
K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Mathematics and its Applications, 74. Kluwer Academic Publishers Group, Dordrecht, 1992.
doi: 10.1007/978-94-015-7920-9. |
[12] |
J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-4342-7. |
[13] |
K. Itô and M. Nisio,
On stationary solutions of a stochastic differential equation, J. Math. Kyoto Univ., 4 (1964), 1-75.
doi: 10.1215/kjm/1250524705. |
[14] |
R. Jahanipur,
Stochastic functional evolution equations with monotone nonlinearity: Existence and stability of the mild solutions, J. Differential Equations, 248 (2010), 1230-1255.
doi: 10.1016/j.jde.2009.12.012. |
[15] |
J. Lei and M. C. Mackey,
Stochastic differential delay equation, moment stability, and application to hematopoietic stem cell regulation system, SIAM J. Appl. Math., 67 (2006/07), 387-407.
doi: 10.1137/060650234. |
[16] |
X. Li,
Existence and global exponential stability of periodic solution for impulsive Cohen-Grossberg-type BAM neural networks with continuously distributed delays, Appl. Math. Comput., 215 (2009), 292-307.
doi: 10.1016/j.amc.2009.05.005. |
[17] |
X. Liang, L. Wang, Y. Wang and R. Wang,
Dynamical behavior of delayed reaction-diffusion Hopfield neural networks driven by infinite dimensional Wiener processes, IEEE Trans. Neural Netw. Learn. Syst., 27 (2016), 1816-1826.
doi: 10.1109/TNNLS.2015.2460117. |
[18] |
K. Liu, Some views on recent randomized study of infinite dimensional functional differential equations (in Chinese), Sci. Sin. Math., 45 (2015), 559-566. Google Scholar |
[19] |
Z. Liu and L. Liao,
Existence and global exponential stability of periodic solution of cellular neural networks with time-varying delays, J. Math. Anal. Appl., 290 (2004), 247-262.
doi: 10.1016/j.jmaa.2003.09.052. |
[20] |
W. Liu and M. Röckner, Stochastic Partial Differential Equations: An Introduction, Springer, Cham, 2015.
doi: 10.1007/978-3-319-22354-4. |
[21] |
X. Mao, Stochastic Differential Equations and Applications, Second edition. Horwood Publishing Limited, Chichester, 2008.
doi: 10.1533/9780857099402. |
[22] |
S. L. Sobolev, Some Applications of Functional Analysis in Mathematical Physics: Third Edition, American Mathematical Society, Providence, 1991.
doi: 10.1090/mmono/090. |
[23] | L. Wang, Delayed Recurrent Neural Networks, Science Press, Beijing, 2008. Google Scholar |
[24] |
L. Wang, Global well-posedness and stability of the mild solutions for a class of stochastic partial functional differential equations (in Chinese), Sci. Sin. Math., 47 (2017), 371-382. Google Scholar |
[25] |
L. Wang and Y. Gao,
Global exponential robust stability of reaction-diffusion interval neural networks with time-varying delays, Phys. Lett. A, 350 (2006), 342-348.
doi: 10.1016/j.physleta.2005.10.031. |
[26] |
Z. Wang, Y. Liu, M. Li and X. Liu, Stability analysis for stochastic Cohen-Grossberg neural networks with mixed time delays, IEEE Trans. Neural Networks, 17 (2006), 814-820. Google Scholar |
[27] |
X. Wang, K. Lu and B. Wang,
Wong-Zakai approximations and attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 264 (2018), 378-424.
doi: 10.1016/j.jde.2017.09.006. |
[28] |
L. Wang and D. Xu,
Global exponential stability of Hopfield reaction-diffusion neural networks with time-varying delays, Sci. China Ser. F, 46 (2003), 466-474.
|
[29] |
T. Wei, L. Wang and Y. Wang,
Existence, uniqueness and stability of mild solutions to stochastic reaction-diffusion Cohen-Grossberg neural networks with delays and Wiener processes, Neurocomputing, 239 (2017), 19-27.
doi: 10.1016/j.neucom.2017.01.069. |
[30] |
D. Xu, Y. Huang and Z. Yang,
Existence theorems for periodic Markov process and stochastic functional differential equations, Discrete Contin. Dyn. Syst., 24 (2009), 1005-1023.
doi: 10.3934/dcds.2009.24.1005. |
[31] |
Q. Yao, L. Wang and Y. Wang, Existence-uniqueness and stability of reaction-diffusion stochastic Hopfield neural networks with S-type distributed time delays, Neurocomputing, 275 (2018), 470-477. Google Scholar |
[32] |
B. Zhang and K. Gopalsamy,
On the periodic solution of $n$-dimensional stochastic population models, Stoch. Anal. Appl., 18 (2000), 323-331.
doi: 10.1080/07362990008809671. |
[33] |
Q. Zhu and B. Song,
Exponential stability of impulsive nonlinear stochastic differential equations with mixed delays, Nonlinear Anal. Real World Appl., 12 (2011), 2851-2860.
doi: 10.1016/j.nonrwa.2011.04.011. |
show all references
References:
[1] |
G. Adomian and R. Rach,
Nonlinear stochastic differential delay equations, J. Math. Anal. Appl., 91 (1983), 94-101.
doi: 10.1016/0022-247X(83)90094-X. |
[2] |
L. Arnold, Stochastic Differential Equations: Theory and Applications, John Wiley & Sons, New York, 1974. |
[3] |
H. Bao and J. Cao, Delay-distribution-dependent state estimation for discrete-time stochastic neural networks with random delay, Neural Networks, 24 (2011), 19-28. Google Scholar |
[4] |
E. Buckwar,
Introduction to the numerical analysis of stochastic delay differential equations, J. Comput. Appl. Math., 125 (2000), 297-307.
doi: 10.1016/S0377-0427(00)00475-1. |
[5] |
J. Cao,
New results concerning exponential stability and periodic solutions of delayed cellular neural networks, Phys. Lett. A, 307 (2003), 136-147.
doi: 10.1016/S0375-9601(02)01720-6. |
[6] |
T. Caraballo and K. Liu,
Exponential stability of mild solutions of stochastic partial differential equations with delays, Stochastic Anal. Appl., 17 (1999), 743-763.
doi: 10.1080/07362999908809633. |
[7] |
W. H. Chen, L. Liu and X. Lu,
Intermittent synchronization of reaction-diffusion neural networks with mixed delays via Razumikhin technique, Nonlinear Dynam., 87 (2017), 535-551.
doi: 10.1007/s11071-016-3059-8. |
[8] |
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge university press, Cambridge, 2014.
doi: 10.1017/CBO9781107295513.![]() ![]() |
[9] |
J. Duan, K. Lu and B. Schmalfuss,
Smooth stable and unstable manifolds for stochastic evolutionary equations, J. Dynam. Differential Equations, 16 (2004), 949-972.
doi: 10.1007/s10884-004-7830-z. |
[10] |
A. Friedman, Stochastic Differential Equations and Applications, Academic Press, New York, 1975.
![]() |
[11] |
K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Mathematics and its Applications, 74. Kluwer Academic Publishers Group, Dordrecht, 1992.
doi: 10.1007/978-94-015-7920-9. |
[12] |
J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-4342-7. |
[13] |
K. Itô and M. Nisio,
On stationary solutions of a stochastic differential equation, J. Math. Kyoto Univ., 4 (1964), 1-75.
doi: 10.1215/kjm/1250524705. |
[14] |
R. Jahanipur,
Stochastic functional evolution equations with monotone nonlinearity: Existence and stability of the mild solutions, J. Differential Equations, 248 (2010), 1230-1255.
doi: 10.1016/j.jde.2009.12.012. |
[15] |
J. Lei and M. C. Mackey,
Stochastic differential delay equation, moment stability, and application to hematopoietic stem cell regulation system, SIAM J. Appl. Math., 67 (2006/07), 387-407.
doi: 10.1137/060650234. |
[16] |
X. Li,
Existence and global exponential stability of periodic solution for impulsive Cohen-Grossberg-type BAM neural networks with continuously distributed delays, Appl. Math. Comput., 215 (2009), 292-307.
doi: 10.1016/j.amc.2009.05.005. |
[17] |
X. Liang, L. Wang, Y. Wang and R. Wang,
Dynamical behavior of delayed reaction-diffusion Hopfield neural networks driven by infinite dimensional Wiener processes, IEEE Trans. Neural Netw. Learn. Syst., 27 (2016), 1816-1826.
doi: 10.1109/TNNLS.2015.2460117. |
[18] |
K. Liu, Some views on recent randomized study of infinite dimensional functional differential equations (in Chinese), Sci. Sin. Math., 45 (2015), 559-566. Google Scholar |
[19] |
Z. Liu and L. Liao,
Existence and global exponential stability of periodic solution of cellular neural networks with time-varying delays, J. Math. Anal. Appl., 290 (2004), 247-262.
doi: 10.1016/j.jmaa.2003.09.052. |
[20] |
W. Liu and M. Röckner, Stochastic Partial Differential Equations: An Introduction, Springer, Cham, 2015.
doi: 10.1007/978-3-319-22354-4. |
[21] |
X. Mao, Stochastic Differential Equations and Applications, Second edition. Horwood Publishing Limited, Chichester, 2008.
doi: 10.1533/9780857099402. |
[22] |
S. L. Sobolev, Some Applications of Functional Analysis in Mathematical Physics: Third Edition, American Mathematical Society, Providence, 1991.
doi: 10.1090/mmono/090. |
[23] | L. Wang, Delayed Recurrent Neural Networks, Science Press, Beijing, 2008. Google Scholar |
[24] |
L. Wang, Global well-posedness and stability of the mild solutions for a class of stochastic partial functional differential equations (in Chinese), Sci. Sin. Math., 47 (2017), 371-382. Google Scholar |
[25] |
L. Wang and Y. Gao,
Global exponential robust stability of reaction-diffusion interval neural networks with time-varying delays, Phys. Lett. A, 350 (2006), 342-348.
doi: 10.1016/j.physleta.2005.10.031. |
[26] |
Z. Wang, Y. Liu, M. Li and X. Liu, Stability analysis for stochastic Cohen-Grossberg neural networks with mixed time delays, IEEE Trans. Neural Networks, 17 (2006), 814-820. Google Scholar |
[27] |
X. Wang, K. Lu and B. Wang,
Wong-Zakai approximations and attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 264 (2018), 378-424.
doi: 10.1016/j.jde.2017.09.006. |
[28] |
L. Wang and D. Xu,
Global exponential stability of Hopfield reaction-diffusion neural networks with time-varying delays, Sci. China Ser. F, 46 (2003), 466-474.
|
[29] |
T. Wei, L. Wang and Y. Wang,
Existence, uniqueness and stability of mild solutions to stochastic reaction-diffusion Cohen-Grossberg neural networks with delays and Wiener processes, Neurocomputing, 239 (2017), 19-27.
doi: 10.1016/j.neucom.2017.01.069. |
[30] |
D. Xu, Y. Huang and Z. Yang,
Existence theorems for periodic Markov process and stochastic functional differential equations, Discrete Contin. Dyn. Syst., 24 (2009), 1005-1023.
doi: 10.3934/dcds.2009.24.1005. |
[31] |
Q. Yao, L. Wang and Y. Wang, Existence-uniqueness and stability of reaction-diffusion stochastic Hopfield neural networks with S-type distributed time delays, Neurocomputing, 275 (2018), 470-477. Google Scholar |
[32] |
B. Zhang and K. Gopalsamy,
On the periodic solution of $n$-dimensional stochastic population models, Stoch. Anal. Appl., 18 (2000), 323-331.
doi: 10.1080/07362990008809671. |
[33] |
Q. Zhu and B. Song,
Exponential stability of impulsive nonlinear stochastic differential equations with mixed delays, Nonlinear Anal. Real World Appl., 12 (2011), 2851-2860.
doi: 10.1016/j.nonrwa.2011.04.011. |


[1] |
Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020316 |
[2] |
Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020320 |
[3] |
Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242 |
[4] |
Chungang Shi, Wei Wang, Dafeng Chen. Weak time discretization for slow-fast stochastic reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021019 |
[5] |
Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020283 |
[6] |
Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049 |
[7] |
Masaharu Taniguchi. Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3981-3995. doi: 10.3934/dcds.2020126 |
[8] |
Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326 |
[9] |
Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180 |
[10] |
Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405 |
[11] |
Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020400 |
[12] |
Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039 |
[13] |
Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021004 |
[14] |
Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001 |
[15] |
Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020376 |
[16] |
Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020321 |
[17] |
Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033 |
[18] |
Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053 |
[19] |
Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310 |
[20] |
Zhihua Liu, Yayun Wu, Xiangming Zhang. Existence of periodic wave trains for an age-structured model with diffusion. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021009 |
2019 Impact Factor: 1.27
Tools
Article outline
Figures and Tables
[Back to Top]