
-
Previous Article
Emergent behaviors of the generalized Lohe matrix model
- DCDS-B Home
- This Issue
-
Next Article
Global and exponential attractors for a nonlinear porous elastic system with delay term
Invasion dynamics of a diffusive pioneer-climax model: Monotone and non-monotone cases
1. | School of Mathematics, Tianjin University, Tianjin 300350, China |
2. | School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China |
In this paper, we study the invasion dynamics of a diffusive pioneer-climax model in monotone and non-monotone cases. For parameter ranges in which the system admits monotone properties, we establish the existence of spreading speeds and their coincidence with the minimum wave speeds by monotone dynamical system theories. The linear determinacy of the minimum wave speeds is also studied by constructing suitable upper solutions. For parameter ranges in which the system is non-monotone, we further determine the existence of spreading speeds and traveling waves by the sandwich technique and upper-lower solution method. Our results generalize the existing results established under monotone assumptions to more general cases.
References:
[1] |
A. Alhasanat and C. Ou,
Minimal-speed selection of traveling waves to the Lotka-Volterra competition model, J. Diff. Eqns., 266 (2019), 7357-7378.
doi: 10.1016/j.jde.2018.12.003. |
[2] |
K. J. Brown and J. Carr,
Deterministic epidemic waves of critical velocity, Math. Proc. Cambridge Philos. Soc., 81 (1977), 431-433.
doi: 10.1017/S0305004100053494. |
[3] |
S. Brown, J. Dockery and M. Pernarowski,
Traveling wave solutions of a reaction diffusion model for competing pioneer and climax species, Math. Biosci., 194 (2005), 21-36.
doi: 10.1016/j.mbs.2004.10.001. |
[4] |
J. R. Buchanan,
Asymptotic behavior of two interacting pioneer-climax species, Fields Inst. Commun., 21 (1999), 51-63.
|
[5] |
J. R. Buchanan,
Turing instability in pioneer/climax species interactions, Math. Biosci., 194 (2005), 199-216.
doi: 10.1016/j.mbs.2004.10.010. |
[6] |
J. E. Franke and A.-A. Yakubu,
Pioneer exclusion in a one-hump discrete pioneer-climax competitive system, J. Math. Biol., 32 (1994), 771-787.
doi: 10.1007/BF00168797. |
[7] |
B. Li, H. F. Weinberger and M. A. Lewis,
Spreading speeds as slowest wave speeds for cooperative systems, Math. Biosci, 196 (2005), 82-98.
doi: 10.1016/j.mbs.2005.03.008. |
[8] |
X. Liang and X.-Q. Zhao,
Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Commun. Pure Appl. Math., 60 (2007), 1-40.
doi: 10.1002/cpa.20154. |
[9] |
S. Ma,
Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem, J. Diff. Eqns., 171 (2001), 294-314.
doi: 10.1006/jdeq.2000.3846. |
[10] |
S. Ma,
Traveling waves for non-local delayed diffusion equations via auxiliary equations, J. Diff. Eqns., 237 (2007), 259-277.
doi: 10.1016/j.jde.2007.03.014. |
[11] |
M. Ma and C. Ou,
Linear and nonlinear speed selection for mono-stable wave propagations, SIAM J. Math. Anal., 51 (2019), 321-345.
doi: 10.1137/18M1173691. |
[12] |
M. Olinick, An Introduction to Mathematical Models in the Social and Life Sciences, Addison-Welsey, Reading, MA, 1978. Google Scholar |
[13] |
W. E. Ricker,
Stock and recruitment, J. Fish. Res. Bd. Can., 11 (1954), 559-623.
doi: 10.1139/f54-039. |
[14] |
J. F. Selgrade and G. Namkoong,
Stable periodic behavior in a pioneer-climax model, Nat. Resour. Model., 4 (1990), 215-227.
doi: 10.1111/j.1939-7445.1990.tb00098.x. |
[15] |
J. F. Selgrade and G. Namkoong,
Population interactions with growth rates dependent on weighted densities, Differential equation models in biology, epidemiology and ecology, Lecture Notes Biomath., 92 (1991), 247-256.
doi: 10.1007/978-3-642-45692-3_18. |
[16] |
J. F. Selgrade,
Planting and harvesting for pioneer-climax models, Rocky Mountain J. Math., 24 (1994), 293-310.
doi: 10.1216/rmjm/1181072467. |
[17] |
S. Sumner,
Stable periodic behavior in pioneer-climax competing species models with constant rate forcing, Nat. Resour. Model., 11 (1998), 155-171.
doi: 10.1111/j.1939-7445.1998.tb00306.x. |
[18] |
H. Wang,
Spreading speeds and traveling waves for non-cooperative reaction-diffusion systems, J. Nonlinear Sci., 21 (2011), 747-783.
doi: 10.1007/s00332-011-9099-9. |
[19] |
H. F. Weinberger, M. A. Lewis and B. Li,
Analysis of linear determinacy for spread in cooperative models, J. Math. Biol., 45 (2002), 183-218.
doi: 10.1007/s002850200145. |
[20] |
P. Weng and J. Cao,
Single spreading speed and traveling wave solutions of a diffusive pioneer-climax model without cooperative property, Comm. Pur. Appl. Anal., 16 (2017), 1405-1426.
doi: 10.3934/cpaa.2017067. |
[21] |
P. Weng and X. Zou, Minimal wave speed and spread speed of competing pionner and climax species, Appl. Anal., 93 (2014), 2093-2110.
doi: 10.1080/00036811.2013.868442. |
[22] |
J. Wu and X. Zou,
Traveling wave fronts of reaction-diffusion systems with delay, J. Dyn. Diff. Eqns., 13 (2001), 651-687.
doi: 10.1023/A:1016690424892. |
[23] |
Z. Yuan and X. Zou,
Co-invasion waves in a reaction diffusion model for competing pioneer and climax species, Nonlinear Analysis RWA, 11 (2010), 232-245.
doi: 10.1016/j.nonrwa.2008.11.003. |
[24] |
X. Zou and J. Wu,
Existence of traveling wave fronts in delayed reaction-diffusion systems via the monotone iteration method, Proc. Amer. Math. Soc., 125 (1997), 2589-2598.
doi: 10.1090/S0002-9939-97-04080-X. |
show all references
References:
[1] |
A. Alhasanat and C. Ou,
Minimal-speed selection of traveling waves to the Lotka-Volterra competition model, J. Diff. Eqns., 266 (2019), 7357-7378.
doi: 10.1016/j.jde.2018.12.003. |
[2] |
K. J. Brown and J. Carr,
Deterministic epidemic waves of critical velocity, Math. Proc. Cambridge Philos. Soc., 81 (1977), 431-433.
doi: 10.1017/S0305004100053494. |
[3] |
S. Brown, J. Dockery and M. Pernarowski,
Traveling wave solutions of a reaction diffusion model for competing pioneer and climax species, Math. Biosci., 194 (2005), 21-36.
doi: 10.1016/j.mbs.2004.10.001. |
[4] |
J. R. Buchanan,
Asymptotic behavior of two interacting pioneer-climax species, Fields Inst. Commun., 21 (1999), 51-63.
|
[5] |
J. R. Buchanan,
Turing instability in pioneer/climax species interactions, Math. Biosci., 194 (2005), 199-216.
doi: 10.1016/j.mbs.2004.10.010. |
[6] |
J. E. Franke and A.-A. Yakubu,
Pioneer exclusion in a one-hump discrete pioneer-climax competitive system, J. Math. Biol., 32 (1994), 771-787.
doi: 10.1007/BF00168797. |
[7] |
B. Li, H. F. Weinberger and M. A. Lewis,
Spreading speeds as slowest wave speeds for cooperative systems, Math. Biosci, 196 (2005), 82-98.
doi: 10.1016/j.mbs.2005.03.008. |
[8] |
X. Liang and X.-Q. Zhao,
Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Commun. Pure Appl. Math., 60 (2007), 1-40.
doi: 10.1002/cpa.20154. |
[9] |
S. Ma,
Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem, J. Diff. Eqns., 171 (2001), 294-314.
doi: 10.1006/jdeq.2000.3846. |
[10] |
S. Ma,
Traveling waves for non-local delayed diffusion equations via auxiliary equations, J. Diff. Eqns., 237 (2007), 259-277.
doi: 10.1016/j.jde.2007.03.014. |
[11] |
M. Ma and C. Ou,
Linear and nonlinear speed selection for mono-stable wave propagations, SIAM J. Math. Anal., 51 (2019), 321-345.
doi: 10.1137/18M1173691. |
[12] |
M. Olinick, An Introduction to Mathematical Models in the Social and Life Sciences, Addison-Welsey, Reading, MA, 1978. Google Scholar |
[13] |
W. E. Ricker,
Stock and recruitment, J. Fish. Res. Bd. Can., 11 (1954), 559-623.
doi: 10.1139/f54-039. |
[14] |
J. F. Selgrade and G. Namkoong,
Stable periodic behavior in a pioneer-climax model, Nat. Resour. Model., 4 (1990), 215-227.
doi: 10.1111/j.1939-7445.1990.tb00098.x. |
[15] |
J. F. Selgrade and G. Namkoong,
Population interactions with growth rates dependent on weighted densities, Differential equation models in biology, epidemiology and ecology, Lecture Notes Biomath., 92 (1991), 247-256.
doi: 10.1007/978-3-642-45692-3_18. |
[16] |
J. F. Selgrade,
Planting and harvesting for pioneer-climax models, Rocky Mountain J. Math., 24 (1994), 293-310.
doi: 10.1216/rmjm/1181072467. |
[17] |
S. Sumner,
Stable periodic behavior in pioneer-climax competing species models with constant rate forcing, Nat. Resour. Model., 11 (1998), 155-171.
doi: 10.1111/j.1939-7445.1998.tb00306.x. |
[18] |
H. Wang,
Spreading speeds and traveling waves for non-cooperative reaction-diffusion systems, J. Nonlinear Sci., 21 (2011), 747-783.
doi: 10.1007/s00332-011-9099-9. |
[19] |
H. F. Weinberger, M. A. Lewis and B. Li,
Analysis of linear determinacy for spread in cooperative models, J. Math. Biol., 45 (2002), 183-218.
doi: 10.1007/s002850200145. |
[20] |
P. Weng and J. Cao,
Single spreading speed and traveling wave solutions of a diffusive pioneer-climax model without cooperative property, Comm. Pur. Appl. Anal., 16 (2017), 1405-1426.
doi: 10.3934/cpaa.2017067. |
[21] |
P. Weng and X. Zou, Minimal wave speed and spread speed of competing pionner and climax species, Appl. Anal., 93 (2014), 2093-2110.
doi: 10.1080/00036811.2013.868442. |
[22] |
J. Wu and X. Zou,
Traveling wave fronts of reaction-diffusion systems with delay, J. Dyn. Diff. Eqns., 13 (2001), 651-687.
doi: 10.1023/A:1016690424892. |
[23] |
Z. Yuan and X. Zou,
Co-invasion waves in a reaction diffusion model for competing pioneer and climax species, Nonlinear Analysis RWA, 11 (2010), 232-245.
doi: 10.1016/j.nonrwa.2008.11.003. |
[24] |
X. Zou and J. Wu,
Existence of traveling wave fronts in delayed reaction-diffusion systems via the monotone iteration method, Proc. Amer. Math. Soc., 125 (1997), 2589-2598.
doi: 10.1090/S0002-9939-97-04080-X. |
[1] |
Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047 |
[2] |
Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154 |
[3] |
Denis Serre. Non-linear electromagnetism and special relativity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 435-454. doi: 10.3934/dcds.2009.23.435 |
[4] |
Yanan Li, Zhijian Yang, Na Feng. Uniform attractors and their continuity for the non-autonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021018 |
[5] |
Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302 |
[6] |
Zhihua Liu, Yayun Wu, Xiangming Zhang. Existence of periodic wave trains for an age-structured model with diffusion. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021009 |
[7] |
Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159 |
[8] |
Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387 |
[9] |
Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020444 |
[10] |
Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024 |
[11] |
Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020055 |
[12] |
Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020405 |
[13] |
Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021004 |
[14] |
Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215 |
[15] |
Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118 |
[16] |
Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020466 |
[17] |
San Ling, Buket Özkaya. New bounds on the minimum distance of cyclic codes. Advances in Mathematics of Communications, 2021, 15 (1) : 1-8. doi: 10.3934/amc.2020038 |
[18] |
Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561 |
[19] |
Max E. Gilmore, Chris Guiver, Hartmut Logemann. Sampled-data integral control of multivariable linear infinite-dimensional systems with input nonlinearities. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021001 |
[20] |
Qian Liu, Shuang Liu, King-Yeung Lam. Asymptotic spreading of interacting species with multiple fronts Ⅰ: A geometric optics approach. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3683-3714. doi: 10.3934/dcds.2020050 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]