doi: 10.3934/dcdsb.2020312

Invasion dynamics of a diffusive pioneer-climax model: Monotone and non-monotone cases

1. 

School of Mathematics, Tianjin University, Tianjin 300350, China

2. 

School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China

* Corresponding author: Yuxiang Zhang

Received  April 2020 Revised  July 2020 Published  October 2020

Fund Project: The first author is supported by NSF of China (11701415). The second author is supported by NSF of China (11571187)

In this paper, we study the invasion dynamics of a diffusive pioneer-climax model in monotone and non-monotone cases. For parameter ranges in which the system admits monotone properties, we establish the existence of spreading speeds and their coincidence with the minimum wave speeds by monotone dynamical system theories. The linear determinacy of the minimum wave speeds is also studied by constructing suitable upper solutions. For parameter ranges in which the system is non-monotone, we further determine the existence of spreading speeds and traveling waves by the sandwich technique and upper-lower solution method. Our results generalize the existing results established under monotone assumptions to more general cases.

Citation: Yuxiang Zhang, Shiwang Ma. Invasion dynamics of a diffusive pioneer-climax model: Monotone and non-monotone cases. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020312
References:
[1]

A. Alhasanat and C. Ou, Minimal-speed selection of traveling waves to the Lotka-Volterra competition model, J. Diff. Eqns., 266 (2019), 7357-7378.  doi: 10.1016/j.jde.2018.12.003.  Google Scholar

[2]

K. J. Brown and J. Carr, Deterministic epidemic waves of critical velocity, Math. Proc. Cambridge Philos. Soc., 81 (1977), 431-433.  doi: 10.1017/S0305004100053494.  Google Scholar

[3]

S. BrownJ. Dockery and M. Pernarowski, Traveling wave solutions of a reaction diffusion model for competing pioneer and climax species, Math. Biosci., 194 (2005), 21-36.  doi: 10.1016/j.mbs.2004.10.001.  Google Scholar

[4]

J. R. Buchanan, Asymptotic behavior of two interacting pioneer-climax species, Fields Inst. Commun., 21 (1999), 51-63.   Google Scholar

[5]

J. R. Buchanan, Turing instability in pioneer/climax species interactions, Math. Biosci., 194 (2005), 199-216.  doi: 10.1016/j.mbs.2004.10.010.  Google Scholar

[6]

J. E. Franke and A.-A. Yakubu, Pioneer exclusion in a one-hump discrete pioneer-climax competitive system, J. Math. Biol., 32 (1994), 771-787.  doi: 10.1007/BF00168797.  Google Scholar

[7]

B. LiH. F. Weinberger and M. A. Lewis, Spreading speeds as slowest wave speeds for cooperative systems, Math. Biosci, 196 (2005), 82-98.  doi: 10.1016/j.mbs.2005.03.008.  Google Scholar

[8]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Commun. Pure Appl. Math., 60 (2007), 1-40.  doi: 10.1002/cpa.20154.  Google Scholar

[9]

S. Ma, Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem, J. Diff. Eqns., 171 (2001), 294-314.  doi: 10.1006/jdeq.2000.3846.  Google Scholar

[10]

S. Ma, Traveling waves for non-local delayed diffusion equations via auxiliary equations, J. Diff. Eqns., 237 (2007), 259-277.  doi: 10.1016/j.jde.2007.03.014.  Google Scholar

[11]

M. Ma and C. Ou, Linear and nonlinear speed selection for mono-stable wave propagations, SIAM J. Math. Anal., 51 (2019), 321-345.  doi: 10.1137/18M1173691.  Google Scholar

[12]

M. Olinick, An Introduction to Mathematical Models in the Social and Life Sciences, Addison-Welsey, Reading, MA, 1978. Google Scholar

[13]

W. E. Ricker, Stock and recruitment, J. Fish. Res. Bd. Can., 11 (1954), 559-623.  doi: 10.1139/f54-039.  Google Scholar

[14]

J. F. Selgrade and G. Namkoong, Stable periodic behavior in a pioneer-climax model, Nat. Resour. Model., 4 (1990), 215-227.  doi: 10.1111/j.1939-7445.1990.tb00098.x.  Google Scholar

[15]

J. F. Selgrade and G. Namkoong, Population interactions with growth rates dependent on weighted densities, Differential equation models in biology, epidemiology and ecology, Lecture Notes Biomath., 92 (1991), 247-256.  doi: 10.1007/978-3-642-45692-3_18.  Google Scholar

[16]

J. F. Selgrade, Planting and harvesting for pioneer-climax models, Rocky Mountain J. Math., 24 (1994), 293-310.  doi: 10.1216/rmjm/1181072467.  Google Scholar

[17]

S. Sumner, Stable periodic behavior in pioneer-climax competing species models with constant rate forcing, Nat. Resour. Model., 11 (1998), 155-171.  doi: 10.1111/j.1939-7445.1998.tb00306.x.  Google Scholar

[18]

H. Wang, Spreading speeds and traveling waves for non-cooperative reaction-diffusion systems, J. Nonlinear Sci., 21 (2011), 747-783.  doi: 10.1007/s00332-011-9099-9.  Google Scholar

[19]

H. F. WeinbergerM. A. Lewis and B. Li, Analysis of linear determinacy for spread in cooperative models, J. Math. Biol., 45 (2002), 183-218.  doi: 10.1007/s002850200145.  Google Scholar

[20]

P. Weng and J. Cao, Single spreading speed and traveling wave solutions of a diffusive pioneer-climax model without cooperative property, Comm. Pur. Appl. Anal., 16 (2017), 1405-1426.  doi: 10.3934/cpaa.2017067.  Google Scholar

[21]

P. Weng and X. Zou, Minimal wave speed and spread speed of competing pionner and climax species, Appl. Anal., 93 (2014), 2093-2110. doi: 10.1080/00036811.2013.868442.  Google Scholar

[22]

J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay, J. Dyn. Diff. Eqns., 13 (2001), 651-687.  doi: 10.1023/A:1016690424892.  Google Scholar

[23]

Z. Yuan and X. Zou, Co-invasion waves in a reaction diffusion model for competing pioneer and climax species, Nonlinear Analysis RWA, 11 (2010), 232-245.  doi: 10.1016/j.nonrwa.2008.11.003.  Google Scholar

[24]

X. Zou and J. Wu, Existence of traveling wave fronts in delayed reaction-diffusion systems via the monotone iteration method, Proc. Amer. Math. Soc., 125 (1997), 2589-2598.  doi: 10.1090/S0002-9939-97-04080-X.  Google Scholar

show all references

References:
[1]

A. Alhasanat and C. Ou, Minimal-speed selection of traveling waves to the Lotka-Volterra competition model, J. Diff. Eqns., 266 (2019), 7357-7378.  doi: 10.1016/j.jde.2018.12.003.  Google Scholar

[2]

K. J. Brown and J. Carr, Deterministic epidemic waves of critical velocity, Math. Proc. Cambridge Philos. Soc., 81 (1977), 431-433.  doi: 10.1017/S0305004100053494.  Google Scholar

[3]

S. BrownJ. Dockery and M. Pernarowski, Traveling wave solutions of a reaction diffusion model for competing pioneer and climax species, Math. Biosci., 194 (2005), 21-36.  doi: 10.1016/j.mbs.2004.10.001.  Google Scholar

[4]

J. R. Buchanan, Asymptotic behavior of two interacting pioneer-climax species, Fields Inst. Commun., 21 (1999), 51-63.   Google Scholar

[5]

J. R. Buchanan, Turing instability in pioneer/climax species interactions, Math. Biosci., 194 (2005), 199-216.  doi: 10.1016/j.mbs.2004.10.010.  Google Scholar

[6]

J. E. Franke and A.-A. Yakubu, Pioneer exclusion in a one-hump discrete pioneer-climax competitive system, J. Math. Biol., 32 (1994), 771-787.  doi: 10.1007/BF00168797.  Google Scholar

[7]

B. LiH. F. Weinberger and M. A. Lewis, Spreading speeds as slowest wave speeds for cooperative systems, Math. Biosci, 196 (2005), 82-98.  doi: 10.1016/j.mbs.2005.03.008.  Google Scholar

[8]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Commun. Pure Appl. Math., 60 (2007), 1-40.  doi: 10.1002/cpa.20154.  Google Scholar

[9]

S. Ma, Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem, J. Diff. Eqns., 171 (2001), 294-314.  doi: 10.1006/jdeq.2000.3846.  Google Scholar

[10]

S. Ma, Traveling waves for non-local delayed diffusion equations via auxiliary equations, J. Diff. Eqns., 237 (2007), 259-277.  doi: 10.1016/j.jde.2007.03.014.  Google Scholar

[11]

M. Ma and C. Ou, Linear and nonlinear speed selection for mono-stable wave propagations, SIAM J. Math. Anal., 51 (2019), 321-345.  doi: 10.1137/18M1173691.  Google Scholar

[12]

M. Olinick, An Introduction to Mathematical Models in the Social and Life Sciences, Addison-Welsey, Reading, MA, 1978. Google Scholar

[13]

W. E. Ricker, Stock and recruitment, J. Fish. Res. Bd. Can., 11 (1954), 559-623.  doi: 10.1139/f54-039.  Google Scholar

[14]

J. F. Selgrade and G. Namkoong, Stable periodic behavior in a pioneer-climax model, Nat. Resour. Model., 4 (1990), 215-227.  doi: 10.1111/j.1939-7445.1990.tb00098.x.  Google Scholar

[15]

J. F. Selgrade and G. Namkoong, Population interactions with growth rates dependent on weighted densities, Differential equation models in biology, epidemiology and ecology, Lecture Notes Biomath., 92 (1991), 247-256.  doi: 10.1007/978-3-642-45692-3_18.  Google Scholar

[16]

J. F. Selgrade, Planting and harvesting for pioneer-climax models, Rocky Mountain J. Math., 24 (1994), 293-310.  doi: 10.1216/rmjm/1181072467.  Google Scholar

[17]

S. Sumner, Stable periodic behavior in pioneer-climax competing species models with constant rate forcing, Nat. Resour. Model., 11 (1998), 155-171.  doi: 10.1111/j.1939-7445.1998.tb00306.x.  Google Scholar

[18]

H. Wang, Spreading speeds and traveling waves for non-cooperative reaction-diffusion systems, J. Nonlinear Sci., 21 (2011), 747-783.  doi: 10.1007/s00332-011-9099-9.  Google Scholar

[19]

H. F. WeinbergerM. A. Lewis and B. Li, Analysis of linear determinacy for spread in cooperative models, J. Math. Biol., 45 (2002), 183-218.  doi: 10.1007/s002850200145.  Google Scholar

[20]

P. Weng and J. Cao, Single spreading speed and traveling wave solutions of a diffusive pioneer-climax model without cooperative property, Comm. Pur. Appl. Anal., 16 (2017), 1405-1426.  doi: 10.3934/cpaa.2017067.  Google Scholar

[21]

P. Weng and X. Zou, Minimal wave speed and spread speed of competing pionner and climax species, Appl. Anal., 93 (2014), 2093-2110. doi: 10.1080/00036811.2013.868442.  Google Scholar

[22]

J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay, J. Dyn. Diff. Eqns., 13 (2001), 651-687.  doi: 10.1023/A:1016690424892.  Google Scholar

[23]

Z. Yuan and X. Zou, Co-invasion waves in a reaction diffusion model for competing pioneer and climax species, Nonlinear Analysis RWA, 11 (2010), 232-245.  doi: 10.1016/j.nonrwa.2008.11.003.  Google Scholar

[24]

X. Zou and J. Wu, Existence of traveling wave fronts in delayed reaction-diffusion systems via the monotone iteration method, Proc. Amer. Math. Soc., 125 (1997), 2589-2598.  doi: 10.1090/S0002-9939-97-04080-X.  Google Scholar

Figure 1.  Typical fitness functions $ f $ and $ g $ in model (1)
Figure 2.  Nullclines and the structure of equilibria of (2) under (3)
Figure 3.  The graph of functions $ \overline{g}(w) $ and $ \underline{g}(w) $ under (H1$ ' $)
Figure 4.  The observed pioneer invasion waves for $ u $ and $ v $
Figure 5.  The observed climax invasion waves for $ u $ and $ v $
[1]

Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047

[2]

Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154

[3]

Denis Serre. Non-linear electromagnetism and special relativity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 435-454. doi: 10.3934/dcds.2009.23.435

[4]

Yanan Li, Zhijian Yang, Na Feng. Uniform attractors and their continuity for the non-autonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021018

[5]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[6]

Zhihua Liu, Yayun Wu, Xiangming Zhang. Existence of periodic wave trains for an age-structured model with diffusion. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021009

[7]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

[8]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[9]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[10]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[11]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[12]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020405

[13]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021004

[14]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[15]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[16]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[17]

San Ling, Buket Özkaya. New bounds on the minimum distance of cyclic codes. Advances in Mathematics of Communications, 2021, 15 (1) : 1-8. doi: 10.3934/amc.2020038

[18]

Rafael López, Óscar Perdomo. Constant-speed ramps for a central force field. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021003

[19]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[20]

Max E. Gilmore, Chris Guiver, Hartmut Logemann. Sampled-data integral control of multivariable linear infinite-dimensional systems with input nonlinearities. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021001

2019 Impact Factor: 1.27

Article outline

Figures and Tables

[Back to Top]