-
Previous Article
A spatially heterogeneous predator-prey model
- DCDS-B Home
- This Issue
-
Next Article
Analytic solution to an interfacial flow with kinetic undercooling in a time-dependent gap Hele-Shaw cell
Novel entire solutions in a nonlocal 2-D discrete periodic media for bistable dynamics
1. | Department of Mathematics, Shanghai Normal University, Shanghai 200234, China |
2. | The school of Mathematical Science, Beijing Normal University, Beijing 100875, China |
3. | College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China |
$ \begin{align*} \label{eq1.1} u_{i,j}'(t) = \sum\limits_{k_1\in\mathbb{Z}\backslash \{0\}}\sum\limits_{k_2\in\mathbb{Z}\backslash \{0\} }J(k_1,k_2)\Big[u_{i-k_1,j-k_2}(t)- u_{i,j}(t)\Big]+ f_{i,j}(u_{i,j}(t)).\quad \end{align*} $ |
$ \varphi_{i,j;k}(i cos\theta +j sin\theta+v_{k}t)\,\,(k = 1,2,3) $ |
$ v_k $ |
$ u_{i,j}(t) $ |
$ \begin{align*} &\ \lim\limits_{t\rightarrow-\infty}\Big\{ \sum\limits_{1\leq k\leq3}\sup\limits_{ p_{k-1}(t)\leq \xi\leq p_k(t)} |u_{i,j}(t)-\varphi_{i,j;k}(\xi+v_{k}t+\theta_{k})|\Big\} = 0, \end{align*} $ |
$ \xi = :i \cos\theta +j \sin\theta $ |
$ v_1<v_2<v_3 $ |
$ \theta_{k}\,(k = 1,2) $ |
$ p_0 = -\infty $ |
$ p_k(t): = -(v_k+v_{k+1})t/2\,\,(k = 1,2) $ |
$ p_3 = +\infty $ |
References:
[1] |
P. W. Bates and A. Chmaj,
A discrete convolution model for phase transitions, Arch. Ration. Mech. Anal., 150 (1999), 281-305.
doi: 10.1007/s002050050189. |
[2] |
J. Carr and A. Chmaj,
Uniqueness of travelling waves for nonlocal monostable equations, Proc. Amer. Math. Soc., 132 (2004), 2433-2439.
doi: 10.1090/S0002-9939-04-07432-5. |
[3] |
Y.-Y. Chen,
Entire solution originating from three fronts for a discrete diffusive equation, Tamkang J. Math., 48 (2017), 215-226.
doi: 10.5556/j.tkjm.48.2017.2442. |
[4] |
X. Chen, S.-C. Fu and J.-S. Guo,
Uniqueness and asymptotics of traveling waves of monostable dynamics on lattices, SIAM J. Math. Anal., 38 (2006), 233-258.
doi: 10.1137/050627824. |
[5] |
X. Chen and J.-S. Guo,
Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics, Math. Ann., 326 (2003), 123-146.
doi: 10.1007/s00208-003-0414-0. |
[6] |
X. Chen, J.-S. Guo and C.-C. Wu,
Traveling waves in discrete periodic media for bistable dynamics, Arch. Ration. Mech. Anal., 189 (2008), 189-236.
doi: 10.1007/s00205-007-0103-3. |
[7] |
Y.-Y. Chen, J.-S. Guo, H. Ninomiya and C.-H. Yao, Entire solutions originating from monotones fronts to the Allen-Cahn equation, Physica D, 378-379 (2018), 1-19.
doi: 10.1016/j.physd.2018.04.003. |
[8] |
C.-P. Cheng, W.-T. Li and G. Lin,
Travelling wave solutions in periodic monostable equations on a two-dimensional spatial lattice, IMA J. Appl. Math., 80 (2015), 1254-1272.
doi: 10.1093/imamat/hxu038. |
[9] |
C.-P. Cheng, W.-T. Li and Z.-C. Wang,
Persistence of bistable waves in a delayed population model with stage structure on a two-dimensional spatial lattice, Nonlinear Anal. RWA, 13 (2012), 1873-1890.
doi: 10.1016/j.nonrwa.2011.12.016. |
[10] |
C.-P. Cheng, W.-T. Li and Z.-C. Wang,
Asymptotic stability of traveling wavefronts in a delayed population model with stage structure on a two-dimensional spatial lattice, Discrete Contin. Dyn. Syst. Ser. B, 13 (2010), 559-575.
doi: 10.3934/dcdsb.2010.13.559. |
[11] |
C.-P. Cheng, W.-T. Li and Z.-C. Wang,
Spreading speeds and travelling waves in a delayed population model with stage structure on a 2D spatial lattice, IMA J. Appl. Math., 73 (2008), 592-618.
doi: 10.1093/imamat/hxn003. |
[12] |
C.-P. Cheng, Y.-H. Su and Z. Feng, Wave propagation for monostable 2-D lattice differential equations with delay, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 23 (2013), 1350077, 11 pp.
doi: 10.1142/S0218127413500776. |
[13] |
F.-D. Dong, W.-T. Li and L. Zhang,
Entire solutions in a two-dimensional nonlocal lattice dynamical system, Comm. Pure Appl. Anal., 17 (2018), 2517-2545.
doi: 10.3934/cpaa.2018120. |
[14] |
P. C. Fife,
Long time behavior of solutions of bistable diffusion equations, Arch. Ration. Mech. Anal., 70 (1979), 31-46.
doi: 10.1007/BF00276380. |
[15] |
J.-S. Guo and F. Hamel,
Front propagation for discrete periodic monostable equations, Math. Ann., 335 (2006), 489-525.
doi: 10.1007/s00208-005-0729-0. |
[16] |
J.-S. Guo and Y. Morita,
Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations, Discrete Contin. Dyn. Syst., 12 (2005), 193-212.
doi: 10.3934/dcds.2005.12.193. |
[17] |
J.-S. Guo, Y. Wang, C.-H. Wu and C.-C. Wu,
The minimal speed of traveling wave solutions for a diffusive three species competition system, Taiwanese J. Math., 19 (2015), 1805-1829.
doi: 10.11650/tjm.19.2015.5373. |
[18] |
J.-S. Guo and C.-H. Wu,
Front propagation for a two-dimensional periodic monostable lattice dynamical system, Discrete Contin. Dyn. Syst., 26 (2010), 197-223.
doi: 10.3934/dcds.2010.26.197. |
[19] |
J.-S. Guo and C.-H. Wu,
Traveling wave front for a two-component lattice dynamical system arising in competition models, J. Differential Equations, 252 (2012), 4357-4391.
doi: 10.1016/j.jde.2012.01.009. |
[20] |
J.-S. Guo and C.-H. Wu,
Existence and uniqueness of traveling waves for a monostable 2-D lattice dynamical system, Osaka J. Math., 45 (2008), 327-346.
|
[21] |
J.-S. Guo and C.-H. Wu,
Entire solutions for a two-component competition system in a lattice, Tohoku Math. J., 62 (2010), 17-28.
doi: 10.2748/tmj/1270041024. |
[22] |
S. Ma, P. Weng and X. Zou,
Asymptotic speed of propagation and traveling wavefronts in a non-local delayed lattice differential equation, Nonlinear Anal., 65 (2006), 1858-1890.
doi: 10.1016/j.na.2005.10.042. |
[23] |
S. Ma and X. Zou,
Propagation and its failure in a lattice delayed differential equation with global interaction, J. Differential Equations, 212 (2005), 129-190.
doi: 10.1016/j.jde.2004.07.014. |
[24] |
Y. Morita and H. Ninomiya,
Entire solutions with merging fronts to reaction-diffusion equations, J. Dynam. Differential Equations, 18 (2006), 841-861.
doi: 10.1007/s10884-006-9046-x. |
[25] |
Z.-C. Wang, W.-T. Li and J. Wu,
Entire solutions in delayed lattice differential equations with monostable nonlinearity, SIAM J. Math. Anal., 40 (2009), 2392-2420.
doi: 10.1137/080727312. |
[26] |
C.-C. Wu, Uniqueness of traveling waves for a two-dimensional bistable periodic lattice dynamical system, Abstr. Appl. Anal., 2012, Article ID 289168, 10 pages.
doi: 10.1155/2012/289168. |
[27] |
C.-H. Wu,
A general approach to the asymptotic behavior of traveling waves in a class of three-component lattice dynamical systems, J. Dynam. Differential Equations, 28 (2016), 317-338.
doi: 10.1007/s10884-016-9524-8. |
[28] |
S.-L. Wu, G.-S. Chen and C.-H. Hsu,
Entire solutions originating from multiple fronts of an epidemic model with nonlocal dispersal and bistable nonlinearity, J. Differential Equations, 265 (2018), 5520-5574.
doi: 10.1016/j.jde.2018.06.012. |
[29] |
S.-L. Wu, G.-S. Chen and C.-H. Hsu, Pulsating traveling waves and entire solutions of a periodic lattice dynamical system, submitted. Google Scholar |
[30] |
S.-L. Wu and C.-H. Hsu,
Entire solutions with merging fronts to a bistable periodic lattice dynamical system, Discrete Contin. Dyn. Syst., 36 (2016), 2329-2346.
doi: 10.3934/dcds.2016.36.2329. |
[31] |
S.-L. Wu, Z.-X. Shi and F.-Y. Yang,
Entire solutions in periodic lattice dynamical systems, J. Differential Equations, 255 (2013), 3505-3535.
doi: 10.1016/j.jde.2013.07.049. |
show all references
References:
[1] |
P. W. Bates and A. Chmaj,
A discrete convolution model for phase transitions, Arch. Ration. Mech. Anal., 150 (1999), 281-305.
doi: 10.1007/s002050050189. |
[2] |
J. Carr and A. Chmaj,
Uniqueness of travelling waves for nonlocal monostable equations, Proc. Amer. Math. Soc., 132 (2004), 2433-2439.
doi: 10.1090/S0002-9939-04-07432-5. |
[3] |
Y.-Y. Chen,
Entire solution originating from three fronts for a discrete diffusive equation, Tamkang J. Math., 48 (2017), 215-226.
doi: 10.5556/j.tkjm.48.2017.2442. |
[4] |
X. Chen, S.-C. Fu and J.-S. Guo,
Uniqueness and asymptotics of traveling waves of monostable dynamics on lattices, SIAM J. Math. Anal., 38 (2006), 233-258.
doi: 10.1137/050627824. |
[5] |
X. Chen and J.-S. Guo,
Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics, Math. Ann., 326 (2003), 123-146.
doi: 10.1007/s00208-003-0414-0. |
[6] |
X. Chen, J.-S. Guo and C.-C. Wu,
Traveling waves in discrete periodic media for bistable dynamics, Arch. Ration. Mech. Anal., 189 (2008), 189-236.
doi: 10.1007/s00205-007-0103-3. |
[7] |
Y.-Y. Chen, J.-S. Guo, H. Ninomiya and C.-H. Yao, Entire solutions originating from monotones fronts to the Allen-Cahn equation, Physica D, 378-379 (2018), 1-19.
doi: 10.1016/j.physd.2018.04.003. |
[8] |
C.-P. Cheng, W.-T. Li and G. Lin,
Travelling wave solutions in periodic monostable equations on a two-dimensional spatial lattice, IMA J. Appl. Math., 80 (2015), 1254-1272.
doi: 10.1093/imamat/hxu038. |
[9] |
C.-P. Cheng, W.-T. Li and Z.-C. Wang,
Persistence of bistable waves in a delayed population model with stage structure on a two-dimensional spatial lattice, Nonlinear Anal. RWA, 13 (2012), 1873-1890.
doi: 10.1016/j.nonrwa.2011.12.016. |
[10] |
C.-P. Cheng, W.-T. Li and Z.-C. Wang,
Asymptotic stability of traveling wavefronts in a delayed population model with stage structure on a two-dimensional spatial lattice, Discrete Contin. Dyn. Syst. Ser. B, 13 (2010), 559-575.
doi: 10.3934/dcdsb.2010.13.559. |
[11] |
C.-P. Cheng, W.-T. Li and Z.-C. Wang,
Spreading speeds and travelling waves in a delayed population model with stage structure on a 2D spatial lattice, IMA J. Appl. Math., 73 (2008), 592-618.
doi: 10.1093/imamat/hxn003. |
[12] |
C.-P. Cheng, Y.-H. Su and Z. Feng, Wave propagation for monostable 2-D lattice differential equations with delay, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 23 (2013), 1350077, 11 pp.
doi: 10.1142/S0218127413500776. |
[13] |
F.-D. Dong, W.-T. Li and L. Zhang,
Entire solutions in a two-dimensional nonlocal lattice dynamical system, Comm. Pure Appl. Anal., 17 (2018), 2517-2545.
doi: 10.3934/cpaa.2018120. |
[14] |
P. C. Fife,
Long time behavior of solutions of bistable diffusion equations, Arch. Ration. Mech. Anal., 70 (1979), 31-46.
doi: 10.1007/BF00276380. |
[15] |
J.-S. Guo and F. Hamel,
Front propagation for discrete periodic monostable equations, Math. Ann., 335 (2006), 489-525.
doi: 10.1007/s00208-005-0729-0. |
[16] |
J.-S. Guo and Y. Morita,
Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations, Discrete Contin. Dyn. Syst., 12 (2005), 193-212.
doi: 10.3934/dcds.2005.12.193. |
[17] |
J.-S. Guo, Y. Wang, C.-H. Wu and C.-C. Wu,
The minimal speed of traveling wave solutions for a diffusive three species competition system, Taiwanese J. Math., 19 (2015), 1805-1829.
doi: 10.11650/tjm.19.2015.5373. |
[18] |
J.-S. Guo and C.-H. Wu,
Front propagation for a two-dimensional periodic monostable lattice dynamical system, Discrete Contin. Dyn. Syst., 26 (2010), 197-223.
doi: 10.3934/dcds.2010.26.197. |
[19] |
J.-S. Guo and C.-H. Wu,
Traveling wave front for a two-component lattice dynamical system arising in competition models, J. Differential Equations, 252 (2012), 4357-4391.
doi: 10.1016/j.jde.2012.01.009. |
[20] |
J.-S. Guo and C.-H. Wu,
Existence and uniqueness of traveling waves for a monostable 2-D lattice dynamical system, Osaka J. Math., 45 (2008), 327-346.
|
[21] |
J.-S. Guo and C.-H. Wu,
Entire solutions for a two-component competition system in a lattice, Tohoku Math. J., 62 (2010), 17-28.
doi: 10.2748/tmj/1270041024. |
[22] |
S. Ma, P. Weng and X. Zou,
Asymptotic speed of propagation and traveling wavefronts in a non-local delayed lattice differential equation, Nonlinear Anal., 65 (2006), 1858-1890.
doi: 10.1016/j.na.2005.10.042. |
[23] |
S. Ma and X. Zou,
Propagation and its failure in a lattice delayed differential equation with global interaction, J. Differential Equations, 212 (2005), 129-190.
doi: 10.1016/j.jde.2004.07.014. |
[24] |
Y. Morita and H. Ninomiya,
Entire solutions with merging fronts to reaction-diffusion equations, J. Dynam. Differential Equations, 18 (2006), 841-861.
doi: 10.1007/s10884-006-9046-x. |
[25] |
Z.-C. Wang, W.-T. Li and J. Wu,
Entire solutions in delayed lattice differential equations with monostable nonlinearity, SIAM J. Math. Anal., 40 (2009), 2392-2420.
doi: 10.1137/080727312. |
[26] |
C.-C. Wu, Uniqueness of traveling waves for a two-dimensional bistable periodic lattice dynamical system, Abstr. Appl. Anal., 2012, Article ID 289168, 10 pages.
doi: 10.1155/2012/289168. |
[27] |
C.-H. Wu,
A general approach to the asymptotic behavior of traveling waves in a class of three-component lattice dynamical systems, J. Dynam. Differential Equations, 28 (2016), 317-338.
doi: 10.1007/s10884-016-9524-8. |
[28] |
S.-L. Wu, G.-S. Chen and C.-H. Hsu,
Entire solutions originating from multiple fronts of an epidemic model with nonlocal dispersal and bistable nonlinearity, J. Differential Equations, 265 (2018), 5520-5574.
doi: 10.1016/j.jde.2018.06.012. |
[29] |
S.-L. Wu, G.-S. Chen and C.-H. Hsu, Pulsating traveling waves and entire solutions of a periodic lattice dynamical system, submitted. Google Scholar |
[30] |
S.-L. Wu and C.-H. Hsu,
Entire solutions with merging fronts to a bistable periodic lattice dynamical system, Discrete Contin. Dyn. Syst., 36 (2016), 2329-2346.
doi: 10.3934/dcds.2016.36.2329. |
[31] |
S.-L. Wu, Z.-X. Shi and F.-Y. Yang,
Entire solutions in periodic lattice dynamical systems, J. Differential Equations, 255 (2013), 3505-3535.
doi: 10.1016/j.jde.2013.07.049. |
[1] |
Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159 |
[2] |
Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002 |
[3] |
Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387 |
[4] |
Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021018 |
[5] |
Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118 |
[6] |
Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020371 |
[7] |
Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115 |
[8] |
Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392 |
[9] |
Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266 |
[10] |
Feimin Zhong, Jinxing Xie, Yuwei Shen. Bargaining in a multi-echelon supply chain with power structure: KS solution vs. Nash solution. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020172 |
[11] |
Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003 |
[12] |
Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119 |
[13] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033 |
[14] |
Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020348 |
[15] |
Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020440 |
[16] |
Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016 |
[17] |
Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020162 |
[18] |
Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020405 |
[19] |
Yan'e Wang, Nana Tian, Hua Nie. Positive solution branches of two-species competition model in open advective environments. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021006 |
[20] |
Bingyan Liu, Xiongbing Ye, Xianzhou Dong, Lei Ni. Branching improved Deep Q Networks for solving pursuit-evasion strategy solution of spacecraft. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021016 |
2019 Impact Factor: 1.27
Tools
Article outline
[Back to Top]