-
Previous Article
On 3d dipolar Bose-Einstein condensates involving quantum fluctuations and three-body interactions
- DCDS-B Home
- This Issue
-
Next Article
Recent developments on a singular predator-prey model
On a matrix-valued PDE characterizing a contraction metric for a periodic orbit
Department of Mathematics, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom |
The stability and the basin of attraction of a periodic orbit can be determined using a contraction metric, i.e., a Riemannian metric with respect to which adjacent solutions contract. A contraction metric does not require knowledge of the position of the periodic orbit and is robust to perturbations.
In this paper we characterize such a Riemannian contraction metric as matrix-valued solution of a linear first-order Partial Differential Equation. This enables the explicit construction of a contraction metric by numerically solving this equation in [
References:
[1] |
V. A. Boĭchenko and G. A. Leonov, Lyapunov orbital exponents of autonomous systems, Vestnik Leningrad. Univ. Mat. Mekh. Astronom., 3 (1988), 7–10. |
[2] |
G. Borg, A condition for the existence of orbitally stable solutions of dynamical systems, Kungl. Tekn. Högsk. Handl. Stockholm, 153 (1960), 12 pp. |
[3] |
C. Chicone, Ordinary Differential Equations with Applications, Texts in Applied Mathematics, 34. Springer, New York, 2006. |
[4] |
F. Forni and R. Sepulchre,
A differential Lyapunov framework for contraction analysis, IEEE Trans. Automat. Control, 59 (2014), 614-628.
doi: 10.1109/TAC.2013.2285771. |
[5] |
P. Giesl,
Necessary conditions for a limit cycle and its basin of attraction, Nonlinear Anal., 56 (2004), 643-677.
doi: 10.1016/j.na.2003.07.020. |
[6] |
P. Giesl,
Converse theorems on contraction metrics for an equilibrium, J. Math. Anal. Appl., 424 (2015), 1380-1403.
doi: 10.1016/j.jmaa.2014.12.010. |
[7] |
P. Giesl,
Computation of a contraction metric for a periodic orbit using meshfree collocation, SIAM J. Appl. Dyn. Syst., 18 (2019), 1536-1564.
doi: 10.1137/18M1220182. |
[8] |
P. Giesl,
Converse theorem on a global contraction metric for a periodic orbit, Discrete Cont. Dyn. Syst., 39 (2019), 5339-5363.
doi: 10.3934/dcds.2019218. |
[9] |
P. Giesl and H. Wendland,
Kernel-based discretisation for solving matrix-valued PDEs, SIAM J. Numer. Anal., 56 (2018), 3386-3406.
doi: 10.1137/16M1092842. |
[10] |
P. Hartman, Ordinary Differential Equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964. |
[11] |
P. Hartman and C. Olech,
On global asymptotic stability of solutions of differential equations, Trans. Amer. Math. Soc., 104 (1962), 154-178.
doi: 10.2307/1993939. |
[12] |
A. Yu. Kravchuk, G. A. Leonov and D. V. Ponomarenko,
Criteria for strong orbital stability of trajectories of dynamical systems. I, Differentsial'nye Uravneniya, 28 (1992), 1507-1520.
|
[13] |
G. A. Leonov,
On stability with respect to the first approximation, Prikl. Mat. Mekh., 62 (1998), 548-555.
doi: 10.1016/S0021-8928(98)00067-7. |
[14] |
G. A. Leonov, I. M. Burkin and A. I. Shepelyavyi, Frequency Methods in Oscillation Theory, Mathematics and its Applications, 357. Kluwer Academic Publishers Group, Dordrecht, 1996.
doi: 10.1007/978-94-009-0193-3. |
[15] |
W. Lohmiller and J.-J. E. Slotine,
On contraction analysis for non-linear systems, Automatica J. IFAC, 34 (1998), 683-696.
doi: 10.1016/S0005-1098(98)00019-3. |
[16] |
Ian R. Manchester and J.-J. E. Slotine,
Transverse contraction criteria for existence, stability, and robustness of a limit cycle, Systems Control Lett., 63 (2014), 32-38.
doi: 10.1016/j.sysconle.2013.10.005. |
[17] |
G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Applied Mathematical Sciences, 143. Springer-Verlag, New York, 2002.
doi: 10.1007/978-1-4757-5037-9. |
[18] |
B. T. Stenström,
Dynamical systems with a certain local contraction property, Math. Scand., 11 (1962), 151-155.
doi: 10.7146/math.scand.a-10661. |
show all references
References:
[1] |
V. A. Boĭchenko and G. A. Leonov, Lyapunov orbital exponents of autonomous systems, Vestnik Leningrad. Univ. Mat. Mekh. Astronom., 3 (1988), 7–10. |
[2] |
G. Borg, A condition for the existence of orbitally stable solutions of dynamical systems, Kungl. Tekn. Högsk. Handl. Stockholm, 153 (1960), 12 pp. |
[3] |
C. Chicone, Ordinary Differential Equations with Applications, Texts in Applied Mathematics, 34. Springer, New York, 2006. |
[4] |
F. Forni and R. Sepulchre,
A differential Lyapunov framework for contraction analysis, IEEE Trans. Automat. Control, 59 (2014), 614-628.
doi: 10.1109/TAC.2013.2285771. |
[5] |
P. Giesl,
Necessary conditions for a limit cycle and its basin of attraction, Nonlinear Anal., 56 (2004), 643-677.
doi: 10.1016/j.na.2003.07.020. |
[6] |
P. Giesl,
Converse theorems on contraction metrics for an equilibrium, J. Math. Anal. Appl., 424 (2015), 1380-1403.
doi: 10.1016/j.jmaa.2014.12.010. |
[7] |
P. Giesl,
Computation of a contraction metric for a periodic orbit using meshfree collocation, SIAM J. Appl. Dyn. Syst., 18 (2019), 1536-1564.
doi: 10.1137/18M1220182. |
[8] |
P. Giesl,
Converse theorem on a global contraction metric for a periodic orbit, Discrete Cont. Dyn. Syst., 39 (2019), 5339-5363.
doi: 10.3934/dcds.2019218. |
[9] |
P. Giesl and H. Wendland,
Kernel-based discretisation for solving matrix-valued PDEs, SIAM J. Numer. Anal., 56 (2018), 3386-3406.
doi: 10.1137/16M1092842. |
[10] |
P. Hartman, Ordinary Differential Equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964. |
[11] |
P. Hartman and C. Olech,
On global asymptotic stability of solutions of differential equations, Trans. Amer. Math. Soc., 104 (1962), 154-178.
doi: 10.2307/1993939. |
[12] |
A. Yu. Kravchuk, G. A. Leonov and D. V. Ponomarenko,
Criteria for strong orbital stability of trajectories of dynamical systems. I, Differentsial'nye Uravneniya, 28 (1992), 1507-1520.
|
[13] |
G. A. Leonov,
On stability with respect to the first approximation, Prikl. Mat. Mekh., 62 (1998), 548-555.
doi: 10.1016/S0021-8928(98)00067-7. |
[14] |
G. A. Leonov, I. M. Burkin and A. I. Shepelyavyi, Frequency Methods in Oscillation Theory, Mathematics and its Applications, 357. Kluwer Academic Publishers Group, Dordrecht, 1996.
doi: 10.1007/978-94-009-0193-3. |
[15] |
W. Lohmiller and J.-J. E. Slotine,
On contraction analysis for non-linear systems, Automatica J. IFAC, 34 (1998), 683-696.
doi: 10.1016/S0005-1098(98)00019-3. |
[16] |
Ian R. Manchester and J.-J. E. Slotine,
Transverse contraction criteria for existence, stability, and robustness of a limit cycle, Systems Control Lett., 63 (2014), 32-38.
doi: 10.1016/j.sysconle.2013.10.005. |
[17] |
G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Applied Mathematical Sciences, 143. Springer-Verlag, New York, 2002.
doi: 10.1007/978-1-4757-5037-9. |
[18] |
B. T. Stenström,
Dynamical systems with a certain local contraction property, Math. Scand., 11 (1962), 151-155.
doi: 10.7146/math.scand.a-10661. |
[1] |
Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310 |
[2] |
Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021015 |
[3] |
Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392 |
[4] |
Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327 |
[5] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021 doi: 10.3934/nhm.2021003 |
[6] |
Ryuji Kajikiya. Existence of nodal solutions for the sublinear Moore-Nehari differential equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1483-1506. doi: 10.3934/dcds.2020326 |
[7] |
Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 |
[8] |
Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020047 |
[9] |
Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020320 |
[10] |
Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020384 |
[11] |
Zhihua Liu, Yayun Wu, Xiangming Zhang. Existence of periodic wave trains for an age-structured model with diffusion. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021009 |
[12] |
Yi Guan, Michal Fečkan, Jinrong Wang. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1157-1176. doi: 10.3934/dcds.2020313 |
[13] |
Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180 |
[14] |
Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075 |
[15] |
Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326 |
[16] |
Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039 |
[17] |
Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037 |
[18] |
Taige Wang, Bing-Yu Zhang. Forced oscillation of viscous Burgers' equation with a time-periodic force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1205-1221. doi: 10.3934/dcdsb.2020160 |
[19] |
S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020435 |
[20] |
Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016 |
2019 Impact Factor: 1.27
Tools
Article outline
[Back to Top]