• Previous Article
    Threshold dynamics and sensitivity analysis of a stochastic semi-Markov switched SIRS epidemic model with nonlinear incidence and vaccination
  • DCDS-B Home
  • This Issue
  • Next Article
    The threshold dynamics of a discrete-time echinococcosis transmission model
doi: 10.3934/dcdsb.2020316

Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model

1. 

School of Mathematical Science, Heilongjiang University, Harbin 150080, China

2. 

Department of Mathematics, Wilfrid Laurier University, Waterloo, ON N2L 3C5 Canada

* Corresponding author: Yuming Chen

Received  December 2019 Revised  July 2020 Published  November 2020

Fund Project: This research was partially supported by the Graduate Students Innovation Research Program of Heilongjiang University (No. YJSCX2020-211HLJU) (WL); the National Natural Science Foundation of China (Nos. 12071115, 11871179), Natural Science Foundation of Heilongjiang Province (Nos. LC2018002, LH209A021), Heilongjiang Provincial Key Laboratory of the Theory and Computation of Complex Systems (JW); and NSERC of Canada (No. RGPIN-2019-05892) (YC)

Taking account of spatial heterogeneity, latency in infected individuals, and time for shed bacteria to the aquatic environment, we build a delayed nonlocal reaction-diffusion cholera model. A feature of this model is that the incidences are of general nonlinear forms. By using the theories of monotone dynamical systems and uniform persistence, we obtain a threshold dynamics determined by the basic reproduction number $ \mathcal {R}_0 $. Roughly speaking, the cholera will die out if $ \mathcal{R}_0<1 $ while it persists if $ \mathcal{R}_0>1 $. Moreover, we derive the explicit formulae of $ \mathcal{R}_0 $ for two concrete situations.

Citation: Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020316
References:
[1]

L. J. S. AllenB. M. BolkerY. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst., 21 (2008), 1-20.  doi: 10.3934/dcds.2008.21.1.  Google Scholar

[2]

T. BergeS. Bowong and J. M.-S. Lubuma, Global stability of a two-patch cholera model with fast and slow transmissions, Math. Comput. Simul., 133 (2017), 142-164.  doi: 10.1016/j.matcom.2015.10.013.  Google Scholar

[3]

F. BrauerZ. Shuai and P. van den Driessche, Dynamics of an age-of-infection cholera model, Math Biosci. Eng., 10 (2013), 1335-1349.  doi: 10.3934/mbe.2013.10.1335.  Google Scholar

[4]

F. CaponeV. De Cataldis and R. De Luca, Influence of diffusion on the stability of equilibria in a reaction-diffusion system modeling cholera dynamic, J. Math. Biol., 71 (2015), 1107-1131.  doi: 10.1007/s00285-014-0849-9.  Google Scholar

[5]

M. C. EisenbergZ. ShuaiJ. H. Tien and P. van den driessche, A cholera model in a patchy environment with water and human movement, Math. Biosci., 246 (2013), 105-112.  doi: 10.1016/j.mbs.2013.08.003.  Google Scholar

[6]

S. A. Gourley and J. Wu, Delayed non-local diffusive systems in biological invasion and disease spread, in Nonlinear Dynamics and Evolution Equations, Vol. 48, American Matehmatical Society, Province, 2006, pp. 137–200. doi: 10.1007/s00285-006-0050-x.  Google Scholar

[7]

Z. GuoF.-B. Wang and X. Zou, Threshold dynamics of an infective disease model with a fixed latent period and non-local infections, J. Math. Biol., 65 (2012), 1387-1410.  doi: 10.1007/s00285-011-0500-y.  Google Scholar

[8]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society, Providence, RI, 1988. doi: 10.1090/surv/025.  Google Scholar

[9]

D. M. HartleyJ. G. Morris Jr and D. L. Smith, Hyperinfectivity: A critical element in the ability of V. cholerae to cause epidmeics?, PLOS Med., 3 (2006), 63-69.  doi: 10.1371/journal.pmed.0030007.  Google Scholar

[10]

H. Li, R. Peng and F.-B. Wang, Varying total population enhances disease persistence: qualitative analysis on a diffusive SIS epidemic model, J. Differential Equations, 262 (2017), 885-913. doi: 10.1016/j.jde.2016.09.044.  Google Scholar

[11]

J. LinR. Xu and X. Tian, Global dynamics of an age-structured cholera model with both human-to-human and environment-to-human transmissions and saturation incidence, Appl. Math. Modelling, 63 (2018), 688-708.  doi: 10.1016/j.apm.2018.07.013.  Google Scholar

[12]

J. LinR. Xu and X. Tian, Global dynamics of an age-structured cholera model with multiple transmissions, saturation incidence and imperfect vaccination, J. Biol. Dyn., 13 (2019), 69-102.  doi: 10.1080/17513758.2019.1570362.  Google Scholar

[13]

P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005), 251-275.  doi: 10.1137/S0036141003439173.  Google Scholar

[14]

R. H. Martin Jr. and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1-44.  doi: 10.2307/2001590.  Google Scholar

[15]

J. A. J. Metz and O. Diekmann, Age dependence, The dynamics of physiologically structured populations (Amsterdam, 1983), Lecture Notes in Biomath., 68, Springer, Berlin, 1986,136–184. doi: 10.1007/978-3-662-13159-6_4.  Google Scholar

[16]

J. B. H. Njagarah and F. Nyabadza, A metapopulation model for cholera transmission dynamics between communities linked by migration, Appl. Math. Comput., 241 (2014), 317-331.  doi: 10.1016/j.amc.2014.05.036.  Google Scholar

[17]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4612-5282-5.  Google Scholar

[18]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Amer. Math. Soc., Math. Surveys and Monographs, vol. 41, 1995.  Google Scholar

[19]

H. L. Smith and X. -Q. Zhao, Robust persistence for semidynamical systems, Nonlinear Anal. TMA, 47 (2001), 6169-6179.  doi: 10.1016/S0362-546X(01)00678-2.  Google Scholar

[20]

H. R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755-763.  doi: 10.1007/BF00173267.  Google Scholar

[21]

H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188-211.  doi: 10.1137/080732870.  Google Scholar

[22]

H. R. Thieme and X.-Q. Zhao, A non-local delayed and diffusive predator-prey model, Nonlinear Anal. Real World Appl., 2 (2001), 145-160.  doi: 10.1016/S0362-546X(00)00112-7.  Google Scholar

[23]

J. H. Tien and D. J. D. Earn, Multiple transmission pathways and disease dynamics in a waterborne pathogen model, Bull. Math. Biol., 72 (2010), 1506-1533.  doi: 10.1007/s11538-010-9507-6.  Google Scholar

[24]

F.-B. WangJ. Shi and X. Zou, Dynamics of a host-pathogen system on a bounded spatial domain, Commun. Pure Appl. Anal., 14 (2015), 2535-2560.  doi: 10.3934/cpaa.2015.14.2535.  Google Scholar

[25]

X. Wang and J. Wang, Analysis of cholera epidemics with bacterial growth and spatial movement, J. Biol. Dyn., 9 (2015), 233-261.  doi: 10.1080/17513758.2014.974696.  Google Scholar

[26]

W. Wang and X.-Q. Zhao, A nonlocal and time-delayed reaction-diffusion model of dengue transmission, SIAM J. Appl. Math., 71 (2011), 147-168.  doi: 10.1137/090775890.  Google Scholar

[27]

X. WangX.-Q. Zhao and J. Wang, A cholera epidemic model in a spatiotemporally heterogeneous environemnt, J. Math. Aanal. Appl., 468 (2018), 893-912.  doi: 10.1016/j.jmaa.2018.08.039.  Google Scholar

[28]

World Health Organization, Cholera fact shettes, January 2019, available from http://www.who.int Google Scholar

[29]

J. Wu, Theory and Applications of Partial Functional Differential Equations, Applied Mathematical Science, vol. 119, Springer, New York, 1996. doi: 10.1007/978-1-4612-4050-1.  Google Scholar

[30]

Y. Wu and X. Zou, Asymptotic profiles of steady states for a diffusive SIS epidemic model with mass action infection mechanism, J. Differential Equations, 261 (2016), 4424-4447.  doi: 10.1016/j.jde.2016.06.028.  Google Scholar

[31]

Y. Wu and X. Zou, Dynamics and profiles of a diffusive host-pathogen system with distinct dispersal rates, J. Differential Equations, 264 (2018), 4989-5024.  doi: 10.1016/j.jde.2017.12.027.  Google Scholar

[32]

K. Yamazaki and X. Wang, Global well-posedness and asymptotic behavior of solutions to a reaction-convection-diffusion cholera epidemic model, Discrete Cont. Dynam. Syst., 21 (2016), 1297-1316.  doi: 10.3934/dcdsb.2016.21.1297.  Google Scholar

[33]

K. Yamazaki and X. Wang, Global stability and uniform persistence of the reaction-convection-diffusion cholera epidemic model, Math. Biosci. Eng., 14 (2017), 559-579.  doi: 10.3934/mbe.2017033.  Google Scholar

show all references

References:
[1]

L. J. S. AllenB. M. BolkerY. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst., 21 (2008), 1-20.  doi: 10.3934/dcds.2008.21.1.  Google Scholar

[2]

T. BergeS. Bowong and J. M.-S. Lubuma, Global stability of a two-patch cholera model with fast and slow transmissions, Math. Comput. Simul., 133 (2017), 142-164.  doi: 10.1016/j.matcom.2015.10.013.  Google Scholar

[3]

F. BrauerZ. Shuai and P. van den Driessche, Dynamics of an age-of-infection cholera model, Math Biosci. Eng., 10 (2013), 1335-1349.  doi: 10.3934/mbe.2013.10.1335.  Google Scholar

[4]

F. CaponeV. De Cataldis and R. De Luca, Influence of diffusion on the stability of equilibria in a reaction-diffusion system modeling cholera dynamic, J. Math. Biol., 71 (2015), 1107-1131.  doi: 10.1007/s00285-014-0849-9.  Google Scholar

[5]

M. C. EisenbergZ. ShuaiJ. H. Tien and P. van den driessche, A cholera model in a patchy environment with water and human movement, Math. Biosci., 246 (2013), 105-112.  doi: 10.1016/j.mbs.2013.08.003.  Google Scholar

[6]

S. A. Gourley and J. Wu, Delayed non-local diffusive systems in biological invasion and disease spread, in Nonlinear Dynamics and Evolution Equations, Vol. 48, American Matehmatical Society, Province, 2006, pp. 137–200. doi: 10.1007/s00285-006-0050-x.  Google Scholar

[7]

Z. GuoF.-B. Wang and X. Zou, Threshold dynamics of an infective disease model with a fixed latent period and non-local infections, J. Math. Biol., 65 (2012), 1387-1410.  doi: 10.1007/s00285-011-0500-y.  Google Scholar

[8]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society, Providence, RI, 1988. doi: 10.1090/surv/025.  Google Scholar

[9]

D. M. HartleyJ. G. Morris Jr and D. L. Smith, Hyperinfectivity: A critical element in the ability of V. cholerae to cause epidmeics?, PLOS Med., 3 (2006), 63-69.  doi: 10.1371/journal.pmed.0030007.  Google Scholar

[10]

H. Li, R. Peng and F.-B. Wang, Varying total population enhances disease persistence: qualitative analysis on a diffusive SIS epidemic model, J. Differential Equations, 262 (2017), 885-913. doi: 10.1016/j.jde.2016.09.044.  Google Scholar

[11]

J. LinR. Xu and X. Tian, Global dynamics of an age-structured cholera model with both human-to-human and environment-to-human transmissions and saturation incidence, Appl. Math. Modelling, 63 (2018), 688-708.  doi: 10.1016/j.apm.2018.07.013.  Google Scholar

[12]

J. LinR. Xu and X. Tian, Global dynamics of an age-structured cholera model with multiple transmissions, saturation incidence and imperfect vaccination, J. Biol. Dyn., 13 (2019), 69-102.  doi: 10.1080/17513758.2019.1570362.  Google Scholar

[13]

P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005), 251-275.  doi: 10.1137/S0036141003439173.  Google Scholar

[14]

R. H. Martin Jr. and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1-44.  doi: 10.2307/2001590.  Google Scholar

[15]

J. A. J. Metz and O. Diekmann, Age dependence, The dynamics of physiologically structured populations (Amsterdam, 1983), Lecture Notes in Biomath., 68, Springer, Berlin, 1986,136–184. doi: 10.1007/978-3-662-13159-6_4.  Google Scholar

[16]

J. B. H. Njagarah and F. Nyabadza, A metapopulation model for cholera transmission dynamics between communities linked by migration, Appl. Math. Comput., 241 (2014), 317-331.  doi: 10.1016/j.amc.2014.05.036.  Google Scholar

[17]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4612-5282-5.  Google Scholar

[18]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Amer. Math. Soc., Math. Surveys and Monographs, vol. 41, 1995.  Google Scholar

[19]

H. L. Smith and X. -Q. Zhao, Robust persistence for semidynamical systems, Nonlinear Anal. TMA, 47 (2001), 6169-6179.  doi: 10.1016/S0362-546X(01)00678-2.  Google Scholar

[20]

H. R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755-763.  doi: 10.1007/BF00173267.  Google Scholar

[21]

H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188-211.  doi: 10.1137/080732870.  Google Scholar

[22]

H. R. Thieme and X.-Q. Zhao, A non-local delayed and diffusive predator-prey model, Nonlinear Anal. Real World Appl., 2 (2001), 145-160.  doi: 10.1016/S0362-546X(00)00112-7.  Google Scholar

[23]

J. H. Tien and D. J. D. Earn, Multiple transmission pathways and disease dynamics in a waterborne pathogen model, Bull. Math. Biol., 72 (2010), 1506-1533.  doi: 10.1007/s11538-010-9507-6.  Google Scholar

[24]

F.-B. WangJ. Shi and X. Zou, Dynamics of a host-pathogen system on a bounded spatial domain, Commun. Pure Appl. Anal., 14 (2015), 2535-2560.  doi: 10.3934/cpaa.2015.14.2535.  Google Scholar

[25]

X. Wang and J. Wang, Analysis of cholera epidemics with bacterial growth and spatial movement, J. Biol. Dyn., 9 (2015), 233-261.  doi: 10.1080/17513758.2014.974696.  Google Scholar

[26]

W. Wang and X.-Q. Zhao, A nonlocal and time-delayed reaction-diffusion model of dengue transmission, SIAM J. Appl. Math., 71 (2011), 147-168.  doi: 10.1137/090775890.  Google Scholar

[27]

X. WangX.-Q. Zhao and J. Wang, A cholera epidemic model in a spatiotemporally heterogeneous environemnt, J. Math. Aanal. Appl., 468 (2018), 893-912.  doi: 10.1016/j.jmaa.2018.08.039.  Google Scholar

[28]

World Health Organization, Cholera fact shettes, January 2019, available from http://www.who.int Google Scholar

[29]

J. Wu, Theory and Applications of Partial Functional Differential Equations, Applied Mathematical Science, vol. 119, Springer, New York, 1996. doi: 10.1007/978-1-4612-4050-1.  Google Scholar

[30]

Y. Wu and X. Zou, Asymptotic profiles of steady states for a diffusive SIS epidemic model with mass action infection mechanism, J. Differential Equations, 261 (2016), 4424-4447.  doi: 10.1016/j.jde.2016.06.028.  Google Scholar

[31]

Y. Wu and X. Zou, Dynamics and profiles of a diffusive host-pathogen system with distinct dispersal rates, J. Differential Equations, 264 (2018), 4989-5024.  doi: 10.1016/j.jde.2017.12.027.  Google Scholar

[32]

K. Yamazaki and X. Wang, Global well-posedness and asymptotic behavior of solutions to a reaction-convection-diffusion cholera epidemic model, Discrete Cont. Dynam. Syst., 21 (2016), 1297-1316.  doi: 10.3934/dcdsb.2016.21.1297.  Google Scholar

[33]

K. Yamazaki and X. Wang, Global stability and uniform persistence of the reaction-convection-diffusion cholera epidemic model, Math. Biosci. Eng., 14 (2017), 559-579.  doi: 10.3934/mbe.2017033.  Google Scholar

[1]

Yu Jin, Xiang-Qiang Zhao. The spatial dynamics of a Zebra mussel model in river environments. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020362

[2]

Attila Dénes, Gergely Röst. Single species population dynamics in seasonal environment with short reproduction period. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020288

[3]

Yancong Xu, Lijun Wei, Xiaoyu Jiang, Zirui Zhu. Complex dynamics of a SIRS epidemic model with the influence of hospital bed number. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021016

[4]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[5]

Zhimin Li, Tailei Zhang, Xiuqing Li. Threshold dynamics of stochastic models with time delays: A case study for Yunnan, China. Electronic Research Archive, 2021, 29 (1) : 1661-1679. doi: 10.3934/era.2020085

[6]

Xin Zhao, Tao Feng, Liang Wang, Zhipeng Qiu. Threshold dynamics and sensitivity analysis of a stochastic semi-Markov switched SIRS epidemic model with nonlinear incidence and vaccination. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021010

[7]

Mahir Demir, Suzanne Lenhart. A spatial food chain model for the Black Sea Anchovy, and its optimal fishery. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 155-171. doi: 10.3934/dcdsb.2020373

[8]

Patrick W. Dondl, Martin Jesenko. Threshold phenomenon for homogenized fronts in random elastic media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 353-372. doi: 10.3934/dcdss.2020329

[9]

Niklas Kolbe, Nikolaos Sfakianakis, Christian Stinner, Christina Surulescu, Jonas Lenz. Modeling multiple taxis: Tumor invasion with phenotypic heterogeneity, haptotaxis, and unilateral interspecies repellence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 443-481. doi: 10.3934/dcdsb.2020284

[10]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[11]

Yanan Li, Zhijian Yang, Na Feng. Uniform attractors and their continuity for the non-autonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021018

[12]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[13]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[14]

Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021011

[15]

Masaru Hamano, Satoshi Masaki. A sharp scattering threshold level for mass-subcritical nonlinear Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1415-1447. doi: 10.3934/dcds.2020323

[16]

Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039

[17]

Ludovick Gagnon, José M. Urquiza. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. Evolution Equations & Control Theory, 2021, 10 (1) : 129-153. doi: 10.3934/eect.2020054

[18]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020400

[19]

Klemens Fellner, Jeff Morgan, Bao Quoc Tang. Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 635-651. doi: 10.3934/dcdss.2020334

[20]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (85)
  • HTML views (91)
  • Cited by (0)

Other articles
by authors

[Back to Top]