-
Previous Article
Threshold dynamics and sensitivity analysis of a stochastic semi-Markov switched SIRS epidemic model with nonlinear incidence and vaccination
- DCDS-B Home
- This Issue
-
Next Article
The threshold dynamics of a discrete-time echinococcosis transmission model
Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model
1. | School of Mathematical Science, Heilongjiang University, Harbin 150080, China |
2. | Department of Mathematics, Wilfrid Laurier University, Waterloo, ON N2L 3C5 Canada |
Taking account of spatial heterogeneity, latency in infected individuals, and time for shed bacteria to the aquatic environment, we build a delayed nonlocal reaction-diffusion cholera model. A feature of this model is that the incidences are of general nonlinear forms. By using the theories of monotone dynamical systems and uniform persistence, we obtain a threshold dynamics determined by the basic reproduction number $ \mathcal {R}_0 $. Roughly speaking, the cholera will die out if $ \mathcal{R}_0<1 $ while it persists if $ \mathcal{R}_0>1 $. Moreover, we derive the explicit formulae of $ \mathcal{R}_0 $ for two concrete situations.
References:
[1] |
L. J. S. Allen, B. M. Bolker, Y. Lou and A. L. Nevai,
Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst., 21 (2008), 1-20.
doi: 10.3934/dcds.2008.21.1. |
[2] |
T. Berge, S. Bowong and J. M.-S. Lubuma,
Global stability of a two-patch cholera model with fast and slow transmissions, Math. Comput. Simul., 133 (2017), 142-164.
doi: 10.1016/j.matcom.2015.10.013. |
[3] |
F. Brauer, Z. Shuai and P. van den Driessche,
Dynamics of an age-of-infection cholera model, Math Biosci. Eng., 10 (2013), 1335-1349.
doi: 10.3934/mbe.2013.10.1335. |
[4] |
F. Capone, V. De Cataldis and R. De Luca,
Influence of diffusion on the stability of equilibria in a reaction-diffusion system modeling cholera dynamic, J. Math. Biol., 71 (2015), 1107-1131.
doi: 10.1007/s00285-014-0849-9. |
[5] |
M. C. Eisenberg, Z. Shuai, J. H. Tien and P. van den driessche,
A cholera model in a patchy environment with water and human movement, Math. Biosci., 246 (2013), 105-112.
doi: 10.1016/j.mbs.2013.08.003. |
[6] |
S. A. Gourley and J. Wu, Delayed non-local diffusive systems in biological invasion and disease spread, in Nonlinear Dynamics and Evolution Equations, Vol. 48, American Matehmatical Society, Province, 2006, pp. 137–200.
doi: 10.1007/s00285-006-0050-x. |
[7] |
Z. Guo, F.-B. Wang and X. Zou,
Threshold dynamics of an infective disease model with a fixed latent period and non-local infections, J. Math. Biol., 65 (2012), 1387-1410.
doi: 10.1007/s00285-011-0500-y. |
[8] |
J. K. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society, Providence, RI, 1988.
doi: 10.1090/surv/025. |
[9] |
D. M. Hartley, J. G. Morris Jr and D. L. Smith,
Hyperinfectivity: A critical element in the ability of V. cholerae to cause epidmeics?, PLOS Med., 3 (2006), 63-69.
doi: 10.1371/journal.pmed.0030007. |
[10] |
H. Li, R. Peng and F.-B. Wang, Varying total population enhances disease persistence: qualitative analysis on a diffusive SIS epidemic model, J. Differential Equations, 262 (2017), 885-913.
doi: 10.1016/j.jde.2016.09.044. |
[11] |
J. Lin, R. Xu and X. Tian,
Global dynamics of an age-structured cholera model with both human-to-human and environment-to-human transmissions and saturation incidence, Appl. Math. Modelling, 63 (2018), 688-708.
doi: 10.1016/j.apm.2018.07.013. |
[12] |
J. Lin, R. Xu and X. Tian,
Global dynamics of an age-structured cholera model with multiple transmissions, saturation incidence and imperfect vaccination, J. Biol. Dyn., 13 (2019), 69-102.
doi: 10.1080/17513758.2019.1570362. |
[13] |
P. Magal and X.-Q. Zhao,
Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005), 251-275.
doi: 10.1137/S0036141003439173. |
[14] |
R. H. Martin Jr. and H. L. Smith,
Abstract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1-44.
doi: 10.2307/2001590. |
[15] |
J. A. J. Metz and O. Diekmann, Age dependence, The dynamics of physiologically structured populations (Amsterdam, 1983), Lecture Notes in Biomath., 68, Springer, Berlin, 1986,136–184.
doi: 10.1007/978-3-662-13159-6_4. |
[16] |
J. B. H. Njagarah and F. Nyabadza,
A metapopulation model for cholera transmission dynamics between communities linked by migration, Appl. Math. Comput., 241 (2014), 317-331.
doi: 10.1016/j.amc.2014.05.036. |
[17] |
M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984.
doi: 10.1007/978-1-4612-5282-5. |
[18] |
H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Amer. Math. Soc., Math. Surveys and Monographs, vol. 41, 1995. |
[19] |
H. L. Smith and X. -Q. Zhao,
Robust persistence for semidynamical systems, Nonlinear Anal. TMA, 47 (2001), 6169-6179.
doi: 10.1016/S0362-546X(01)00678-2. |
[20] |
H. R. Thieme,
Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755-763.
doi: 10.1007/BF00173267. |
[21] |
H. R. Thieme,
Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188-211.
doi: 10.1137/080732870. |
[22] |
H. R. Thieme and X.-Q. Zhao,
A non-local delayed and diffusive predator-prey model, Nonlinear Anal. Real World Appl., 2 (2001), 145-160.
doi: 10.1016/S0362-546X(00)00112-7. |
[23] |
J. H. Tien and D. J. D. Earn,
Multiple transmission pathways and disease dynamics in a waterborne pathogen model, Bull. Math. Biol., 72 (2010), 1506-1533.
doi: 10.1007/s11538-010-9507-6. |
[24] |
F.-B. Wang, J. Shi and X. Zou,
Dynamics of a host-pathogen system on a bounded spatial domain, Commun. Pure Appl. Anal., 14 (2015), 2535-2560.
doi: 10.3934/cpaa.2015.14.2535. |
[25] |
X. Wang and J. Wang,
Analysis of cholera epidemics with bacterial growth and spatial movement, J. Biol. Dyn., 9 (2015), 233-261.
doi: 10.1080/17513758.2014.974696. |
[26] |
W. Wang and X.-Q. Zhao,
A nonlocal and time-delayed reaction-diffusion model of dengue transmission, SIAM J. Appl. Math., 71 (2011), 147-168.
doi: 10.1137/090775890. |
[27] |
X. Wang, X.-Q. Zhao and J. Wang,
A cholera epidemic model in a spatiotemporally heterogeneous environemnt, J. Math. Aanal. Appl., 468 (2018), 893-912.
doi: 10.1016/j.jmaa.2018.08.039. |
[28] |
World Health Organization, Cholera fact shettes, January 2019, available from http://www.who.int Google Scholar |
[29] |
J. Wu, Theory and Applications of Partial Functional Differential Equations, Applied Mathematical Science, vol. 119, Springer, New York, 1996.
doi: 10.1007/978-1-4612-4050-1. |
[30] |
Y. Wu and X. Zou,
Asymptotic profiles of steady states for a diffusive SIS epidemic model with mass action infection mechanism, J. Differential Equations, 261 (2016), 4424-4447.
doi: 10.1016/j.jde.2016.06.028. |
[31] |
Y. Wu and X. Zou,
Dynamics and profiles of a diffusive host-pathogen system with distinct dispersal rates, J. Differential Equations, 264 (2018), 4989-5024.
doi: 10.1016/j.jde.2017.12.027. |
[32] |
K. Yamazaki and X. Wang,
Global well-posedness and asymptotic behavior of solutions to a reaction-convection-diffusion cholera epidemic model, Discrete Cont. Dynam. Syst., 21 (2016), 1297-1316.
doi: 10.3934/dcdsb.2016.21.1297. |
[33] |
K. Yamazaki and X. Wang,
Global stability and uniform persistence of the reaction-convection-diffusion cholera epidemic model, Math. Biosci. Eng., 14 (2017), 559-579.
doi: 10.3934/mbe.2017033. |
show all references
References:
[1] |
L. J. S. Allen, B. M. Bolker, Y. Lou and A. L. Nevai,
Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst., 21 (2008), 1-20.
doi: 10.3934/dcds.2008.21.1. |
[2] |
T. Berge, S. Bowong and J. M.-S. Lubuma,
Global stability of a two-patch cholera model with fast and slow transmissions, Math. Comput. Simul., 133 (2017), 142-164.
doi: 10.1016/j.matcom.2015.10.013. |
[3] |
F. Brauer, Z. Shuai and P. van den Driessche,
Dynamics of an age-of-infection cholera model, Math Biosci. Eng., 10 (2013), 1335-1349.
doi: 10.3934/mbe.2013.10.1335. |
[4] |
F. Capone, V. De Cataldis and R. De Luca,
Influence of diffusion on the stability of equilibria in a reaction-diffusion system modeling cholera dynamic, J. Math. Biol., 71 (2015), 1107-1131.
doi: 10.1007/s00285-014-0849-9. |
[5] |
M. C. Eisenberg, Z. Shuai, J. H. Tien and P. van den driessche,
A cholera model in a patchy environment with water and human movement, Math. Biosci., 246 (2013), 105-112.
doi: 10.1016/j.mbs.2013.08.003. |
[6] |
S. A. Gourley and J. Wu, Delayed non-local diffusive systems in biological invasion and disease spread, in Nonlinear Dynamics and Evolution Equations, Vol. 48, American Matehmatical Society, Province, 2006, pp. 137–200.
doi: 10.1007/s00285-006-0050-x. |
[7] |
Z. Guo, F.-B. Wang and X. Zou,
Threshold dynamics of an infective disease model with a fixed latent period and non-local infections, J. Math. Biol., 65 (2012), 1387-1410.
doi: 10.1007/s00285-011-0500-y. |
[8] |
J. K. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society, Providence, RI, 1988.
doi: 10.1090/surv/025. |
[9] |
D. M. Hartley, J. G. Morris Jr and D. L. Smith,
Hyperinfectivity: A critical element in the ability of V. cholerae to cause epidmeics?, PLOS Med., 3 (2006), 63-69.
doi: 10.1371/journal.pmed.0030007. |
[10] |
H. Li, R. Peng and F.-B. Wang, Varying total population enhances disease persistence: qualitative analysis on a diffusive SIS epidemic model, J. Differential Equations, 262 (2017), 885-913.
doi: 10.1016/j.jde.2016.09.044. |
[11] |
J. Lin, R. Xu and X. Tian,
Global dynamics of an age-structured cholera model with both human-to-human and environment-to-human transmissions and saturation incidence, Appl. Math. Modelling, 63 (2018), 688-708.
doi: 10.1016/j.apm.2018.07.013. |
[12] |
J. Lin, R. Xu and X. Tian,
Global dynamics of an age-structured cholera model with multiple transmissions, saturation incidence and imperfect vaccination, J. Biol. Dyn., 13 (2019), 69-102.
doi: 10.1080/17513758.2019.1570362. |
[13] |
P. Magal and X.-Q. Zhao,
Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005), 251-275.
doi: 10.1137/S0036141003439173. |
[14] |
R. H. Martin Jr. and H. L. Smith,
Abstract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1-44.
doi: 10.2307/2001590. |
[15] |
J. A. J. Metz and O. Diekmann, Age dependence, The dynamics of physiologically structured populations (Amsterdam, 1983), Lecture Notes in Biomath., 68, Springer, Berlin, 1986,136–184.
doi: 10.1007/978-3-662-13159-6_4. |
[16] |
J. B. H. Njagarah and F. Nyabadza,
A metapopulation model for cholera transmission dynamics between communities linked by migration, Appl. Math. Comput., 241 (2014), 317-331.
doi: 10.1016/j.amc.2014.05.036. |
[17] |
M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984.
doi: 10.1007/978-1-4612-5282-5. |
[18] |
H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Amer. Math. Soc., Math. Surveys and Monographs, vol. 41, 1995. |
[19] |
H. L. Smith and X. -Q. Zhao,
Robust persistence for semidynamical systems, Nonlinear Anal. TMA, 47 (2001), 6169-6179.
doi: 10.1016/S0362-546X(01)00678-2. |
[20] |
H. R. Thieme,
Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755-763.
doi: 10.1007/BF00173267. |
[21] |
H. R. Thieme,
Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188-211.
doi: 10.1137/080732870. |
[22] |
H. R. Thieme and X.-Q. Zhao,
A non-local delayed and diffusive predator-prey model, Nonlinear Anal. Real World Appl., 2 (2001), 145-160.
doi: 10.1016/S0362-546X(00)00112-7. |
[23] |
J. H. Tien and D. J. D. Earn,
Multiple transmission pathways and disease dynamics in a waterborne pathogen model, Bull. Math. Biol., 72 (2010), 1506-1533.
doi: 10.1007/s11538-010-9507-6. |
[24] |
F.-B. Wang, J. Shi and X. Zou,
Dynamics of a host-pathogen system on a bounded spatial domain, Commun. Pure Appl. Anal., 14 (2015), 2535-2560.
doi: 10.3934/cpaa.2015.14.2535. |
[25] |
X. Wang and J. Wang,
Analysis of cholera epidemics with bacterial growth and spatial movement, J. Biol. Dyn., 9 (2015), 233-261.
doi: 10.1080/17513758.2014.974696. |
[26] |
W. Wang and X.-Q. Zhao,
A nonlocal and time-delayed reaction-diffusion model of dengue transmission, SIAM J. Appl. Math., 71 (2011), 147-168.
doi: 10.1137/090775890. |
[27] |
X. Wang, X.-Q. Zhao and J. Wang,
A cholera epidemic model in a spatiotemporally heterogeneous environemnt, J. Math. Aanal. Appl., 468 (2018), 893-912.
doi: 10.1016/j.jmaa.2018.08.039. |
[28] |
World Health Organization, Cholera fact shettes, January 2019, available from http://www.who.int Google Scholar |
[29] |
J. Wu, Theory and Applications of Partial Functional Differential Equations, Applied Mathematical Science, vol. 119, Springer, New York, 1996.
doi: 10.1007/978-1-4612-4050-1. |
[30] |
Y. Wu and X. Zou,
Asymptotic profiles of steady states for a diffusive SIS epidemic model with mass action infection mechanism, J. Differential Equations, 261 (2016), 4424-4447.
doi: 10.1016/j.jde.2016.06.028. |
[31] |
Y. Wu and X. Zou,
Dynamics and profiles of a diffusive host-pathogen system with distinct dispersal rates, J. Differential Equations, 264 (2018), 4989-5024.
doi: 10.1016/j.jde.2017.12.027. |
[32] |
K. Yamazaki and X. Wang,
Global well-posedness and asymptotic behavior of solutions to a reaction-convection-diffusion cholera epidemic model, Discrete Cont. Dynam. Syst., 21 (2016), 1297-1316.
doi: 10.3934/dcdsb.2016.21.1297. |
[33] |
K. Yamazaki and X. Wang,
Global stability and uniform persistence of the reaction-convection-diffusion cholera epidemic model, Math. Biosci. Eng., 14 (2017), 559-579.
doi: 10.3934/mbe.2017033. |
[1] |
Yu Jin, Xiang-Qiang Zhao. The spatial dynamics of a Zebra mussel model in river environments. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020362 |
[2] |
Attila Dénes, Gergely Röst. Single species population dynamics in seasonal environment with short reproduction period. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020288 |
[3] |
Yancong Xu, Lijun Wei, Xiaoyu Jiang, Zirui Zhu. Complex dynamics of a SIRS epidemic model with the influence of hospital bed number. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021016 |
[4] |
Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020339 |
[5] |
Zhimin Li, Tailei Zhang, Xiuqing Li. Threshold dynamics of stochastic models with time delays: A case study for Yunnan, China. Electronic Research Archive, 2021, 29 (1) : 1661-1679. doi: 10.3934/era.2020085 |
[6] |
Xin Zhao, Tao Feng, Liang Wang, Zhipeng Qiu. Threshold dynamics and sensitivity analysis of a stochastic semi-Markov switched SIRS epidemic model with nonlinear incidence and vaccination. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021010 |
[7] |
Mahir Demir, Suzanne Lenhart. A spatial food chain model for the Black Sea Anchovy, and its optimal fishery. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 155-171. doi: 10.3934/dcdsb.2020373 |
[8] |
Patrick W. Dondl, Martin Jesenko. Threshold phenomenon for homogenized fronts in random elastic media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 353-372. doi: 10.3934/dcdss.2020329 |
[9] |
Niklas Kolbe, Nikolaos Sfakianakis, Christian Stinner, Christina Surulescu, Jonas Lenz. Modeling multiple taxis: Tumor invasion with phenotypic heterogeneity, haptotaxis, and unilateral interspecies repellence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 443-481. doi: 10.3934/dcdsb.2020284 |
[10] |
Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292 |
[11] |
Yanan Li, Zhijian Yang, Na Feng. Uniform attractors and their continuity for the non-autonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021018 |
[12] |
Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276 |
[13] |
Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304 |
[14] |
Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021011 |
[15] |
Masaru Hamano, Satoshi Masaki. A sharp scattering threshold level for mass-subcritical nonlinear Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1415-1447. doi: 10.3934/dcds.2020323 |
[16] |
Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039 |
[17] |
Ludovick Gagnon, José M. Urquiza. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. Evolution Equations & Control Theory, 2021, 10 (1) : 129-153. doi: 10.3934/eect.2020054 |
[18] |
Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020400 |
[19] |
Klemens Fellner, Jeff Morgan, Bao Quoc Tang. Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 635-651. doi: 10.3934/dcdss.2020334 |
[20] |
Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]