March  2021, 26(3): 1749-1762. doi: 10.3934/dcdsb.2020318

On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise

Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, 10307 Ha Noi, Viet Nam

 

Received  February 2020 Revised  July 2020 Published  November 2020

Fund Project: This research is supported by a grant from the Vietnam Academy of Science and Technology under the grant number DLTE00.01–20/21

This paper is devoted to study of time-fractional elliptic equations driven by a multiplicative noise. By combining the eigenfunction expansion method for symmetry elliptic operators, the variation of constant formula for strong solutions to scalar stochastic fractional differential equations, Ito's formula and establishing a new weighted norm associated with a Lyapunov–Perron operator defined from this representation of solutions, we show the asymptotic behaviour of solutions to these systems in the mean square sense. As a consequence, we also prove existence, uniqueness and the convergence rate of their solutions.

Citation: Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318
References:
[1]

M. AllenL. Caffarelli and A. Vasseur, A parabolic problem with a fractional time derivative, Archive for Rational Mechanics and Analysis, 221 (2016), 603-630.  doi: 10.1007/s00205-016-0969-z.  Google Scholar

[2]

P. T. AnhT. S. Doan and P. T. Huong, A variation of constant formula for Caputo fractional stochastic differential equations, Statistics and Probability Letters, 145 (2019), 351-358.  doi: 10.1016/j.spl.2018.10.010.  Google Scholar

[3]

B. BaeumerM. Geissert and M. Kovács, Existence, uniqueness and regularity for a class of semi-linear stochastic Volterra equations with multiplicative noise, Journal of Differential Equations, 258 (2015), 535-554.  doi: 10.1016/j.jde.2014.09.020.  Google Scholar

[4]

L. ChenY. Hu and D. Nualart, Nonlinear stochastic time-fractional slow and fast diffusion equations on $ \mathbb{R}^d$, Stochastic Processes and their Applications, 129 (2019), 5073-5112.  doi: 10.1016/j.spa.2019.01.003.  Google Scholar

[5]

Z.-Q. ChenK.-H. Kim and P. Kim, Fractional time stochastic partial differential equations, Stochastic Processes and their Applications, 125 (2015), 1470-1499.  doi: 10.1016/j.spa.2014.11.005.  Google Scholar

[6]

N. D. CongT. S. DoanS. Siegmund and H. T. Tuan, On stable manifolds for planar fractional differential equations, Applied Mathematics and Computation, 226 (2014), 157-168.  doi: 10.1016/j.amc.2013.10.010.  Google Scholar

[7]

S. D. Eidelman and A. N. Kochubei, Cauchy problem for fractional diffusion equations, Journal of Differential Equations, 199 (2004), 211-255.  doi: 10.1016/j.jde.2003.12.002.  Google Scholar

[8]

L. C. Evans, Partial Differential Equations., Graduate Series in Mathematics, 19. American Mathematics Society, 1998.  Google Scholar

[9]

M. GinoaS. Cerbelli and H. E. Roman, Fractional diffusion equation and relaxation in complex viscoelastic material, Physica A: Statistical Mechanics and its Applications, 191 (1992), 449-453.  doi: 10.1016/0378-4371(92)90566-9.  Google Scholar

[10]

R. Gorenflo, A. A. Kilbas, F. Mainardi and S. V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer Monographs in Mathematics, Springer, Heidelberg, 2014. doi: 10.1007/978-3-662-43930-2.  Google Scholar

[11]

R. GorenfloY. Luchko and M. Yamamoto, Time-fractional diffusion equation in the fractional Sobolev spaces, Fractional Calculus and Applied Analysis, 18 (2015), 799-820.  doi: 10.1515/fca-2015-0048.  Google Scholar

[12]

T. D. Ke, N. N. Thang and L. T. P. Thuy, Regularity and stability analysis fro a class of semilinear nonlocal differential equations in Hilbert spaces, Journal of Mathematical Analysis and Applications, 483 (2020), 123655. doi: 10.1016/j.jmaa.2019.123655.  Google Scholar

[13]

P. E. Kloeden and E. Platen, Numerical Solutions of Stochastic Differential Equations, Stochastic Modelling and Applied Probability. Springer-Verlag Berlin Heidelberg, New York, 1992. doi: 10.1007/978-3-662-12616-5.  Google Scholar

[14]

W. LiuM. Röckner and J. L. da Silva., Quasi-linear (stochastic) partial differential equations with time-fractional derivatives, SIAM Journal on Mathematical Analysis, 50 (2018), 2588-2607.  doi: 10.1137/17M1144593.  Google Scholar

[15]

R. Metzler and J. Klafter, Boundary value problems for fractional diffusion equations, Physica A: Statistical Mechanics and its Applications, 278 (2000), 107-125.  doi: 10.1016/S0378-4371(99)00503-8.  Google Scholar

[16]

R. R. Nigmatullin, The realization of the generalized transfer equation in a medium with fractal geometry, Physica Status Solidi (b), 133 (1986), 425-430.  doi: 10.1002/pssb.2221330150.  Google Scholar

[17]

I. Podlubny, Fractional Differential Equations, An Introduction to Fractional Derivatives, Fractional Differential Equations, To Methods of Their Solution and Some of Their Applications, Academic Press, Inc., San Diego, CA, 1999.  Google Scholar

[18]

H. E. Roman and P. A. Alemany, Continuous-time random walks and the fractional diffusion equation, Journal of Physics A: Mathematical and General, 27 (1994), 3407-3410.  doi: 10.1088/0305-4470/27/10/017.  Google Scholar

[19]

K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, Journal of Mathematical Analysis and Applications, 382 (2011), 426-447.  doi: 10.1016/j.jmaa.2011.04.058.  Google Scholar

[20]

D. T. SonP. T. HuongP. E. Kloeden and H. T. Tuan, Asymptotic separation between solutions of Caputo fractional stochastic differential equations, Stochastic Analysis and Applications, 36 (2018), 654-664.  doi: 10.1080/07362994.2018.1440243.  Google Scholar

[21]

R. Zacher, Weak solutions of abstract evolutionary integro-differential equations in Hilbert spaces, Funkcialj Ekvacioj, 52 (2009), 1-18.  doi: 10.1619/fesi.52.1.  Google Scholar

[22]

R. Zacher, A De Giorgi–Nash type theorem for time fractional diffusion equations, Mathematische Annalen, 356 (2013), 99-146.  doi: 10.1007/s00208-012-0834-9.  Google Scholar

show all references

References:
[1]

M. AllenL. Caffarelli and A. Vasseur, A parabolic problem with a fractional time derivative, Archive for Rational Mechanics and Analysis, 221 (2016), 603-630.  doi: 10.1007/s00205-016-0969-z.  Google Scholar

[2]

P. T. AnhT. S. Doan and P. T. Huong, A variation of constant formula for Caputo fractional stochastic differential equations, Statistics and Probability Letters, 145 (2019), 351-358.  doi: 10.1016/j.spl.2018.10.010.  Google Scholar

[3]

B. BaeumerM. Geissert and M. Kovács, Existence, uniqueness and regularity for a class of semi-linear stochastic Volterra equations with multiplicative noise, Journal of Differential Equations, 258 (2015), 535-554.  doi: 10.1016/j.jde.2014.09.020.  Google Scholar

[4]

L. ChenY. Hu and D. Nualart, Nonlinear stochastic time-fractional slow and fast diffusion equations on $ \mathbb{R}^d$, Stochastic Processes and their Applications, 129 (2019), 5073-5112.  doi: 10.1016/j.spa.2019.01.003.  Google Scholar

[5]

Z.-Q. ChenK.-H. Kim and P. Kim, Fractional time stochastic partial differential equations, Stochastic Processes and their Applications, 125 (2015), 1470-1499.  doi: 10.1016/j.spa.2014.11.005.  Google Scholar

[6]

N. D. CongT. S. DoanS. Siegmund and H. T. Tuan, On stable manifolds for planar fractional differential equations, Applied Mathematics and Computation, 226 (2014), 157-168.  doi: 10.1016/j.amc.2013.10.010.  Google Scholar

[7]

S. D. Eidelman and A. N. Kochubei, Cauchy problem for fractional diffusion equations, Journal of Differential Equations, 199 (2004), 211-255.  doi: 10.1016/j.jde.2003.12.002.  Google Scholar

[8]

L. C. Evans, Partial Differential Equations., Graduate Series in Mathematics, 19. American Mathematics Society, 1998.  Google Scholar

[9]

M. GinoaS. Cerbelli and H. E. Roman, Fractional diffusion equation and relaxation in complex viscoelastic material, Physica A: Statistical Mechanics and its Applications, 191 (1992), 449-453.  doi: 10.1016/0378-4371(92)90566-9.  Google Scholar

[10]

R. Gorenflo, A. A. Kilbas, F. Mainardi and S. V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer Monographs in Mathematics, Springer, Heidelberg, 2014. doi: 10.1007/978-3-662-43930-2.  Google Scholar

[11]

R. GorenfloY. Luchko and M. Yamamoto, Time-fractional diffusion equation in the fractional Sobolev spaces, Fractional Calculus and Applied Analysis, 18 (2015), 799-820.  doi: 10.1515/fca-2015-0048.  Google Scholar

[12]

T. D. Ke, N. N. Thang and L. T. P. Thuy, Regularity and stability analysis fro a class of semilinear nonlocal differential equations in Hilbert spaces, Journal of Mathematical Analysis and Applications, 483 (2020), 123655. doi: 10.1016/j.jmaa.2019.123655.  Google Scholar

[13]

P. E. Kloeden and E. Platen, Numerical Solutions of Stochastic Differential Equations, Stochastic Modelling and Applied Probability. Springer-Verlag Berlin Heidelberg, New York, 1992. doi: 10.1007/978-3-662-12616-5.  Google Scholar

[14]

W. LiuM. Röckner and J. L. da Silva., Quasi-linear (stochastic) partial differential equations with time-fractional derivatives, SIAM Journal on Mathematical Analysis, 50 (2018), 2588-2607.  doi: 10.1137/17M1144593.  Google Scholar

[15]

R. Metzler and J. Klafter, Boundary value problems for fractional diffusion equations, Physica A: Statistical Mechanics and its Applications, 278 (2000), 107-125.  doi: 10.1016/S0378-4371(99)00503-8.  Google Scholar

[16]

R. R. Nigmatullin, The realization of the generalized transfer equation in a medium with fractal geometry, Physica Status Solidi (b), 133 (1986), 425-430.  doi: 10.1002/pssb.2221330150.  Google Scholar

[17]

I. Podlubny, Fractional Differential Equations, An Introduction to Fractional Derivatives, Fractional Differential Equations, To Methods of Their Solution and Some of Their Applications, Academic Press, Inc., San Diego, CA, 1999.  Google Scholar

[18]

H. E. Roman and P. A. Alemany, Continuous-time random walks and the fractional diffusion equation, Journal of Physics A: Mathematical and General, 27 (1994), 3407-3410.  doi: 10.1088/0305-4470/27/10/017.  Google Scholar

[19]

K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, Journal of Mathematical Analysis and Applications, 382 (2011), 426-447.  doi: 10.1016/j.jmaa.2011.04.058.  Google Scholar

[20]

D. T. SonP. T. HuongP. E. Kloeden and H. T. Tuan, Asymptotic separation between solutions of Caputo fractional stochastic differential equations, Stochastic Analysis and Applications, 36 (2018), 654-664.  doi: 10.1080/07362994.2018.1440243.  Google Scholar

[21]

R. Zacher, Weak solutions of abstract evolutionary integro-differential equations in Hilbert spaces, Funkcialj Ekvacioj, 52 (2009), 1-18.  doi: 10.1619/fesi.52.1.  Google Scholar

[22]

R. Zacher, A De Giorgi–Nash type theorem for time fractional diffusion equations, Mathematische Annalen, 356 (2013), 99-146.  doi: 10.1007/s00208-012-0834-9.  Google Scholar

[1]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[2]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[3]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[4]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[5]

Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180

[6]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[7]

Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021001

[8]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[9]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[10]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[11]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[12]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[13]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[14]

John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3789-3812. doi: 10.3934/dcds.2020044

[15]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[16]

Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324

[17]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

[18]

Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312

[19]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003

[20]

Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021007

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (35)
  • HTML views (94)
  • Cited by (0)

Other articles
by authors

[Back to Top]