-
Previous Article
Asymptotic behavior of non-autonomous random Ginzburg-Landau equation driven by colored noise
- DCDS-B Home
- This Issue
-
Next Article
Threshold dynamics of a general delayed within-host viral infection model with humoral immunity and two modes of virus transmission
On existence and uniqueness properties for solutions of stochastic fixed point equations
1. | ETH Zurich, Department of Mathematics, Rämistrasse 101, 8092 Zürich, Switzerland |
2. | University of St. Gallen, Faculty of Mathematics and Statistics, Dufourstrasse 50, 9000 St. Gallen, Switzerland |
3. | LMU Munich, Department of Mathematics, Theresienstraße 39, 80333 München, Germany |
4. | University of Duisburg-Essen, Faculty of Mathematics, Thea-Leymann-Straße 9, 45127 Essen, Germany |
5. | University of Münster, Faculty of Mathematics and Computer Science, Einsteinstraße 62, 48149 Münster, Germany |
The Feynman–Kac formula implies that every suitable classical solution of a semilinear Kolmogorov partial differential equation (PDE) is also a solution of a certain stochastic fixed point equation (SFPE). In this article we study such and related SFPEs. In particular, the main result of this work proves existence of unique solutions of certain SFPEs in a general setting. As an application of this main result we establish the existence of unique solutions of SFPEs associated with semilinear Kolmogorov PDEs with Lipschitz continuous nonlinearities even in the case where the associated semilinear Kolmogorov PDE does not possess a classical solution.
References:
[1] |
C. Beck, F. Hornung, M. Hutzenthaler, A. Jentzen and T. Kruse, Overcoming the curse of dimensionality in the numerical approximation of Allen–Cahn partial differential equations via truncated full-history recursive multilevel Picard approximations, J. Numer. Math., 28 (2020), 197-222.
doi: 10.1515/jnma-2019-0074. |
[2] |
C. Beck, M. Hutzenthaler and A. Jentzen, On nonlinear Feynman–Kac formulas for viscosity solutions of semilinear parabolic partial differential equations, preprint, 54 pages, arXiv: 2004.03389. Google Scholar |
[3] |
C. Bender, N. Schweizer and J. Zhuo,
A primal-dual algorithm for BSDEs, Math. Finance, 27 (2017), 866-901.
doi: 10.1111/mafi.12100. |
[4] |
C. Burgard and M. Kjaer,
Partial differential equation representations of derivatives with bilateral counterparty risk and funding costs, The Journal of Credit Risk, 7 (2011), 1-19.
doi: 10.21314/JCR.2011.131. |
[5] |
S. Crépey, R. Gerboud, Z. Grbac and N. Ngor, Counterparty risk and funding: the four wings of the TVA, Int. J. Theor. Appl. Finance, 16 (2013), 31 pages.
doi: 10.1142/S0219024913500064. |
[6] |
D. Duffie, M. Schroder and C. Skiadas,
Recursive valuation of defaultable securities and the timing of resolution of uncertainty, Ann. Appl. Probab., 6 (1996), 1075-1090.
doi: 10.1214/aoap/1035463324. |
[7] |
W. E, M. Hutzenthaler, A. Jentzen and T. Kruse, Multilevel Picard iterations for solving smooth semilinear parabolic heat equations, preprint, 19 pages, arXiv: 1607.03295. Google Scholar |
[8] |
W. E, M. Hutzenthaler, A. Jentzen and T. Kruse,
On multilevel Picard numerical approximations for high-dimensional nonlinear parabolic partial differential equations and high-dimensional nonlinear backward stochastic differential equations, J. Sci. Comput., 79 (2019), 1534-1571.
doi: 10.1007/s10915-018-00903-0. |
[9] |
P. Grohs, F. Hornung, A. Jentzen and P. von Wurstemberger, A proof that artificial neural networks overcome the curse of dimensionality in the numerical approximation of Black-Scholes partial differential equations, preprint, 124 pages, arXiv: 1809.02362. Google Scholar |
[10] |
I. Gyöngy and N. Krylov,
Existence of strong solutions for Itô's stochastic equations via approximations, Probab. Theory Related Fields, 105 (1996), 143-158.
doi: 10.1007/BF01203833. |
[11] |
M. Hairer, M. Hutzenthaler and A. Jentzen,
Loss of regularity for Kolmogorov equations, Ann. Probab., 43 (2015), 468-527.
doi: 10.1214/13-AOP838. |
[12] |
P. Henry-Labordère, Counterparty risk valuation: A marked branching diffusion approach, preprint, 17 pages, arXiv: 1203.2369. Google Scholar |
[13] |
M. Hutzenthaler, A. Jentzen, T. Kruse, T. A. Nguyen and P. von Wurstemberger, Overcoming the curse of dimensionality in the numerical approximation of semilinear parabolic partial differential equations, Accepted by Proc. Roy. Soc. London A, 30 pages, arXiv: 1807.01212. Google Scholar |
[14] |
M. Hutzenthaler, A. Jentzen and P. von Wurstemberger, Overcoming the curse of dimensionality in the approximative pricing of financial derivatives with default risks, Electronic Journal of Probability, 25 (2020), 73 pages, https://doi.org/10.1214/20-EJP423.
doi: 10.1007/s13253-019-00378-y. |
[15] |
M. Hutzenthaler and T. Kruse,
Multilevel Picard approximations of high-dimensional semilinear parabolic differential equations with gradient-dependent nonlinearities, SIAM J. Numer. Anal., 58 (2020), 929-961.
doi: 10.1137/17M1157015. |
[16] |
A. Kalinin, Markovian integral equations, Ann. Inst. Henri Poincaré Probab. Stat. 56, 1 (2020), 155–174.
doi: 10.1214/19-AIHP958. |
[17] |
O. Kallenberg, Foundations of Modern Probability, 2$^nd$ edition, Springer-Verlag, New York, 2002.
doi: 10.1007/978-1-4757-4015-8. |
[18] |
I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, 2$^nd$ edition, Springer-Verlag, New York, 1991.
doi: 10.1007/978-1-4612-0949-2. |
[19] |
S. Lang, Fundamentals of Differential Geometry, Springer-Verlag, New York, 1999.
doi: 10.1007/978-1-4612-0541-8. |
[20] |
W. Liu and M. Röckner, Stochastic Partial Differential Equations: An Introduction, Springer, Cham, 2015.
doi: 10.1007/978-3-319-22354-4. |
[21] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[22] |
W. Rudin, Real and Complex Analysis, 3$^rd$ edition, McGraw-Hill Book Co., New York, 1987. |
[23] |
I. Segal,
Non-linear semi-groups, Ann. of Math., 78 (1963), 339-364.
doi: 10.2307/1970347. |
[24] |
D. W. Stroock, Lectures on Topics in Stochastic Differential Equations, vol. 68 of Tata Institute of Fundamental Research Lectures on Mathematics and Physics, Tata Institute of Fundamental Research, Bombay; by Springer-Verlag, Berlin-New York, 1982, with notes by Satyajit Karmakar. |
[25] |
F. B. Weissler,
Semilinear evolution equations in Banach spaces, J. Functional Analysis, 32 (1979), 277-296.
doi: 10.1016/0022-1236(79)90040-5. |
show all references
References:
[1] |
C. Beck, F. Hornung, M. Hutzenthaler, A. Jentzen and T. Kruse, Overcoming the curse of dimensionality in the numerical approximation of Allen–Cahn partial differential equations via truncated full-history recursive multilevel Picard approximations, J. Numer. Math., 28 (2020), 197-222.
doi: 10.1515/jnma-2019-0074. |
[2] |
C. Beck, M. Hutzenthaler and A. Jentzen, On nonlinear Feynman–Kac formulas for viscosity solutions of semilinear parabolic partial differential equations, preprint, 54 pages, arXiv: 2004.03389. Google Scholar |
[3] |
C. Bender, N. Schweizer and J. Zhuo,
A primal-dual algorithm for BSDEs, Math. Finance, 27 (2017), 866-901.
doi: 10.1111/mafi.12100. |
[4] |
C. Burgard and M. Kjaer,
Partial differential equation representations of derivatives with bilateral counterparty risk and funding costs, The Journal of Credit Risk, 7 (2011), 1-19.
doi: 10.21314/JCR.2011.131. |
[5] |
S. Crépey, R. Gerboud, Z. Grbac and N. Ngor, Counterparty risk and funding: the four wings of the TVA, Int. J. Theor. Appl. Finance, 16 (2013), 31 pages.
doi: 10.1142/S0219024913500064. |
[6] |
D. Duffie, M. Schroder and C. Skiadas,
Recursive valuation of defaultable securities and the timing of resolution of uncertainty, Ann. Appl. Probab., 6 (1996), 1075-1090.
doi: 10.1214/aoap/1035463324. |
[7] |
W. E, M. Hutzenthaler, A. Jentzen and T. Kruse, Multilevel Picard iterations for solving smooth semilinear parabolic heat equations, preprint, 19 pages, arXiv: 1607.03295. Google Scholar |
[8] |
W. E, M. Hutzenthaler, A. Jentzen and T. Kruse,
On multilevel Picard numerical approximations for high-dimensional nonlinear parabolic partial differential equations and high-dimensional nonlinear backward stochastic differential equations, J. Sci. Comput., 79 (2019), 1534-1571.
doi: 10.1007/s10915-018-00903-0. |
[9] |
P. Grohs, F. Hornung, A. Jentzen and P. von Wurstemberger, A proof that artificial neural networks overcome the curse of dimensionality in the numerical approximation of Black-Scholes partial differential equations, preprint, 124 pages, arXiv: 1809.02362. Google Scholar |
[10] |
I. Gyöngy and N. Krylov,
Existence of strong solutions for Itô's stochastic equations via approximations, Probab. Theory Related Fields, 105 (1996), 143-158.
doi: 10.1007/BF01203833. |
[11] |
M. Hairer, M. Hutzenthaler and A. Jentzen,
Loss of regularity for Kolmogorov equations, Ann. Probab., 43 (2015), 468-527.
doi: 10.1214/13-AOP838. |
[12] |
P. Henry-Labordère, Counterparty risk valuation: A marked branching diffusion approach, preprint, 17 pages, arXiv: 1203.2369. Google Scholar |
[13] |
M. Hutzenthaler, A. Jentzen, T. Kruse, T. A. Nguyen and P. von Wurstemberger, Overcoming the curse of dimensionality in the numerical approximation of semilinear parabolic partial differential equations, Accepted by Proc. Roy. Soc. London A, 30 pages, arXiv: 1807.01212. Google Scholar |
[14] |
M. Hutzenthaler, A. Jentzen and P. von Wurstemberger, Overcoming the curse of dimensionality in the approximative pricing of financial derivatives with default risks, Electronic Journal of Probability, 25 (2020), 73 pages, https://doi.org/10.1214/20-EJP423.
doi: 10.1007/s13253-019-00378-y. |
[15] |
M. Hutzenthaler and T. Kruse,
Multilevel Picard approximations of high-dimensional semilinear parabolic differential equations with gradient-dependent nonlinearities, SIAM J. Numer. Anal., 58 (2020), 929-961.
doi: 10.1137/17M1157015. |
[16] |
A. Kalinin, Markovian integral equations, Ann. Inst. Henri Poincaré Probab. Stat. 56, 1 (2020), 155–174.
doi: 10.1214/19-AIHP958. |
[17] |
O. Kallenberg, Foundations of Modern Probability, 2$^nd$ edition, Springer-Verlag, New York, 2002.
doi: 10.1007/978-1-4757-4015-8. |
[18] |
I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, 2$^nd$ edition, Springer-Verlag, New York, 1991.
doi: 10.1007/978-1-4612-0949-2. |
[19] |
S. Lang, Fundamentals of Differential Geometry, Springer-Verlag, New York, 1999.
doi: 10.1007/978-1-4612-0541-8. |
[20] |
W. Liu and M. Röckner, Stochastic Partial Differential Equations: An Introduction, Springer, Cham, 2015.
doi: 10.1007/978-3-319-22354-4. |
[21] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[22] |
W. Rudin, Real and Complex Analysis, 3$^rd$ edition, McGraw-Hill Book Co., New York, 1987. |
[23] |
I. Segal,
Non-linear semi-groups, Ann. of Math., 78 (1963), 339-364.
doi: 10.2307/1970347. |
[24] |
D. W. Stroock, Lectures on Topics in Stochastic Differential Equations, vol. 68 of Tata Institute of Fundamental Research Lectures on Mathematics and Physics, Tata Institute of Fundamental Research, Bombay; by Springer-Verlag, Berlin-New York, 1982, with notes by Satyajit Karmakar. |
[25] |
F. B. Weissler,
Semilinear evolution equations in Banach spaces, J. Functional Analysis, 32 (1979), 277-296.
doi: 10.1016/0022-1236(79)90040-5. |
[1] |
Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 |
[2] |
Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020047 |
[3] |
Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324 |
[4] |
Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241 |
[5] |
Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020468 |
[6] |
Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133 |
[7] |
Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391 |
[8] |
Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020323 |
[9] |
Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265 |
[10] |
Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020317 |
[11] |
Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050 |
[12] |
Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080 |
[13] |
Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020383 |
[14] |
Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242 |
[15] |
Nicolas Dirr, Hubertus Grillmeier, Günther Grün. On stochastic porous-medium equations with critical-growth conservative multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020388 |
[16] |
Chungang Shi, Wei Wang, Dafeng Chen. Weak time discretization for slow-fast stochastic reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021019 |
[17] |
Pengyu Chen, Yongxiang Li, Xuping Zhang. Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1531-1547. doi: 10.3934/dcdsb.2020171 |
[18] |
Qingfeng Zhu, Yufeng Shi. Nonzero-sum differential game of backward doubly stochastic systems with delay and applications. Mathematical Control & Related Fields, 2021, 11 (1) : 73-94. doi: 10.3934/mcrf.2020028 |
[19] |
Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321 |
[20] |
John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3789-3812. doi: 10.3934/dcds.2020044 |
2019 Impact Factor: 1.27
Tools
Article outline
[Back to Top]