-
Previous Article
Mathematical modeling of an immune checkpoint inhibitor and its synergy with an immunostimulant
- DCDS-B Home
- This Issue
-
Next Article
Input-to-state stability and Lyapunov functions with explicit domains for SIR model of infectious diseases
On the semilinear fractional elliptic equations with singular weight functions
Department of Applied Mathematics, National University of Kaohsiung, Kaohsiung 811, Taiwan |
$ \begin{equation*} \left\{ \begin{array}{ll} (-\Delta)^{\alpha} u+V_{\lambda }\left( x\right) u = f\left( x\right) \left\vert u\right\vert ^{q-2}u+g\left( x\right) \left\vert u\right\vert ^{p-2}u & \text{in }\mathbb{R}^{N}, \\ u\in H^{\alpha}(\mathbb{R}^{N}), & \end{array}\right. \end{equation*} $ |
$ \alpha\in (0,1] $ |
$ 1<q<2<p<2_{\alpha}^{\ast }\ \left( 2_{\alpha}^{\ast } = \frac{2N}{N-2\alpha}\text{ for}\ N> 2\alpha\right), $ |
$ V_{\lambda }(x) = \lambda a(x)-b(x) $ |
$ \lambda >0. $ |
$ a,b $ |
$ f,g $ |
$ \lambda $ |
$ f, g $ |
$ \mathbb{R}^{N}. $ |
References:
[1] |
P. Adimurthy, F. Pacella and S. L. Yadava,
On the number of positive solutions of some semilinear Dirichlet problems in a ball, Diff. Int. Equations, 10 (1997), 1157-1170.
|
[2] |
C. O. Alves and G. M. Figueiredo,
Multi-bump solutions for a Kirchhoff-type problem, Adv. Nonlinear Anal., 5 (2016), 1-26.
doi: 10.1515/anona-2015-0101. |
[3] |
A. Ambrosetti, J. G. Azorero and I. Peral,
Multiplicity results for some nonlinear elliptic equations, J. Funct. Anal., 137 (1996), 219-242.
doi: 10.1006/jfan.1996.0045. |
[4] |
A. Ambrosetti, J. G. Azorero and I. Peral,
Elliptic variational problems in $\mathbb{R^N}$ with critical growth, J. Differential Equations, 168 (2000), 10-32.
doi: 10.1006/jdeq.2000.3875. |
[5] |
A. Ambrosetti, H. Brezis and G. Cerami,
Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543.
doi: 10.1006/jfan.1994.1078. |
[6] |
B. Barrios, E. Colorado, A. de Pablo and U. Sánchez,
On some critical problems for the fractional Laplacian operator, J. Differential Equations, 252 (2012), 6133-6162.
doi: 10.1016/j.jde.2012.02.023. |
[7] |
B. Barrios, E. Colorado, R. Servadei and F. Soria,
A critical fractional equation with concave-convex power nonlinearities, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 875-900.
doi: 10.1016/j.anihpc.2014.04.003. |
[8] |
T. Bartsch, A. Pankov and Z.-Q. Wang,
Nonlinear Schrödinger equations with steep potential well, Commun. Contemp. Math., 3 (2001), 549-569.
doi: 10.1142/S0219199701000494. |
[9] |
T. Bartsch and Z. Q. Wang,
Existence and multiplicity results for some superlinear elliptic problems on $\mathbb{R}^{N}$, Comm. Partial Differential Equations, 20 (1995), 1725-1741.
doi: 10.1080/03605309508821149. |
[10] |
H. Berestycki, J.-M. Roquejoffre and L. Rossi,
The periodic patch model for population dynamics with fractional diffusion, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 1-13.
doi: 10.3934/dcdss.2011.4.1. |
[11] |
P. A. Binding, P. Drábek and Y. X. Huang, On Neumann boundary value problems for some quasilinear elliptic equations, Electr. J. Diff. Eqns., (1997), 11 pp. |
[12] |
K. J. Brown andd T.-F. Wu, A fibering map approach to a semilinear elliptic boundary value problem, Electr. J. Diff. Eqns., (2007), 9 pp. |
[13] |
K. J. Brown and T. F. Wu,
A fibering map approach to a potential operator equation and its applications, Diff. Int. Equations, 22 (2009), 1097-1114.
|
[14] |
K. J. Brown and Y. Zhang,
The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function, J. Diff. Equns, 193 (2003), 481-499.
doi: 10.1016/S0022-0396(03)00121-9. |
[15] |
L. Caffarelli, S. Dipierro and E. Valdinoci,
A logistic equation with nonlocal interactions, Kinet. Relat. Models, 10 (2017), 141-170.
doi: 10.3934/krm.2017006. |
[16] |
J. Chabrowski and João Marcos Bezzera do Ó,
On semilinear elliptic equations involving concave and convex nonlinearities, Math. Nachr., 233/234 (2002), 55-76.
doi: 10.1002/1522-2616(200201)233:1<55::AID-MANA55>3.0.CO;2-R. |
[17] |
C.-Y. Chen and T.-F. Wu,
Multiple positive solutions for indefinite semilinear elliptic problems involving a critical Sobolev exponent, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 691-709.
doi: 10.1017/S0308210512000133. |
[18] |
Y.-H. Cheng and T. F. Wu,
Multiplicity and concentration of positive solutions for semilinear elliptic equaitons with steep potential, Commun. Pure Appl. Anal., 15 (2016), 2457-2473.
doi: 10.3934/cpaa.2016044. |
[19] |
R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman & Hall/CRC Financ. Math. Ser., Chapman & Hall/CRC, Boca Raton, FL, 2004. |
[20] |
L. Damascelli, M. Grossi and F. Pacella,
Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle, Annls Inst. H. Poincaré Analyse Non linéaire, 16 (1999), 631-652.
doi: 10.1016/S0294-1449(99)80030-4. |
[21] |
E. Di Nezza, G. Palatucci and E. Valdinoci,
Hitchhikers guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[22] |
P. Drábek and S. I. Pohozaev,
Positive solutions for the $p$-Laplacian: Application of the fibering method, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 703-726.
doi: 10.1017/S0308210500023787. |
[23] |
I. Ekeland,
On the variational principle, J. Math. Anal. Appl., 17 (1974), 324-353.
doi: 10.1016/0022-247X(74)90025-0. |
[24] |
A. Elgart and B. Schlein,
Mean field dynamics of boson stars, Comm. Pure Appl. Math., 60 (2007), 500-545.
doi: 10.1002/cpa.20134. |
[25] |
P. Felmer, A. Quaas and J. Tan,
Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A., 142 (2012), 1237-1262.
doi: 10.1017/S0308210511000746. |
[26] |
J. Fhlich, B. L. G. Jonsson and E. Lenzmann,
Boson stars as solitary waves, Comm. Math. Phys., 274 (2007), 1-30.
doi: 10.1007/s00220-007-0272-9. |
[27] |
D. G. de Figueiredo, J. P. Gossez and P. Ubilla,
Local superlinearity and sublinearity for indefinite semilinear elliptic problems, J. Funct. Anal., 199 (2003), 452-467.
doi: 10.1016/S0022-1236(02)00060-5. |
[28] |
J. Frhlich and E. Lenzmann,
Blowup for nonlinear wave equations describing boson stars, Comm. Pure Appl. Math., 60 (2007), 1691-1705.
doi: 10.1002/cpa.20186. |
[29] |
J. V. Goncalves and O. H. Miyagaki,
Multiple positive solutions for semilinear elliptic equations in $\mathbb{R}^{N}$ involving subcritical exponents, Nonlinear Analysis, 32 (1998), 41-51.
doi: 10.1016/S0362-546X(97)00451-3. |
[30] |
T.-S. Hsu and H. L. Lin, Multiple positive solutions for semilinear elliptic equations in $\mathbb{R}^{N}$ involving concave-convex nonlineatlties and sign-changing weight functions, Abstract and Applied Analysis, 2010 (2010), Art. ID 658397, 21 pp.
doi: 10.1155/2010/658397. |
[31] |
N. Laskin,
Fractional quantum mechanics and Lvy path integral, Phys. Lett. A, 268 (2000), 298-305.
doi: 10.1016/S0375-9601(00)00201-2. |
[32] |
N. Laskin, Fractional Schrödinger equation, Phys. Rev. E., 66 (2002), 056108, 7 pp.
doi: 10.1103/PhysRevE.66.056108. |
[33] |
F.-F. Liao and C.-L. Tang,
Four positive solutions of a quasilinear elliptic equation in $\mathbb{R}^{N},$, Comm. Pure Appl. Anal., 12 (2013), 2577-2600.
doi: 10.3934/cpaa.2013.12.2577. |
[34] |
E. H. Lieb and H.-T. Yau,
The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics, Comm. Math. Phys., 112 (1987), 147-174.
doi: 10.1007/BF01217684. |
[35] |
P.-L. Lions,
The concentration-compactness principle in the calculus of variations. The local compact case. I, Ann. Inst. H. Poincar é Anal. Non Lineairé, 1 (1984), 109-145.
doi: 10.1016/S0294-1449(16)30428-0. |
[36] |
Z. Liu and Z.-Q. Wang,
Schrödinger equations with concave and convex nonlinearities, Z. Angew. Math. Phys., 56 (2005), 609-629.
doi: 10.1007/s00033-005-3115-6. |
[37] |
S. Mao and A. Xia,
Multiplicity results of nonlinear fractional magnetic Schrödinger equation with steep potential, Appl. Math. Lett., 97 (2019), 73-80.
doi: 10.1016/j.aml.2019.05.027. |
[38] |
A. Massaccesi and E. Valdinoci,
Is a nonlocal diffusion strategy convenient for biological populations in competition?, J. Math. Biol., 74 (2017), 113-147.
doi: 10.1007/s00285-016-1019-z. |
[39] |
T. Ouyang and J. Shi,
Exact multiplicity of positive solutions for a class of semilinear problem Ⅱ, J. Diff. Eqns., 158 (1999), 94-151.
doi: 10.1016/S0022-0396(99)80020-5. |
[40] |
F. O. de Paiva,
Nonnegative solutions of elliptic problems with sublinear indefinite nonlinearity, J. Func. Anal., 261 (2011), 2569-2586.
doi: 10.1016/j.jfa.2011.07.002. |
[41] |
S. Peng and A. Xia,
Multiplicity and concentration of solutions for nonlinear fractional elliptic equations with steep potential, Commun. Pure Appl. Anal., 17 (2018), 1201-1217.
doi: 10.3934/cpaa.2018058. |
[42] |
A. Quaas and A. Xia, Multiple positive solutions for nonlinear critical fractional elliptic equations involving sign-changing weight functions, Z. Angew. Math. Phys., 67 (2016), Art. 40, 21 pp.
doi: 10.1007/s00033-016-0631-5. |
[43] |
J. Sun and T.-F. Wu,
Ground state solutions for an indefinite Kirchhoff type problem with steep potential well, J. Differential Equations, 256 (2014), 1771-1792.
doi: 10.1016/j.jde.2013.12.006. |
[44] |
M. Tang,
Exact multiplicity for semilinear elliptic Dirichlet problems involving concave and convex nonlinearities, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 705-717.
doi: 10.1017/S0308210500002614. |
[45] |
Q. Wang,
The Nehari manifold for a fractional Laplacian equation involving critical nonlinearities, Commun. Pure Appl. Anal., 17 (2018), 2261-2281.
doi: 10.3934/cpaa.2018108. |
[46] |
T. F. Wu,
On semilinear elliptic equations involving concave–convex nonlinearities and sign-changing weight function, J. Math. Anal. Appl., 318 (2006), 253-270.
doi: 10.1016/j.jmaa.2005.05.057. |
[47] |
T.-F. Wu,
Multiplicity of positive solutions for semilinear elliptic equations in $\mathbb{R}^{N}$, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 647-670.
doi: 10.1017/S0308210506001156. |
[48] |
T.-F. Wu,
Three positive solutions for Dirichlet problems involving critical Sobolev exponent and sign-changing weight, J. Differ. Equat., 249 (2010), 1459-1578.
doi: 10.1016/j.jde.2010.07.021. |
[49] |
T. F. Wu,
Multiple positive solutions for a class of concave-convex elliptic problem in $\mathbb{R}^{N}$ involving sign-changing weight, J. Funct. Anal., 258 (2010), 99-131.
doi: 10.1016/j.jfa.2009.08.005. |
[50] |
H. Yin, Z. Yang and Z. Feng,
Multiple positive solutions for a quasilinear elliptic equation in $\mathbb{R}^{N}$, Diff. Integ. Eqns, 25 (2012), 977-992.
|
[51] |
L. Zhao, H. Liu and F. Zhao,
Existence and concentration of solutions for the Schrödinger–Poisson equations with steep well potential, J. Diff. Eqns., 255 (2013), 1-23.
doi: 10.1016/j.jde.2013.03.005. |
show all references
References:
[1] |
P. Adimurthy, F. Pacella and S. L. Yadava,
On the number of positive solutions of some semilinear Dirichlet problems in a ball, Diff. Int. Equations, 10 (1997), 1157-1170.
|
[2] |
C. O. Alves and G. M. Figueiredo,
Multi-bump solutions for a Kirchhoff-type problem, Adv. Nonlinear Anal., 5 (2016), 1-26.
doi: 10.1515/anona-2015-0101. |
[3] |
A. Ambrosetti, J. G. Azorero and I. Peral,
Multiplicity results for some nonlinear elliptic equations, J. Funct. Anal., 137 (1996), 219-242.
doi: 10.1006/jfan.1996.0045. |
[4] |
A. Ambrosetti, J. G. Azorero and I. Peral,
Elliptic variational problems in $\mathbb{R^N}$ with critical growth, J. Differential Equations, 168 (2000), 10-32.
doi: 10.1006/jdeq.2000.3875. |
[5] |
A. Ambrosetti, H. Brezis and G. Cerami,
Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543.
doi: 10.1006/jfan.1994.1078. |
[6] |
B. Barrios, E. Colorado, A. de Pablo and U. Sánchez,
On some critical problems for the fractional Laplacian operator, J. Differential Equations, 252 (2012), 6133-6162.
doi: 10.1016/j.jde.2012.02.023. |
[7] |
B. Barrios, E. Colorado, R. Servadei and F. Soria,
A critical fractional equation with concave-convex power nonlinearities, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 875-900.
doi: 10.1016/j.anihpc.2014.04.003. |
[8] |
T. Bartsch, A. Pankov and Z.-Q. Wang,
Nonlinear Schrödinger equations with steep potential well, Commun. Contemp. Math., 3 (2001), 549-569.
doi: 10.1142/S0219199701000494. |
[9] |
T. Bartsch and Z. Q. Wang,
Existence and multiplicity results for some superlinear elliptic problems on $\mathbb{R}^{N}$, Comm. Partial Differential Equations, 20 (1995), 1725-1741.
doi: 10.1080/03605309508821149. |
[10] |
H. Berestycki, J.-M. Roquejoffre and L. Rossi,
The periodic patch model for population dynamics with fractional diffusion, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 1-13.
doi: 10.3934/dcdss.2011.4.1. |
[11] |
P. A. Binding, P. Drábek and Y. X. Huang, On Neumann boundary value problems for some quasilinear elliptic equations, Electr. J. Diff. Eqns., (1997), 11 pp. |
[12] |
K. J. Brown andd T.-F. Wu, A fibering map approach to a semilinear elliptic boundary value problem, Electr. J. Diff. Eqns., (2007), 9 pp. |
[13] |
K. J. Brown and T. F. Wu,
A fibering map approach to a potential operator equation and its applications, Diff. Int. Equations, 22 (2009), 1097-1114.
|
[14] |
K. J. Brown and Y. Zhang,
The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function, J. Diff. Equns, 193 (2003), 481-499.
doi: 10.1016/S0022-0396(03)00121-9. |
[15] |
L. Caffarelli, S. Dipierro and E. Valdinoci,
A logistic equation with nonlocal interactions, Kinet. Relat. Models, 10 (2017), 141-170.
doi: 10.3934/krm.2017006. |
[16] |
J. Chabrowski and João Marcos Bezzera do Ó,
On semilinear elliptic equations involving concave and convex nonlinearities, Math. Nachr., 233/234 (2002), 55-76.
doi: 10.1002/1522-2616(200201)233:1<55::AID-MANA55>3.0.CO;2-R. |
[17] |
C.-Y. Chen and T.-F. Wu,
Multiple positive solutions for indefinite semilinear elliptic problems involving a critical Sobolev exponent, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 691-709.
doi: 10.1017/S0308210512000133. |
[18] |
Y.-H. Cheng and T. F. Wu,
Multiplicity and concentration of positive solutions for semilinear elliptic equaitons with steep potential, Commun. Pure Appl. Anal., 15 (2016), 2457-2473.
doi: 10.3934/cpaa.2016044. |
[19] |
R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman & Hall/CRC Financ. Math. Ser., Chapman & Hall/CRC, Boca Raton, FL, 2004. |
[20] |
L. Damascelli, M. Grossi and F. Pacella,
Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle, Annls Inst. H. Poincaré Analyse Non linéaire, 16 (1999), 631-652.
doi: 10.1016/S0294-1449(99)80030-4. |
[21] |
E. Di Nezza, G. Palatucci and E. Valdinoci,
Hitchhikers guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[22] |
P. Drábek and S. I. Pohozaev,
Positive solutions for the $p$-Laplacian: Application of the fibering method, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 703-726.
doi: 10.1017/S0308210500023787. |
[23] |
I. Ekeland,
On the variational principle, J. Math. Anal. Appl., 17 (1974), 324-353.
doi: 10.1016/0022-247X(74)90025-0. |
[24] |
A. Elgart and B. Schlein,
Mean field dynamics of boson stars, Comm. Pure Appl. Math., 60 (2007), 500-545.
doi: 10.1002/cpa.20134. |
[25] |
P. Felmer, A. Quaas and J. Tan,
Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A., 142 (2012), 1237-1262.
doi: 10.1017/S0308210511000746. |
[26] |
J. Fhlich, B. L. G. Jonsson and E. Lenzmann,
Boson stars as solitary waves, Comm. Math. Phys., 274 (2007), 1-30.
doi: 10.1007/s00220-007-0272-9. |
[27] |
D. G. de Figueiredo, J. P. Gossez and P. Ubilla,
Local superlinearity and sublinearity for indefinite semilinear elliptic problems, J. Funct. Anal., 199 (2003), 452-467.
doi: 10.1016/S0022-1236(02)00060-5. |
[28] |
J. Frhlich and E. Lenzmann,
Blowup for nonlinear wave equations describing boson stars, Comm. Pure Appl. Math., 60 (2007), 1691-1705.
doi: 10.1002/cpa.20186. |
[29] |
J. V. Goncalves and O. H. Miyagaki,
Multiple positive solutions for semilinear elliptic equations in $\mathbb{R}^{N}$ involving subcritical exponents, Nonlinear Analysis, 32 (1998), 41-51.
doi: 10.1016/S0362-546X(97)00451-3. |
[30] |
T.-S. Hsu and H. L. Lin, Multiple positive solutions for semilinear elliptic equations in $\mathbb{R}^{N}$ involving concave-convex nonlineatlties and sign-changing weight functions, Abstract and Applied Analysis, 2010 (2010), Art. ID 658397, 21 pp.
doi: 10.1155/2010/658397. |
[31] |
N. Laskin,
Fractional quantum mechanics and Lvy path integral, Phys. Lett. A, 268 (2000), 298-305.
doi: 10.1016/S0375-9601(00)00201-2. |
[32] |
N. Laskin, Fractional Schrödinger equation, Phys. Rev. E., 66 (2002), 056108, 7 pp.
doi: 10.1103/PhysRevE.66.056108. |
[33] |
F.-F. Liao and C.-L. Tang,
Four positive solutions of a quasilinear elliptic equation in $\mathbb{R}^{N},$, Comm. Pure Appl. Anal., 12 (2013), 2577-2600.
doi: 10.3934/cpaa.2013.12.2577. |
[34] |
E. H. Lieb and H.-T. Yau,
The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics, Comm. Math. Phys., 112 (1987), 147-174.
doi: 10.1007/BF01217684. |
[35] |
P.-L. Lions,
The concentration-compactness principle in the calculus of variations. The local compact case. I, Ann. Inst. H. Poincar é Anal. Non Lineairé, 1 (1984), 109-145.
doi: 10.1016/S0294-1449(16)30428-0. |
[36] |
Z. Liu and Z.-Q. Wang,
Schrödinger equations with concave and convex nonlinearities, Z. Angew. Math. Phys., 56 (2005), 609-629.
doi: 10.1007/s00033-005-3115-6. |
[37] |
S. Mao and A. Xia,
Multiplicity results of nonlinear fractional magnetic Schrödinger equation with steep potential, Appl. Math. Lett., 97 (2019), 73-80.
doi: 10.1016/j.aml.2019.05.027. |
[38] |
A. Massaccesi and E. Valdinoci,
Is a nonlocal diffusion strategy convenient for biological populations in competition?, J. Math. Biol., 74 (2017), 113-147.
doi: 10.1007/s00285-016-1019-z. |
[39] |
T. Ouyang and J. Shi,
Exact multiplicity of positive solutions for a class of semilinear problem Ⅱ, J. Diff. Eqns., 158 (1999), 94-151.
doi: 10.1016/S0022-0396(99)80020-5. |
[40] |
F. O. de Paiva,
Nonnegative solutions of elliptic problems with sublinear indefinite nonlinearity, J. Func. Anal., 261 (2011), 2569-2586.
doi: 10.1016/j.jfa.2011.07.002. |
[41] |
S. Peng and A. Xia,
Multiplicity and concentration of solutions for nonlinear fractional elliptic equations with steep potential, Commun. Pure Appl. Anal., 17 (2018), 1201-1217.
doi: 10.3934/cpaa.2018058. |
[42] |
A. Quaas and A. Xia, Multiple positive solutions for nonlinear critical fractional elliptic equations involving sign-changing weight functions, Z. Angew. Math. Phys., 67 (2016), Art. 40, 21 pp.
doi: 10.1007/s00033-016-0631-5. |
[43] |
J. Sun and T.-F. Wu,
Ground state solutions for an indefinite Kirchhoff type problem with steep potential well, J. Differential Equations, 256 (2014), 1771-1792.
doi: 10.1016/j.jde.2013.12.006. |
[44] |
M. Tang,
Exact multiplicity for semilinear elliptic Dirichlet problems involving concave and convex nonlinearities, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 705-717.
doi: 10.1017/S0308210500002614. |
[45] |
Q. Wang,
The Nehari manifold for a fractional Laplacian equation involving critical nonlinearities, Commun. Pure Appl. Anal., 17 (2018), 2261-2281.
doi: 10.3934/cpaa.2018108. |
[46] |
T. F. Wu,
On semilinear elliptic equations involving concave–convex nonlinearities and sign-changing weight function, J. Math. Anal. Appl., 318 (2006), 253-270.
doi: 10.1016/j.jmaa.2005.05.057. |
[47] |
T.-F. Wu,
Multiplicity of positive solutions for semilinear elliptic equations in $\mathbb{R}^{N}$, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 647-670.
doi: 10.1017/S0308210506001156. |
[48] |
T.-F. Wu,
Three positive solutions for Dirichlet problems involving critical Sobolev exponent and sign-changing weight, J. Differ. Equat., 249 (2010), 1459-1578.
doi: 10.1016/j.jde.2010.07.021. |
[49] |
T. F. Wu,
Multiple positive solutions for a class of concave-convex elliptic problem in $\mathbb{R}^{N}$ involving sign-changing weight, J. Funct. Anal., 258 (2010), 99-131.
doi: 10.1016/j.jfa.2009.08.005. |
[50] |
H. Yin, Z. Yang and Z. Feng,
Multiple positive solutions for a quasilinear elliptic equation in $\mathbb{R}^{N}$, Diff. Integ. Eqns, 25 (2012), 977-992.
|
[51] |
L. Zhao, H. Liu and F. Zhao,
Existence and concentration of solutions for the Schrödinger–Poisson equations with steep well potential, J. Diff. Eqns., 255 (2013), 1-23.
doi: 10.1016/j.jde.2013.03.005. |
[1] |
Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439 |
[2] |
Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020282 |
[3] |
Yunfeng Jia, Yi Li, Jianhua Wu, Hong-Kun Xu. Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3485-3507. doi: 10.3934/dcds.2019227 |
[4] |
Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036 |
[5] |
Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020452 |
[6] |
Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318 |
[7] |
Tomasz Szostok. Inequalities of Hermite-Hadamard type for higher order convex functions, revisited. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020296 |
[8] |
Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070 |
[9] |
Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076 |
[10] |
Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi. Solvability and sliding mode control for the viscous Cahn–Hilliard system with a possibly singular potential. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020051 |
[11] |
Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477 |
[12] |
Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021002 |
[13] |
Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272 |
[14] |
Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354 |
[15] |
Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020126 |
[16] |
Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011 |
[17] |
Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260 |
[18] |
Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310 |
[19] |
Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020104 |
[20] |
Zaihui Gan, Fanghua Lin, Jiajun Tong. On the viscous Camassa-Holm equations with fractional diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3427-3450. doi: 10.3934/dcds.2020029 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]