• Previous Article
    Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays
  • DCDS-B Home
  • This Issue
  • Next Article
    Size estimates for the weighted p-Laplace equation with one measurement
doi: 10.3934/dcdsb.2020326

Existence and uniqueness of solutions for a hyperbolic Keller–Segel equation

Université de Bordeaux – Institut de Mathématiques de Bordeaux, 351 cours de la Libération, 33400 Talence, France

* Corresponding author: Pierre Magal, pierre.magal@u-bordeaux.fr

Received  August 2020 Published  November 2020

Fund Project: The research of the first author is supported by China Scholarship Council

In this work we describe a hyperbolic model with cell-cell repulsion with a dynamics in the population of cells. More precisely, we consider a population of cells producing a field (which we call "pressure") which induces a motion of the cells following the opposite of the gradient. The field indicates the local density of population and we assume that cells try to avoid crowded areas and prefer locally empty spaces which are far away from the carrying capacity. We analyze the well-posed property of the associated Cauchy problem on the real line. Moreover we obtain a convergence result for bounded initial distributions which are positive and stay away from zero uniformly on the real line.

Citation: Xiaoming Fu, Quentin Griette, Pierre Magal. Existence and uniqueness of solutions for a hyperbolic Keller–Segel equation. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020326
References:
[1]

N. J. ArmstrongK. J. Painter and J. A. Sherratt, A continuum approach to modelling cell-cell adhesion, J. Theoret. Biol., 243 (2006), 98-113.  doi: 10.1016/j.jtbi.2006.05.030.  Google Scholar

[2]

D. G. Aronson, Density-dependent interaction-diffusion systems, Dynamics and Modelling of Reactive Systems, Publ. Math. Res. Center Univ. Wisconsin, Academic Press, New York-London, 44 (1980), 161-176.   Google Scholar

[3]

C. AtkinsonG. E. H. Reuter and C. J. Ridler-Rowe, Traveling wave solution for some nonlinear diffusion equations, SIAM J. Math. Anal., 12 (1981), 880-892.  doi: 10.1137/0512074.  Google Scholar

[4]

D. BalaguéJ. A. CarrilloT. Laurent and G. Raoul, Nonlocal interactions by repulsive-attractive potentials: Radial ins/stability, Phys. D, 260 (2013), 5-25.  doi: 10.1016/j.physd.2012.10.002.  Google Scholar

[5]

N. Bellomo, A. Bellouquid, J. Nieto and J. Soler, On the asymptotic theory from microscopic to macroscopic growing tissue models: An overview with perspectives, Math. Models Methods Appl. Sci., 22 (2012), 1130001, 37 pp. doi: 10.1142/S0218202512005885.  Google Scholar

[6]

A. J. Bernoff and C. M. Topaz, Nonlocal aggregation models: A primer of swarm equilibria [reprint of mr2788924], SIAM Rev., 55 (2013), 709-747.  doi: 10.1137/130925669.  Google Scholar

[7]

A. L. BertozziT. Laurent and J. Rosado, $L^p$ theory for the multidimensional aggregation equation, Comm. Pure Appl. Math., 64 (2011), 45-83.  doi: 10.1002/cpa.20334.  Google Scholar

[8]

M. BurgerR. Fetecau and Y. Huang, Stationary states and asymptotic behavior of aggregation models with nonlinear local repulsion, SIAM J. Appl. Dyn. Syst., 13 (2014), 397-424.  doi: 10.1137/130923786.  Google Scholar

[9]

V. Calvez and L. Corrias, The parabolic-parabolic Keller-Segel model in $\Bbb R^2$, Commun. Math. Sci., 6 (2008), 417–447, http://projecteuclid.org/euclid.cms/1214949930. doi: 10.4310/CMS.2008.v6.n2.a8.  Google Scholar

[10]

K. Carrapatoso and S. Mischler, Uniqueness and long time asymptotics for the parabolic-parabolic Keller-Segel equation, Comm. Partial Differential Equations, 42 (2017), 291-345.  doi: 10.1080/03605302.2017.1280682.  Google Scholar

[11]

J. A. CarrilloM. Di FrancescoA. FigalliT. Laurent and D. Slepčev, Confinement in nonlocal interaction equations, Nonlinear Anal., 75 (2012), 550-558.  doi: 10.1016/j.na.2011.08.057.  Google Scholar

[12]

J. A. CarrilloH. MurakawaM. SatoH. Togashi and O. Trush, A population dynamics model of cell-cell adhesion incorporating population pressure and density saturation, J. Theoret. Biol., 474 (2019), 14-24.  doi: 10.1016/j.jtbi.2019.04.023.  Google Scholar

[13] T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, Oxford Lecture Series in Mathematics and its Applications, 13. The Clarendon Press, Oxford University Press, New York, 1998.   Google Scholar
[14]

S. Childress, Chemotactic collapse in two dimensions, Modelling of Patterns in Space and Time, Lecture Notes in Biomath., Springer, Berlin, 55 (1984), 61-66.  doi: 10.1007/978-3-642-45589-6_6.  Google Scholar

[15]

A. de Pablo and J. L. Vázquez, Travelling waves and finite propagation in a reaction-diffusion equation, J. Differential Equations, 93 (1991), 19-61.  doi: 10.1016/0022-0396(91)90021-Z.  Google Scholar

[16]

A. DucrotX. Fu and P. Magal, Turing and Turing-Hopf bifurcations for a reaction diffusion equation with nonlocal advection, J. Nonlinear Sci., 28 (2018), 1959-1997.  doi: 10.1007/s00332-018-9472-z.  Google Scholar

[17]

A. Ducrot and P. Magal, Asymptotic behavior of a nonlocal diffusive logistic equation, Google Scholar

[18]

A. Ducrot and D. Manceau, A one-dimensional logistic like equation with nonlinear and nonlocal diffusion: Strong convergence to equilibrium, Proc. Amer. Math. Soc., 148 (2020), 3381-3392.  doi: 10.1090/proc/14971.  Google Scholar

[19]

J. DysonS. A. GourleyR. Villella-Bressan and G. F. Webb, Existence and asymptotic properties of solutions of a nonlocal evolution equation modeling cell-cell adhesion, SIAM J. Math. Anal., 42 (2010), 1784-1804.  doi: 10.1137/090765663.  Google Scholar

[20]

R. EftimieG. de VriesM. A. Lewis and F. Lutscher, Modeling group formation and activity patterns in self-organizing collectives of individuals, Bull. Math. Biol., 69 (2007), 1537-1565.  doi: 10.1007/s11538-006-9175-8.  Google Scholar

[21]

X. FuQ. Griette and P. Magal, A cell-cell repulsion model on a hyperbolic Keller-Segel equation, J. Math. Biol., 80 (2020), 2257-2300.  doi: 10.1007/s00285-020-01495-w.  Google Scholar

[22]

F. Hamel and C. Henderson, Propagation in a Fisher-KPP equation with non-local advection, J. Funct. Anal., 278 (2020), 108426, 53 pp. doi: 10.1016/j.jfa.2019.108426.  Google Scholar

[23]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.  doi: 10.1007/s00285-008-0201-3.  Google Scholar

[24]

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329 (1992), 819-824.  doi: 10.1090/S0002-9947-1992-1046835-6.  Google Scholar

[25]

S. KatsunumaH. HondaT. ShinodaY. IshimotoT. MiyataH. KiyonariT. AbeK.-i. NibuY. Takai and H. Togashi, Synergistic action of nectins and cadherins generates the mosaic cellular pattern of the olfactory epithelium, Journal of Cell Biology, 212 (2016), 561-575.  doi: 10.1083/jcb.201509020.  Google Scholar

[26]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[27]

E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theoret. Biol., 30 (1971), 225-234.  doi: 10.1016/0022-5193(71)90050-6.  Google Scholar

[28]

A. J. LeverentzC. M. Topaz and A. J. Bernoff, Asymptotic dynamics of attractive-repulsive swarms, SIAM J. Appl. Dyn. Syst., 8 (2009), 880-908.  doi: 10.1137/090749037.  Google Scholar

[29]

A. Mogilner and L. Edelstein-Keshet, A non-local model for a swarm, J. Math. Biol., 38 (1999), 534-570.  doi: 10.1007/s002850050158.  Google Scholar

[30]

A. MogilnerL. Edelstein-KeshetL. Bent and A. Spiros, Mutual interactions, potentials, and individual distance in a social aggregation, J. Math. Biol., 47 (2003), 353-389.  doi: 10.1007/s00285-003-0209-7.  Google Scholar

[31]

D. MoraleV. Capasso and K. Oelschläger, An interacting particle system modelling aggregation behavior: From individuals to populations, J. Math. Biol., 50 (2005), 49-66.  doi: 10.1007/s00285-004-0279-1.  Google Scholar

[32]

H. Murakawa and H. Togashi, Continuous models for cell–cell adhesion, Journal of Theoretical Biology, 374 (2015), 1-12.  doi: 10.1016/j.jtbi.2015.03.002.  Google Scholar

[33]

J. Pasquier, P. Magal, C. Boulangé-Lecomte, G. Webb and F. Le Foll, Consequences of cell-to-cell p-glycoprotein transfer on acquired multidrug resistance in breast cancer: a cell population dynamics model, Biol. Direct., 6 (2011), 5. doi: 10.1186/1745-6150-6-5.  Google Scholar

[34]

C. S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys., 15 (1953), 311-338.  doi: 10.1007/BF02476407.  Google Scholar

[35]

B. Perthame and A.-L. Dalibard, Existence of solutions of the hyperbolic Keller-Segel model, Trans. Amer. Math. Soc., 361 (2009), 2319-2335.  doi: 10.1090/S0002-9947-08-04656-4.  Google Scholar

[36]

W. Rudin, Real and Complex Analysis, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966.  Google Scholar

[37]

Y. SongS. Wu and H. Wang, Spatiotemporal dynamics in the single population model with memory-based diffusion and nonlocal effect, J. Differential Equations, 267 (2019), 6316-6351.  doi: 10.1016/j.jde.2019.06.025.  Google Scholar

[38] J. L. Vázquez, The Porous Medium Equation. Mathematical Theory, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2007.   Google Scholar
[39]

E. Zeidler, Nonlinear Functional Analysis and its Applications. I. Fixed-Point Theorems, Springer-Verlag, New York, 1986. doi: 10.1007/978-1-4612-4838-5.  Google Scholar

show all references

References:
[1]

N. J. ArmstrongK. J. Painter and J. A. Sherratt, A continuum approach to modelling cell-cell adhesion, J. Theoret. Biol., 243 (2006), 98-113.  doi: 10.1016/j.jtbi.2006.05.030.  Google Scholar

[2]

D. G. Aronson, Density-dependent interaction-diffusion systems, Dynamics and Modelling of Reactive Systems, Publ. Math. Res. Center Univ. Wisconsin, Academic Press, New York-London, 44 (1980), 161-176.   Google Scholar

[3]

C. AtkinsonG. E. H. Reuter and C. J. Ridler-Rowe, Traveling wave solution for some nonlinear diffusion equations, SIAM J. Math. Anal., 12 (1981), 880-892.  doi: 10.1137/0512074.  Google Scholar

[4]

D. BalaguéJ. A. CarrilloT. Laurent and G. Raoul, Nonlocal interactions by repulsive-attractive potentials: Radial ins/stability, Phys. D, 260 (2013), 5-25.  doi: 10.1016/j.physd.2012.10.002.  Google Scholar

[5]

N. Bellomo, A. Bellouquid, J. Nieto and J. Soler, On the asymptotic theory from microscopic to macroscopic growing tissue models: An overview with perspectives, Math. Models Methods Appl. Sci., 22 (2012), 1130001, 37 pp. doi: 10.1142/S0218202512005885.  Google Scholar

[6]

A. J. Bernoff and C. M. Topaz, Nonlocal aggregation models: A primer of swarm equilibria [reprint of mr2788924], SIAM Rev., 55 (2013), 709-747.  doi: 10.1137/130925669.  Google Scholar

[7]

A. L. BertozziT. Laurent and J. Rosado, $L^p$ theory for the multidimensional aggregation equation, Comm. Pure Appl. Math., 64 (2011), 45-83.  doi: 10.1002/cpa.20334.  Google Scholar

[8]

M. BurgerR. Fetecau and Y. Huang, Stationary states and asymptotic behavior of aggregation models with nonlinear local repulsion, SIAM J. Appl. Dyn. Syst., 13 (2014), 397-424.  doi: 10.1137/130923786.  Google Scholar

[9]

V. Calvez and L. Corrias, The parabolic-parabolic Keller-Segel model in $\Bbb R^2$, Commun. Math. Sci., 6 (2008), 417–447, http://projecteuclid.org/euclid.cms/1214949930. doi: 10.4310/CMS.2008.v6.n2.a8.  Google Scholar

[10]

K. Carrapatoso and S. Mischler, Uniqueness and long time asymptotics for the parabolic-parabolic Keller-Segel equation, Comm. Partial Differential Equations, 42 (2017), 291-345.  doi: 10.1080/03605302.2017.1280682.  Google Scholar

[11]

J. A. CarrilloM. Di FrancescoA. FigalliT. Laurent and D. Slepčev, Confinement in nonlocal interaction equations, Nonlinear Anal., 75 (2012), 550-558.  doi: 10.1016/j.na.2011.08.057.  Google Scholar

[12]

J. A. CarrilloH. MurakawaM. SatoH. Togashi and O. Trush, A population dynamics model of cell-cell adhesion incorporating population pressure and density saturation, J. Theoret. Biol., 474 (2019), 14-24.  doi: 10.1016/j.jtbi.2019.04.023.  Google Scholar

[13] T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, Oxford Lecture Series in Mathematics and its Applications, 13. The Clarendon Press, Oxford University Press, New York, 1998.   Google Scholar
[14]

S. Childress, Chemotactic collapse in two dimensions, Modelling of Patterns in Space and Time, Lecture Notes in Biomath., Springer, Berlin, 55 (1984), 61-66.  doi: 10.1007/978-3-642-45589-6_6.  Google Scholar

[15]

A. de Pablo and J. L. Vázquez, Travelling waves and finite propagation in a reaction-diffusion equation, J. Differential Equations, 93 (1991), 19-61.  doi: 10.1016/0022-0396(91)90021-Z.  Google Scholar

[16]

A. DucrotX. Fu and P. Magal, Turing and Turing-Hopf bifurcations for a reaction diffusion equation with nonlocal advection, J. Nonlinear Sci., 28 (2018), 1959-1997.  doi: 10.1007/s00332-018-9472-z.  Google Scholar

[17]

A. Ducrot and P. Magal, Asymptotic behavior of a nonlocal diffusive logistic equation, Google Scholar

[18]

A. Ducrot and D. Manceau, A one-dimensional logistic like equation with nonlinear and nonlocal diffusion: Strong convergence to equilibrium, Proc. Amer. Math. Soc., 148 (2020), 3381-3392.  doi: 10.1090/proc/14971.  Google Scholar

[19]

J. DysonS. A. GourleyR. Villella-Bressan and G. F. Webb, Existence and asymptotic properties of solutions of a nonlocal evolution equation modeling cell-cell adhesion, SIAM J. Math. Anal., 42 (2010), 1784-1804.  doi: 10.1137/090765663.  Google Scholar

[20]

R. EftimieG. de VriesM. A. Lewis and F. Lutscher, Modeling group formation and activity patterns in self-organizing collectives of individuals, Bull. Math. Biol., 69 (2007), 1537-1565.  doi: 10.1007/s11538-006-9175-8.  Google Scholar

[21]

X. FuQ. Griette and P. Magal, A cell-cell repulsion model on a hyperbolic Keller-Segel equation, J. Math. Biol., 80 (2020), 2257-2300.  doi: 10.1007/s00285-020-01495-w.  Google Scholar

[22]

F. Hamel and C. Henderson, Propagation in a Fisher-KPP equation with non-local advection, J. Funct. Anal., 278 (2020), 108426, 53 pp. doi: 10.1016/j.jfa.2019.108426.  Google Scholar

[23]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.  doi: 10.1007/s00285-008-0201-3.  Google Scholar

[24]

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329 (1992), 819-824.  doi: 10.1090/S0002-9947-1992-1046835-6.  Google Scholar

[25]

S. KatsunumaH. HondaT. ShinodaY. IshimotoT. MiyataH. KiyonariT. AbeK.-i. NibuY. Takai and H. Togashi, Synergistic action of nectins and cadherins generates the mosaic cellular pattern of the olfactory epithelium, Journal of Cell Biology, 212 (2016), 561-575.  doi: 10.1083/jcb.201509020.  Google Scholar

[26]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[27]

E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theoret. Biol., 30 (1971), 225-234.  doi: 10.1016/0022-5193(71)90050-6.  Google Scholar

[28]

A. J. LeverentzC. M. Topaz and A. J. Bernoff, Asymptotic dynamics of attractive-repulsive swarms, SIAM J. Appl. Dyn. Syst., 8 (2009), 880-908.  doi: 10.1137/090749037.  Google Scholar

[29]

A. Mogilner and L. Edelstein-Keshet, A non-local model for a swarm, J. Math. Biol., 38 (1999), 534-570.  doi: 10.1007/s002850050158.  Google Scholar

[30]

A. MogilnerL. Edelstein-KeshetL. Bent and A. Spiros, Mutual interactions, potentials, and individual distance in a social aggregation, J. Math. Biol., 47 (2003), 353-389.  doi: 10.1007/s00285-003-0209-7.  Google Scholar

[31]

D. MoraleV. Capasso and K. Oelschläger, An interacting particle system modelling aggregation behavior: From individuals to populations, J. Math. Biol., 50 (2005), 49-66.  doi: 10.1007/s00285-004-0279-1.  Google Scholar

[32]

H. Murakawa and H. Togashi, Continuous models for cell–cell adhesion, Journal of Theoretical Biology, 374 (2015), 1-12.  doi: 10.1016/j.jtbi.2015.03.002.  Google Scholar

[33]

J. Pasquier, P. Magal, C. Boulangé-Lecomte, G. Webb and F. Le Foll, Consequences of cell-to-cell p-glycoprotein transfer on acquired multidrug resistance in breast cancer: a cell population dynamics model, Biol. Direct., 6 (2011), 5. doi: 10.1186/1745-6150-6-5.  Google Scholar

[34]

C. S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys., 15 (1953), 311-338.  doi: 10.1007/BF02476407.  Google Scholar

[35]

B. Perthame and A.-L. Dalibard, Existence of solutions of the hyperbolic Keller-Segel model, Trans. Amer. Math. Soc., 361 (2009), 2319-2335.  doi: 10.1090/S0002-9947-08-04656-4.  Google Scholar

[36]

W. Rudin, Real and Complex Analysis, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966.  Google Scholar

[37]

Y. SongS. Wu and H. Wang, Spatiotemporal dynamics in the single population model with memory-based diffusion and nonlocal effect, J. Differential Equations, 267 (2019), 6316-6351.  doi: 10.1016/j.jde.2019.06.025.  Google Scholar

[38] J. L. Vázquez, The Porous Medium Equation. Mathematical Theory, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2007.   Google Scholar
[39]

E. Zeidler, Nonlinear Functional Analysis and its Applications. I. Fixed-Point Theorems, Springer-Verlag, New York, 1986. doi: 10.1007/978-1-4612-4838-5.  Google Scholar

[1]

Yuyuan Ouyang, Trevor Squires. Some worst-case datasets of deterministic first-order methods for solving binary logistic regression. Inverse Problems & Imaging, 2021, 15 (1) : 63-77. doi: 10.3934/ipi.2020047

[2]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[3]

Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226

[4]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[5]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284

[6]

Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053

[7]

Kimie Nakashima. Indefinite nonlinear diffusion problem in population genetics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3837-3855. doi: 10.3934/dcds.2020169

[8]

Soonki Hong, Seonhee Lim. Martin boundary of brownian motion on Gromov hyperbolic metric graphs. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021014

[9]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[10]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[11]

Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021017

[12]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[13]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[14]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[15]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[16]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

[17]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[18]

Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093

[19]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[20]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

2019 Impact Factor: 1.27

Article outline

[Back to Top]