-
Previous Article
Coexistence of competing consumers on a single resource in a hybrid model
- DCDS-B Home
- This Issue
-
Next Article
Chaotic dynamics in a simple predator-prey model with discrete delay
Predator – Prey/Host – Parasite: A fragile ecoepidemic system under homogeneous infection incidence
1. | Department of Mathematics, The University of Arizona, Tucson, AZ 85721-0089, USA |
2. | School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287-1804, USA |
To underpin the concern that environmental change can flip an ecosystem from stable persistence to sudden total collapse, we consider a class of so-called ecoepidemic models, predator – prey/host – parasite systems, in which a base species is prey to a predator species and host to a micro-parasite species. Our model uses generalized frequency-dependent incidence for the disease transmission and mass action kinetics for predation.
We show that a large variety of dynamics can arise, ranging from dynamic persistence of all three species to either total ecosystem collapse caused by high transmissibility of the parasite on the one hand or to parasite extinction and prey-predator survival due to low parasite transmissibility on the other hand. We identify a threshold parameter (tipping number) for the transition of the ecosystem from uniform prey/host persistence to total extinction under suitable initial conditions.
References:
[1] |
F. Abbona and E. Venturino,
An eco-epidemic model for infectious keratoconjunctivitis caused by mycoplasma conjunctivae in domestic and wild herbivores, with possible vaccination strategies, Math. Methods Appl. Sci., 41 (2018), 2269-2280.
doi: 10.1002/mma.4209. |
[2] |
O. Arino, A. El abdllaoui, J. Mikram and J. Chattopadhyay,
Infection in prey population may act as a biological control in ratio-dependent predator-prey models, Nonlinearity, 17 (2004), 1101-1116.
doi: 10.1088/0951-7715/17/3/018. |
[3] |
B. S. Attili and S. F. Mallak,
Existence of limit cycles in a predator-prey system with a functional response of the form arctan(ax), Commun. Math. Anal., 1 (2006), 33-40.
|
[4] |
N. Bairagi, P. K. Roy and J. Chattopadhyay,
Role of infection on the stability of a predator-prey system with several response functionsa comparative study, J. Theo. Biol., 248 (2007), 10-25.
doi: 10.1016/j.jtbi.2007.05.005. |
[5] |
F. Barbara, V. La Morgia, V. Parodi, G. Toscano and E. Venturino, Analysis of the incidence of poxvirus on the dynamics between red and grey squirrels, Mathematics, 6 (2018), 113.
doi: 10.3390/math6070113. |
[6] |
E. Beltrami and T. O. Carroll,
Modeling the role of viral disease in recurrent phytoplankton bloom, Journal of Mathematical Biology, 32 (1994), 857-863.
doi: 10.1007/BF00168802. |
[7] |
S. P. Bera, A. Maiti and G. P. Samanta,
Prey-predator model with infection in both prey and predator, Filomat, 29 (2015), 1753-1767.
doi: 10.2298/FIL1508753B. |
[8] |
E. Cagliero and E. Venturino,
Ecoepidemics with infected prey in herd defence: The harmless and toxic cases, Int. J. Comp. Math., 93 (2016), 108-127.
doi: 10.1080/00207160.2014.988614. |
[9] |
J. Chattopadhyay and O. Arino,
A predator-prey model with disease in the prey, Nonlin. Anal., 36 (1999), 747-766.
doi: 10.1016/S0362-546X(98)00126-6. |
[10] |
J. Chattopadhyay and S. Pal,
Viral infection on phytoplankton zooplankton system a mathematical model, Ecological Modeling, 151 (2002), 15-28.
doi: 10.1016/S0304-3800(01)00415-X. |
[11] |
J. Chattopadhyay, S. Pal and A. El Abdllaoui,
Classical predator-prey system with infection of prey populationa mathematical model, Math. Meth. in the App. Sci., 26 (2003), 1211-1222.
doi: 10.1002/mma.414. |
[12] |
Y. Chen and Y. Wen,
Impact on the predator population while lethal disease spreads in the prey, Math. Meth. in App. Sci., 39 (2016), 2883-2895.
doi: 10.1002/mma.3737. |
[13] |
J. P. Collins,
Amphibian decline and extinction: What we know and what we need to learn, Dis. Aquat. Org., 92 (2010), 93-99.
doi: 10.3354/dao02307. |
[14] | J. P. Collins, M. L. Crump and T. E. Lovejoy III, Extinction in our Times: Global Amphibian Decline, Oxford University Press, 2009. Google Scholar |
[15] |
K. P. Das and J. Chattopadhyay, A mathematical study of a predator-prey model with disease circulating in the both populations, Int. J. Biomath., 8 (2015), 1550015, 27 pp.
doi: 10.1142/S1793524515500151. |
[16] |
L. M. E. de Assis, E. Massad, R. A. de Assis, S. R. Martorano and E. Venturino,
A mathematical model for bovine tuberculosis among buffaloes and lions in the kruger national park, Mathematical Methods in the Applied Sciences, 41 (2018), 525-543.
doi: 10.1002/mma.4568. |
[17] |
K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.
doi: 10.1007/978-3-662-00547-7. |
[18] |
T. Dhirasakdanon and H. Thieme,
Stability of the endemic coexistence equilibrium for one host and two parasites, Mathematical Modelling of Natural Phenomena, 5 (2010), 109-138.
doi: 10.1051/mmnp/20105606. |
[19] |
D. E. Docherty, C. U. Meteyer, J. Wang, J. Mao, S. T. Case and V. G. Chinchar,
Diagnostic and molecular evaluation of three iridovirus-associated salamander mortality events, J. Wildl. Dis., 39 (2003), 556-566.
doi: 10.7589/0090-3558-39.3.556. |
[20] |
A. Farrell, Prey-Predator-Parasite: An Ecosystem Model with Fragile Persistence, Thesis (Ph.D.)-Arizona State University. 2017,238 pp. |
[21] |
A. P. Farrell, J. P. Collins, A. L. Greer and H. R. Thieme,
Do fatal infectious diseases eradicate host species?, J. Math. Biol., 77 (2018), 2103-2164.
doi: 10.1007/s00285-018-1249-3. |
[22] |
A. P. Farrell, J. P. Collins, A. L. Greer and H. R. Thieme,
Times from infection to disease-induced death and their influence on final population sizes after epidemic outbreaks, Bull. Math. Biol., 80 (2018), 1937-1961.
doi: 10.1007/s11538-018-0446-y. |
[23] |
A. Friedman and A.-A. Yakubu,
Host demographic Allee effect, fatal disease, and migration: Persistence or extinction, SIAM J. Appl. Math., 72 (2012), 1644-1666.
doi: 10.1137/120861382. |
[24] |
J. Gani and R. J. Swift,
Prey-predator models with infected prey and predators, Disc. and Cont. Dyn. Sys., 33 (2013), 5059-5066.
doi: 10.3934/dcds.2013.33.5059. |
[25] |
W. M. Getz and J. Pickering,
Epidemic models: Thresholds and population regulation, Am. Nat., 121 (1983), 892-898.
doi: 10.1086/284112. |
[26] |
M. Ghosh and X.-Z. Li,
Mathematical modelling of prey-predator interaction with disease in prey, Int. J. Comp. Sci. Math., 7 (2016), 443-458.
doi: 10.1504/IJCSM.2016.080075. |
[27] |
G. Gimmelli, B. W. Kooi and E. Venturino,
Ecoepidemic models with prey group defense and feeding saturation, Ecol. Complex., 22 (2015), 50-58.
doi: 10.1016/j.ecocom.2015.02.004. |
[28] |
M. J. Gray and V. G. Chinchar, Ranaviruses: Lethal Pathogens of Ectothermic Vertebrates, Springer, 2015. Google Scholar |
[29] |
M. J. Gray, D. L. Miller and J. T. Hoverman,
Ecology and pathology of amphibian ranaviruses, Dis. Aquat. Organ., 87 (2009), 243-266.
doi: 10.3354/dao02138. |
[30] |
D. E. Green, K. A. Converse and A. K. Schrader,
Epizootiology of sixty-four amphibian morbidity and mortality events in the USA, 1996-2001, Ann. N. Y. Acad. Sci., 969 (2002), 323-339.
doi: 10.1111/j.1749-6632.2002.tb04400.x. |
[31] |
D. Greenhalgh and R. Das, An SIRS epidemic model with a contact rate depending on population density, Math. Pop. Dyn.: Anal. of Hetero., Vol. One: Theory of Epidemics, 92 (1995), 79-101. Google Scholar |
[32] |
A. L. Greer, C. J. Briggs and J. P. Collins,
Testing a key assumption of host-pathogen theory: Density and disease transmission, Oikos, 117 (2008), 1667-1673.
doi: 10.1111/j.1600-0706.2008.16783.x. |
[33] |
K. P. Hadeler, K. Dietz and M. Safan,
Case fatality models for epidemics in growing populations, Math. Biosci., 281 (2016), 120-127.
doi: 10.1016/j.mbs.2016.09.007. |
[34] |
K. P. Hadeler and H. I. Freedman,
Predator-prey populations with parasitic infection, J. Math. Biol., 27 (1989), 609-631.
doi: 10.1007/BF00276947. |
[35] |
J. K. Hale, Ordinary Differential Equations, Robert E. Krieger Publishing Company, Inc., 1980. |
[36] |
L. Han, Z. Ma and H. W. Hethcote,
Four predator prey models with infectious diseases, Math. Comp. Modeling, 34 (2001), 849-858.
doi: 10.1016/S0895-7177(01)00104-2. |
[37] |
L. Han and A. Pugliese,
Epidemics in two competing species, Nonlin. Anal. RWA, 10 (2009), 723-744.
doi: 10.1016/j.nonrwa.2007.11.005. |
[38] |
M. Haque and D. Greenhalgh,
When a predator avoids infected prey: A model-based theoretical study, Math. Med. Biol., 27 (2010), 75-94.
doi: 10.1093/imammb/dqp007. |
[39] |
M. Haque, J. Zhen and E. Venturino,
An ecoepidemiological predator-prey model with standard disease incidence, Math. Meth. Appl. Sci., 32 (2009), 875-898.
doi: 10.1002/mma.1071. |
[40] |
H. W. Hethcote, W. Wang, L. Han and Z. Ma,
A predator-prey model with infected prey, Theor. Pop. Biol., 66 (2004), 259-268.
doi: 10.1016/j.tpb.2004.06.010. |
[41] |
H. W. Hethcote, W. Wang and Y. Li,
Species coexistence and periodicity in host-host-pathogen models, J. Math. Biol., 51 (2005), 629-660.
doi: 10.1007/s00285-005-0335-5. |
[42] |
F. M. Hilker,
Population collapse to extinction: The catastrophic combination of parasitism and Allee effect, J. Biol. Dyn., 4 (2010), 86-101.
doi: 10.1080/17513750903026429. |
[43] |
S. Hsu, S. Ruan and T.-H. Yang, Mathematical modelling of prey-predator interaction with disease in prey, Int. J. Comp. Sci. Math., 7. Google Scholar |
[44] |
P. J. Hudson, A. P. Dobson and D. Newborn,
Do parasites make prey vulnerable to predation? red grouse and parasites, J. Animal Ecol., 61 (1992), 681-692.
doi: 10.2307/5623. |
[45] |
A. D. Jassby and T. Platt,
Mathematical formulation of the relationship between photosynthesis and light for phytoplankton, Limnology and oceanography, 21 (1976), 540-547.
doi: 10.4319/lo.1976.21.4.0540. |
[46] |
Q. J. A. Khan, M. A. Al-Lawatia and F. Al-Kharousi,
Predator-prey harvesting model with fatal disease in prey, Math. Meth. in App. Sci., 39 (2016), 2647-2658.
doi: 10.1002/mma.3718. |
[47] |
H. Malchow, S. V. Petrovskii and E. Venturino, Spatiotemporal Pattern in Ecology and Epidemiology. Theory, Models, and Simulation, Chapman & Hall/CRC, Boca Raton, FL, 2008. |
[48] |
D. Mukherjee,
Persistence aspect of a predator-prey model with disease in the prey, Differ. Equ. Dyn. Syst., 24 (2016), 173-188.
doi: 10.1007/s12591-014-0213-y. |
[49] |
L. J. Rachowicz, J. M. Hero, R. A. Alford, J. W. Taylor, V. T. Vredenburg, J. A. T. Morgan, J. P. Collins and C. J. Briggs,
The novel and endemic pathogen hypotheses: competing explanations for the origin of emerging infectious diseases of wildlife, Conserv. Biol., 19 (2005), 1441-1448.
doi: 10.1111/j.1523-1739.2005.00255.x. |
[50] |
S. G. Ruan and H. I. Freedman,
Persistence in three-species food chain models with group defense, Math. Biosci., 107 (1991), 111-125.
doi: 10.1016/0025-5564(91)90074-S. |
[51] |
S. Sarwardi, M. Haque and E. Venturino,
A Leslie-Gower Holling-type Ⅱ ecoepidemic model, J. of App. Math. Comp., 35 (2011), 263-280.
doi: 10.1007/s12190-009-0355-1. |
[52] |
S. Sarwardi, M. Haque and E. Venturino,
Global stability and persistence in LG-Holling type Ⅱ diseased predator ecosystems, J. Biol. Phys., 37 (2011), 91-106.
doi: 10.1007/s10867-010-9201-9. |
[53] |
G. Seo and G. S. K. Wolkowicz,
Existence of multiple limit cycles in a predator-prey model with arctan(ax) as functional response, Commun. Math. Anal., 18 (2015), 64-68.
|
[54] |
G. Seo and G. S. K. Wolkowicz,
Sensitivity of the dynamics of the general rosenzweig-macarthur model to the mathematical form of the functional response: A bifurcation theory approach, J. Math. Biol, 76 (2018), 1873-1906.
doi: 10.1007/s00285-017-1201-y. |
[55] |
B. K. Singh, J. Chattopadhyay and S. Sinha,
The role of virus infection in a simple phytoplankton zooplankton system, J. Theoret. Biol., 231 (2004), 153-166.
doi: 10.1016/j.jtbi.2004.06.010. |
[56] |
J.-J. E. Slotine and W. Li et al., Applied Nonlinear Control, vol. 199, Prentice hall Englewood Cliffs, NJ, 1991. Google Scholar |
[57] |
H. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence, Amer. Math. Soc, Providence, 2011.
doi: 10.1090/gsm/118. |
[58] |
S. A. Temple,
Do predators always capture substandard individuals disproportionately from prey population?, Ecology, 68 (1987), 669-674.
doi: 10.2307/1938472. |
[59] |
H. R. Thieme,
Epidemic and demographic interaction in the spread of potentially fatal diseases in growing populations, Math. Biosci., 111 (1992), 99-130.
doi: 10.1016/0025-5564(92)90081-7. |
[60] | H. R. Thieme, Mathematical Population Biology, Princeton University Press, Princeton, 2003. Google Scholar |
[61] |
H. R. Thieme,
Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755-763.
doi: 10.1007/BF00173267. |
[62] |
H. R. Thieme, T. Dhirasakdanon, Z. Han and R. Trevino,
Species decline and extinction: Synergy of infectious disease and Allee effect?, J. Biol. Dyn., 3 (2009), 305-323.
doi: 10.1080/17513750802376313. |
[63] |
P. K. Tiwari, S. K. Sasmal, A. Sha, E. Venturino and J. Chattopadhyay,
Effect of diseases on symbiotic systems, BioSystems, 159 (2017), 36-50.
doi: 10.1016/j.biosystems.2017.07.001. |
[64] |
E. Venturino,
The influence of diseases on Lotka-Volterra systems, Rocky Mt. J. Math., 24 (1994), 381-402.
doi: 10.1216/rmjm/1181072471. |
[65] |
E. Venturino,
Ecoepidemiology: A more comprehensive view of population interactions, Math. Model. Nat. Phenom., 11 (2016), 49-90.
doi: 10.1051/mmnp/201611104. |
[66] |
E. Venturino, O. Arino, D. Axelrod, M. Kimmel, M. Langlais and eds., Epidemics in predatorprey models: disease in the prey, Math. Pop. Dyn.: Anal. of Hetero., Vol. One: Theory of Epidemics, 92 (1995), 381-393. Google Scholar |
[67] |
M. Q. Wilber, R. A. Knapp, M. Toothman and C. J. Briggs,
Resistance, tolerance and environmental transmission dynamics determine host extinction risk in a load-dependent amphibian disease, Ecol. Lett., 20 (2017), 1169-1181.
doi: 10.1111/ele.12814. |
[68] |
Y. Xiao and L. Chen,
Analysis of a three species eco-epidemiological model, J. Math. Anal. Appl., 258 (2001), 733-754.
doi: 10.1006/jmaa.2001.7514. |
[69] |
Y. Xiao and L. Chen,
Modeling and analysis of a predator-prey model with disease in the prey, Math. Biosci., 171 (2001), 59-82.
doi: 10.1016/S0025-5564(01)00049-9. |
[70] |
Y. Xiao and L. Chen,
A ratio-dependent predator-prey model with disease in the prey, App. Math. Comp., 131 (2002), 397-414.
doi: 10.1016/S0096-3003(01)00156-4. |
[71] |
P. Yongzhen, L. Shuping and L. Changgua,
Effect of delay on a predator-prey model with parasitic infection, Nonlinear Dyn., 63 (2011), 311-321.
doi: 10.1007/s11071-010-9805-4. |
[72] |
E. F. Zipkin, G. V. DiRenzo, J. M. Ray, S. Rossman and K. R. Lips,
Tropical snake diversity collapses after widespread amphibian loss, Science, 367 (2020), 814-816.
doi: 10.1126/science.aay5733. |
show all references
References:
[1] |
F. Abbona and E. Venturino,
An eco-epidemic model for infectious keratoconjunctivitis caused by mycoplasma conjunctivae in domestic and wild herbivores, with possible vaccination strategies, Math. Methods Appl. Sci., 41 (2018), 2269-2280.
doi: 10.1002/mma.4209. |
[2] |
O. Arino, A. El abdllaoui, J. Mikram and J. Chattopadhyay,
Infection in prey population may act as a biological control in ratio-dependent predator-prey models, Nonlinearity, 17 (2004), 1101-1116.
doi: 10.1088/0951-7715/17/3/018. |
[3] |
B. S. Attili and S. F. Mallak,
Existence of limit cycles in a predator-prey system with a functional response of the form arctan(ax), Commun. Math. Anal., 1 (2006), 33-40.
|
[4] |
N. Bairagi, P. K. Roy and J. Chattopadhyay,
Role of infection on the stability of a predator-prey system with several response functionsa comparative study, J. Theo. Biol., 248 (2007), 10-25.
doi: 10.1016/j.jtbi.2007.05.005. |
[5] |
F. Barbara, V. La Morgia, V. Parodi, G. Toscano and E. Venturino, Analysis of the incidence of poxvirus on the dynamics between red and grey squirrels, Mathematics, 6 (2018), 113.
doi: 10.3390/math6070113. |
[6] |
E. Beltrami and T. O. Carroll,
Modeling the role of viral disease in recurrent phytoplankton bloom, Journal of Mathematical Biology, 32 (1994), 857-863.
doi: 10.1007/BF00168802. |
[7] |
S. P. Bera, A. Maiti and G. P. Samanta,
Prey-predator model with infection in both prey and predator, Filomat, 29 (2015), 1753-1767.
doi: 10.2298/FIL1508753B. |
[8] |
E. Cagliero and E. Venturino,
Ecoepidemics with infected prey in herd defence: The harmless and toxic cases, Int. J. Comp. Math., 93 (2016), 108-127.
doi: 10.1080/00207160.2014.988614. |
[9] |
J. Chattopadhyay and O. Arino,
A predator-prey model with disease in the prey, Nonlin. Anal., 36 (1999), 747-766.
doi: 10.1016/S0362-546X(98)00126-6. |
[10] |
J. Chattopadhyay and S. Pal,
Viral infection on phytoplankton zooplankton system a mathematical model, Ecological Modeling, 151 (2002), 15-28.
doi: 10.1016/S0304-3800(01)00415-X. |
[11] |
J. Chattopadhyay, S. Pal and A. El Abdllaoui,
Classical predator-prey system with infection of prey populationa mathematical model, Math. Meth. in the App. Sci., 26 (2003), 1211-1222.
doi: 10.1002/mma.414. |
[12] |
Y. Chen and Y. Wen,
Impact on the predator population while lethal disease spreads in the prey, Math. Meth. in App. Sci., 39 (2016), 2883-2895.
doi: 10.1002/mma.3737. |
[13] |
J. P. Collins,
Amphibian decline and extinction: What we know and what we need to learn, Dis. Aquat. Org., 92 (2010), 93-99.
doi: 10.3354/dao02307. |
[14] | J. P. Collins, M. L. Crump and T. E. Lovejoy III, Extinction in our Times: Global Amphibian Decline, Oxford University Press, 2009. Google Scholar |
[15] |
K. P. Das and J. Chattopadhyay, A mathematical study of a predator-prey model with disease circulating in the both populations, Int. J. Biomath., 8 (2015), 1550015, 27 pp.
doi: 10.1142/S1793524515500151. |
[16] |
L. M. E. de Assis, E. Massad, R. A. de Assis, S. R. Martorano and E. Venturino,
A mathematical model for bovine tuberculosis among buffaloes and lions in the kruger national park, Mathematical Methods in the Applied Sciences, 41 (2018), 525-543.
doi: 10.1002/mma.4568. |
[17] |
K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.
doi: 10.1007/978-3-662-00547-7. |
[18] |
T. Dhirasakdanon and H. Thieme,
Stability of the endemic coexistence equilibrium for one host and two parasites, Mathematical Modelling of Natural Phenomena, 5 (2010), 109-138.
doi: 10.1051/mmnp/20105606. |
[19] |
D. E. Docherty, C. U. Meteyer, J. Wang, J. Mao, S. T. Case and V. G. Chinchar,
Diagnostic and molecular evaluation of three iridovirus-associated salamander mortality events, J. Wildl. Dis., 39 (2003), 556-566.
doi: 10.7589/0090-3558-39.3.556. |
[20] |
A. Farrell, Prey-Predator-Parasite: An Ecosystem Model with Fragile Persistence, Thesis (Ph.D.)-Arizona State University. 2017,238 pp. |
[21] |
A. P. Farrell, J. P. Collins, A. L. Greer and H. R. Thieme,
Do fatal infectious diseases eradicate host species?, J. Math. Biol., 77 (2018), 2103-2164.
doi: 10.1007/s00285-018-1249-3. |
[22] |
A. P. Farrell, J. P. Collins, A. L. Greer and H. R. Thieme,
Times from infection to disease-induced death and their influence on final population sizes after epidemic outbreaks, Bull. Math. Biol., 80 (2018), 1937-1961.
doi: 10.1007/s11538-018-0446-y. |
[23] |
A. Friedman and A.-A. Yakubu,
Host demographic Allee effect, fatal disease, and migration: Persistence or extinction, SIAM J. Appl. Math., 72 (2012), 1644-1666.
doi: 10.1137/120861382. |
[24] |
J. Gani and R. J. Swift,
Prey-predator models with infected prey and predators, Disc. and Cont. Dyn. Sys., 33 (2013), 5059-5066.
doi: 10.3934/dcds.2013.33.5059. |
[25] |
W. M. Getz and J. Pickering,
Epidemic models: Thresholds and population regulation, Am. Nat., 121 (1983), 892-898.
doi: 10.1086/284112. |
[26] |
M. Ghosh and X.-Z. Li,
Mathematical modelling of prey-predator interaction with disease in prey, Int. J. Comp. Sci. Math., 7 (2016), 443-458.
doi: 10.1504/IJCSM.2016.080075. |
[27] |
G. Gimmelli, B. W. Kooi and E. Venturino,
Ecoepidemic models with prey group defense and feeding saturation, Ecol. Complex., 22 (2015), 50-58.
doi: 10.1016/j.ecocom.2015.02.004. |
[28] |
M. J. Gray and V. G. Chinchar, Ranaviruses: Lethal Pathogens of Ectothermic Vertebrates, Springer, 2015. Google Scholar |
[29] |
M. J. Gray, D. L. Miller and J. T. Hoverman,
Ecology and pathology of amphibian ranaviruses, Dis. Aquat. Organ., 87 (2009), 243-266.
doi: 10.3354/dao02138. |
[30] |
D. E. Green, K. A. Converse and A. K. Schrader,
Epizootiology of sixty-four amphibian morbidity and mortality events in the USA, 1996-2001, Ann. N. Y. Acad. Sci., 969 (2002), 323-339.
doi: 10.1111/j.1749-6632.2002.tb04400.x. |
[31] |
D. Greenhalgh and R. Das, An SIRS epidemic model with a contact rate depending on population density, Math. Pop. Dyn.: Anal. of Hetero., Vol. One: Theory of Epidemics, 92 (1995), 79-101. Google Scholar |
[32] |
A. L. Greer, C. J. Briggs and J. P. Collins,
Testing a key assumption of host-pathogen theory: Density and disease transmission, Oikos, 117 (2008), 1667-1673.
doi: 10.1111/j.1600-0706.2008.16783.x. |
[33] |
K. P. Hadeler, K. Dietz and M. Safan,
Case fatality models for epidemics in growing populations, Math. Biosci., 281 (2016), 120-127.
doi: 10.1016/j.mbs.2016.09.007. |
[34] |
K. P. Hadeler and H. I. Freedman,
Predator-prey populations with parasitic infection, J. Math. Biol., 27 (1989), 609-631.
doi: 10.1007/BF00276947. |
[35] |
J. K. Hale, Ordinary Differential Equations, Robert E. Krieger Publishing Company, Inc., 1980. |
[36] |
L. Han, Z. Ma and H. W. Hethcote,
Four predator prey models with infectious diseases, Math. Comp. Modeling, 34 (2001), 849-858.
doi: 10.1016/S0895-7177(01)00104-2. |
[37] |
L. Han and A. Pugliese,
Epidemics in two competing species, Nonlin. Anal. RWA, 10 (2009), 723-744.
doi: 10.1016/j.nonrwa.2007.11.005. |
[38] |
M. Haque and D. Greenhalgh,
When a predator avoids infected prey: A model-based theoretical study, Math. Med. Biol., 27 (2010), 75-94.
doi: 10.1093/imammb/dqp007. |
[39] |
M. Haque, J. Zhen and E. Venturino,
An ecoepidemiological predator-prey model with standard disease incidence, Math. Meth. Appl. Sci., 32 (2009), 875-898.
doi: 10.1002/mma.1071. |
[40] |
H. W. Hethcote, W. Wang, L. Han and Z. Ma,
A predator-prey model with infected prey, Theor. Pop. Biol., 66 (2004), 259-268.
doi: 10.1016/j.tpb.2004.06.010. |
[41] |
H. W. Hethcote, W. Wang and Y. Li,
Species coexistence and periodicity in host-host-pathogen models, J. Math. Biol., 51 (2005), 629-660.
doi: 10.1007/s00285-005-0335-5. |
[42] |
F. M. Hilker,
Population collapse to extinction: The catastrophic combination of parasitism and Allee effect, J. Biol. Dyn., 4 (2010), 86-101.
doi: 10.1080/17513750903026429. |
[43] |
S. Hsu, S. Ruan and T.-H. Yang, Mathematical modelling of prey-predator interaction with disease in prey, Int. J. Comp. Sci. Math., 7. Google Scholar |
[44] |
P. J. Hudson, A. P. Dobson and D. Newborn,
Do parasites make prey vulnerable to predation? red grouse and parasites, J. Animal Ecol., 61 (1992), 681-692.
doi: 10.2307/5623. |
[45] |
A. D. Jassby and T. Platt,
Mathematical formulation of the relationship between photosynthesis and light for phytoplankton, Limnology and oceanography, 21 (1976), 540-547.
doi: 10.4319/lo.1976.21.4.0540. |
[46] |
Q. J. A. Khan, M. A. Al-Lawatia and F. Al-Kharousi,
Predator-prey harvesting model with fatal disease in prey, Math. Meth. in App. Sci., 39 (2016), 2647-2658.
doi: 10.1002/mma.3718. |
[47] |
H. Malchow, S. V. Petrovskii and E. Venturino, Spatiotemporal Pattern in Ecology and Epidemiology. Theory, Models, and Simulation, Chapman & Hall/CRC, Boca Raton, FL, 2008. |
[48] |
D. Mukherjee,
Persistence aspect of a predator-prey model with disease in the prey, Differ. Equ. Dyn. Syst., 24 (2016), 173-188.
doi: 10.1007/s12591-014-0213-y. |
[49] |
L. J. Rachowicz, J. M. Hero, R. A. Alford, J. W. Taylor, V. T. Vredenburg, J. A. T. Morgan, J. P. Collins and C. J. Briggs,
The novel and endemic pathogen hypotheses: competing explanations for the origin of emerging infectious diseases of wildlife, Conserv. Biol., 19 (2005), 1441-1448.
doi: 10.1111/j.1523-1739.2005.00255.x. |
[50] |
S. G. Ruan and H. I. Freedman,
Persistence in three-species food chain models with group defense, Math. Biosci., 107 (1991), 111-125.
doi: 10.1016/0025-5564(91)90074-S. |
[51] |
S. Sarwardi, M. Haque and E. Venturino,
A Leslie-Gower Holling-type Ⅱ ecoepidemic model, J. of App. Math. Comp., 35 (2011), 263-280.
doi: 10.1007/s12190-009-0355-1. |
[52] |
S. Sarwardi, M. Haque and E. Venturino,
Global stability and persistence in LG-Holling type Ⅱ diseased predator ecosystems, J. Biol. Phys., 37 (2011), 91-106.
doi: 10.1007/s10867-010-9201-9. |
[53] |
G. Seo and G. S. K. Wolkowicz,
Existence of multiple limit cycles in a predator-prey model with arctan(ax) as functional response, Commun. Math. Anal., 18 (2015), 64-68.
|
[54] |
G. Seo and G. S. K. Wolkowicz,
Sensitivity of the dynamics of the general rosenzweig-macarthur model to the mathematical form of the functional response: A bifurcation theory approach, J. Math. Biol, 76 (2018), 1873-1906.
doi: 10.1007/s00285-017-1201-y. |
[55] |
B. K. Singh, J. Chattopadhyay and S. Sinha,
The role of virus infection in a simple phytoplankton zooplankton system, J. Theoret. Biol., 231 (2004), 153-166.
doi: 10.1016/j.jtbi.2004.06.010. |
[56] |
J.-J. E. Slotine and W. Li et al., Applied Nonlinear Control, vol. 199, Prentice hall Englewood Cliffs, NJ, 1991. Google Scholar |
[57] |
H. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence, Amer. Math. Soc, Providence, 2011.
doi: 10.1090/gsm/118. |
[58] |
S. A. Temple,
Do predators always capture substandard individuals disproportionately from prey population?, Ecology, 68 (1987), 669-674.
doi: 10.2307/1938472. |
[59] |
H. R. Thieme,
Epidemic and demographic interaction in the spread of potentially fatal diseases in growing populations, Math. Biosci., 111 (1992), 99-130.
doi: 10.1016/0025-5564(92)90081-7. |
[60] | H. R. Thieme, Mathematical Population Biology, Princeton University Press, Princeton, 2003. Google Scholar |
[61] |
H. R. Thieme,
Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755-763.
doi: 10.1007/BF00173267. |
[62] |
H. R. Thieme, T. Dhirasakdanon, Z. Han and R. Trevino,
Species decline and extinction: Synergy of infectious disease and Allee effect?, J. Biol. Dyn., 3 (2009), 305-323.
doi: 10.1080/17513750802376313. |
[63] |
P. K. Tiwari, S. K. Sasmal, A. Sha, E. Venturino and J. Chattopadhyay,
Effect of diseases on symbiotic systems, BioSystems, 159 (2017), 36-50.
doi: 10.1016/j.biosystems.2017.07.001. |
[64] |
E. Venturino,
The influence of diseases on Lotka-Volterra systems, Rocky Mt. J. Math., 24 (1994), 381-402.
doi: 10.1216/rmjm/1181072471. |
[65] |
E. Venturino,
Ecoepidemiology: A more comprehensive view of population interactions, Math. Model. Nat. Phenom., 11 (2016), 49-90.
doi: 10.1051/mmnp/201611104. |
[66] |
E. Venturino, O. Arino, D. Axelrod, M. Kimmel, M. Langlais and eds., Epidemics in predatorprey models: disease in the prey, Math. Pop. Dyn.: Anal. of Hetero., Vol. One: Theory of Epidemics, 92 (1995), 381-393. Google Scholar |
[67] |
M. Q. Wilber, R. A. Knapp, M. Toothman and C. J. Briggs,
Resistance, tolerance and environmental transmission dynamics determine host extinction risk in a load-dependent amphibian disease, Ecol. Lett., 20 (2017), 1169-1181.
doi: 10.1111/ele.12814. |
[68] |
Y. Xiao and L. Chen,
Analysis of a three species eco-epidemiological model, J. Math. Anal. Appl., 258 (2001), 733-754.
doi: 10.1006/jmaa.2001.7514. |
[69] |
Y. Xiao and L. Chen,
Modeling and analysis of a predator-prey model with disease in the prey, Math. Biosci., 171 (2001), 59-82.
doi: 10.1016/S0025-5564(01)00049-9. |
[70] |
Y. Xiao and L. Chen,
A ratio-dependent predator-prey model with disease in the prey, App. Math. Comp., 131 (2002), 397-414.
doi: 10.1016/S0096-3003(01)00156-4. |
[71] |
P. Yongzhen, L. Shuping and L. Changgua,
Effect of delay on a predator-prey model with parasitic infection, Nonlinear Dyn., 63 (2011), 311-321.
doi: 10.1007/s11071-010-9805-4. |
[72] |
E. F. Zipkin, G. V. DiRenzo, J. M. Ray, S. Rossman and K. R. Lips,
Tropical snake diversity collapses after widespread amphibian loss, Science, 367 (2020), 814-816.
doi: 10.1126/science.aay5733. |
|
|
Parameter Values | Dynamics |
|
|
no |
|
|
|
Parameter Values | Dynamics |
|
|
no |
|
[1] |
Elvio Accinelli, Humberto Muñiz. A dynamic for production economies with multiple equilibria. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021002 |
[2] |
Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021013 |
[3] |
Xiaoxian Tang, Jie Wang. Bistability of sequestration networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1337-1357. doi: 10.3934/dcdsb.2020165 |
[4] |
David W. K. Yeung, Yingxuan Zhang, Hongtao Bai, Sardar M. N. Islam. Collaborative environmental management for transboundary air pollution problems: A differential levies game. Journal of Industrial & Management Optimization, 2021, 17 (2) : 517-531. doi: 10.3934/jimo.2019121 |
[5] |
Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020465 |
[6] |
Yunfeng Geng, Xiaoying Wang, Frithjof Lutscher. Coexistence of competing consumers on a single resource in a hybrid model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 269-297. doi: 10.3934/dcdsb.2020140 |
[7] |
Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020117 |
[8] |
Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075 |
[9] |
Xiaofeng Ren, David Shoup. The impact of the domain boundary on an inhibitory system: Interior discs and boundary half discs. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3957-3979. doi: 10.3934/dcds.2020048 |
[10] |
Peter H. van der Kamp, D. I. McLaren, G. R. W. Quispel. Homogeneous darboux polynomials and generalising integrable ODE systems. Journal of Computational Dynamics, 2021, 8 (1) : 1-8. doi: 10.3934/jcd.2021001 |
[11] |
Hirofumi Izuhara, Shunsuke Kobayashi. Spatio-temporal coexistence in the cross-diffusion competition system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 919-933. doi: 10.3934/dcdss.2020228 |
[12] |
Andreas Koutsogiannis. Multiple ergodic averages for tempered functions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1177-1205. doi: 10.3934/dcds.2020314 |
[13] |
Xin Zhao, Tao Feng, Liang Wang, Zhipeng Qiu. Threshold dynamics and sensitivity analysis of a stochastic semi-Markov switched SIRS epidemic model with nonlinear incidence and vaccination. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021010 |
[14] |
Kohei Nakamura. An application of interpolation inequalities between the deviation of curvature and the isoperimetric ratio to the length-preserving flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1093-1102. doi: 10.3934/dcdss.2020385 |
[15] |
Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365 |
[16] |
Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272 |
[17] |
Jing Qin, Shuang Li, Deanna Needell, Anna Ma, Rachel Grotheer, Chenxi Huang, Natalie Durgin. Stochastic greedy algorithms for multiple measurement vectors. Inverse Problems & Imaging, 2021, 15 (1) : 79-107. doi: 10.3934/ipi.2020066 |
[18] |
Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020431 |
[19] |
A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020441 |
[20] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]