January  2021, 26(1): 173-190. doi: 10.3934/dcdsb.2020329

The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect

Department of Mathematics, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo, Hokkaido, 060-0810, Japan

* Corresponding author: Shin-Ichiro Ei

Received  March 2020 Revised  October 2020 Published  January 2021 Early access  November 2020

In this paper, we analyze the interaction of localized patterns such as traveling wave solutions for reaction-diffusion systems with nonlocal effect in one space dimension. We consider the case that a nonlocal effect is given by the convolution with a suitable integral kernel. At first, we deduce the equation describing the movement of interacting localized patterns in a mathematically rigorous way, assuming that there exists a linearly stable localized solution for general reaction-diffusion systems with nonlocal effect. When the distances between localized patterns are sufficiently large, the motion of localized patterns can be reduced to the equation for the distances between them. Finally, using this equation, we analyze the interaction of front solutions to some nonlocal scalar equation. Under some assumptions, we can show that the front solutions are interacting attractively for a large class of integral kernels.

Citation: Shin-Ichiro Ei, Hiroshi Ishii. The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 173-190. doi: 10.3934/dcdsb.2020329
References:
[1]

F. Andreu-Vaillo, J. Mazón, J. D. Rossi and J. J. Toledo-Melero, Nonlocal Diffusion Problems, Mathematical Surveys and Monographs, 165. American Mathematical Society, Providence, RI, Real Sociedad Matemática Española, Madrid, 2010. doi: 10.1090/surv/165.

[2]

P. W. Bates, On some nonlocal evolution equations arising in materials science, Nonlinear Dynamics and Evolution Equations, Fields Inst. Commun., Amer. Math. Soc., Providence, RI, 48 (2006), 13-52. 

[3]

P. W. Bates and F. Chen, Spectral analysis and multidimensional stability of traveling waves for nonlocal Allen-Cahn equation, J. Math. Anal. Appl., 273 (2002), 45-57.  doi: 10.1016/S0022-247X(02)00205-6.

[4]

P. W. Bates and F. Chen, Spectral analysis of traveling waves for nonlocal evolution equations, SIAM J. Math. Anal., 38 (2006), 116-126.  doi: 10.1137/S0036141004443968.

[5]

P. W. BatesX. Chen and A. J. J. Chmaj, Heteroclinic solutions of a van der Waals model with indefinite nonlocal interactions, Calc. Var., 24 (2005), 261-281.  doi: 10.1007/s00526-005-0308-y.

[6]

P. W. BatesP. C. FifeX. Ren and X. Wang, Traveling waves in a convolution model for phase transitions, Arch. Ration. Mech. Anal., 138 (1997), 105-136.  doi: 10.1007/s002050050037.

[7]

J. A. CarrilloH. MurakawaM. SatoH. Togashi and O. Trush, A population dynamics model of cell-cell adhesion incorporating population pressure and density saturation, J. Theor. Biology, 474 (2019), 14-24.  doi: 10.1016/j.jtbi.2019.04.023.

[8]

F. Chen, Almost periodic traveling waves of nonlocal evolution equations, Nonlinear Anal., 50 (2002), 807-838.  doi: 10.1016/S0362-546X(01)00787-8.

[9]

X. Chen, Existence, uniqueness and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differential Equations, 2 (1997), 125-160. 

[10]

A. Chmaj and X. Ren, Homoclinic solutions of an integral equation: Existence and stability, J. Differential Equations, 155 (1999), 17-43.  doi: 10.1006/jdeq.1998.3571.

[11]

J. Coville and L. Dupaigne, On a non-local equation arising in population dynamics, Proc. R. Soc. Edinb. A, 137 (2007), 727-755.  doi: 10.1017/S0308210504000721.

[12]

A. DolemanR. A. Gardner and T. J. Kaper, Stability analysis of singular patterns in the 1-D Gray-Scott model: A matched asymptotics approach, Physica D, 122 (1998), 1-36.  doi: 10.1016/S0167-2789(98)00180-8.

[13]

S.-I. Ei, The motion of weakly interacting pulses in reaction-diffusion systems, J. Dynam. Diff. Eqns., 14 (2002), 85-137.  doi: 10.1023/A:1012980128575.

[14]

S.-I. Ei, J.-S. Guo, H. Ishii and C.-C. Wu, Existence of traveling waves solutions to a nonlocal scalar equation with sign-changing kernel, Journal of Mathematical Analysis and Applications, 487 (2020), 124007, 14 pp. doi: 10.1016/j.jmaa.2020.124007.

[15]

S.-I. Ei, H. Ishii, S. Kondo, T. Miura and Y. Tanaka, Effective nonlocal kernels on reaction-diffusion networks, Journal of Theoretical Biology, 509 (2021), 110496. doi: 10.1016/j.jtbi.2020.110496.

[16]

S.-I. Ei and H. Matsuzawa, The motion of a transition layer for a bistable reaction diffusion equation with heterogeneous environment, Discrete Contin. Dyn. Syst., 26 (2010), 901-921.  doi: 10.3934/dcds.2010.26.901.

[17]

P. C. Fife and J. B. Mcleod, The approach of solutions of nonlinear diffusion equations to traveling wave front solutions, Arch. Rat. Mech. Anal., 65 (1977), 335-361.  doi: 10.1007/BF00250432.

[18]

A. Gierer and H. Meinhardt, A theory of biological pattern formation, Kybernetik, 12 (1972), 30-39.  doi: 10.1007/BF00289234.

[19]

V. HutsonS. MartinezK. Mischaikow and G. T. Vickers, The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517.  doi: 10.1007/s00285-003-0210-1.

[20]

S. Ishihara, M. Otsuji and A. Mochizuki, Transient and steady state of mass conserved reaction-diffusion systems, Phys. Rev. E, 75 (2007), 015203. doi: 10.1103/PhysRevE.75.015203.

[21]

C. K. R. T. Jones, Stability of the traveling wave solution of the FitzHugh-Nagumo system, Trans. A. M. S., 286 (1984), 431-469.  doi: 10.1090/S0002-9947-1984-0760971-6.

[22]

S. Kondo, An updated kernel-based Turing model for studying the mechanisms of biological pattern formation, J. Theoretical Biology, 414 (2017), 120-127.  doi: 10.1016/j.jtbi.2016.11.003.

[23]

S. Kondo and T. Miura, Reaction-diffusion model as a framework for understanding biological pattern formation, Science, 329 (2010), 1616-1620.  doi: 10.1126/science.1179047.

[24]

M. Mimura and M. Nagayama, Nonannihilation dynamics in an exothermic reaction-diffusion system with mono-stable excitability, Chaos, 7 (1997), 817-826.  doi: 10.1063/1.166282.

[25]

J. D. Murray, Mathematical Biology. I. An Introduction, Third edition, Interdisciplinary Applied Mathematics, 17. Springer-Verlag, New York, 2002. doi: 10.1007/b98869.

[26]

Y. Nagashima, S. Tsugawa, A. Mochizuki, T. Sasaki, H. Fukuda and Y. Oda, A Rho-based reaction-diffusion system governs cell wall patterning in metaxylem vessels, Sci. Rep., 8 (2018), 11542. doi: 10.1038/s41598-018-29543-y.

[27]

A. NakamasuG. TakahashiA. Kanbe and S. Kondo, Interactions between zebrafish pigment cells responsible for the generation of Turing patterns, PNAS, 106 (2009), 8429-8434.  doi: 10.1073/pnas.0808622106.

[28]

H. NinomiyaY. Tanaka and H. Yamamoto, Reaction, diffusion and non-local interaction, J. Math. Biol., 75 (2017), 1203-1233.  doi: 10.1007/s00285-017-1113-x.

[29]

K. J. PainterJ. M. BloomfieldJ. A. Sherratt and A. Gerisch, A nonlocal model for contact attraction and repulsion in heterogeneous cell populations, Bulletin of Mathematical Biology, 77 (2015), 1132-1165.  doi: 10.1007/s11538-015-0080-x.

[30]

J. Siebert and E. Schöll, Front and turing patterns induced by mexican-hat-like nonlocal feedback, Europhys. Lett., 109 (2015), 40014. doi: 10.1209/0295-5075/109/40014.

[31]

T. SushidaS. KondoK. Sugihara and M. Mimura, A differential equation model of retinal processing for understanding lightness optical illusions, Japan Journal of Industrial and Applied Mathematics, 35 (2018), 117-156.  doi: 10.1007/s13160-017-0272-x.

[32]

A. M. Turing, The chemical basis of morphogenesis, Philos. Trans. R. Soc. Lond. Ser. B, 237 (1953), 37-72.  doi: 10.1098/rstb.1952.0012.

[33]

E. Yanagida, Stability of fast traveling pulse solutions of the FitzHugh-Nagumo equations, J. Math. Biol., 22 (1985), 81-104.  doi: 10.1007/BF00276548.

[34]

G. Zhao and S. Ruan, The decay rates of traveling waves and spectral analysis for a class of nonlocal evolution equations, Math. Model. Nat. Phenom., 10 (2015), 142-162.  doi: 10.1051/mmnp/20150610.

show all references

References:
[1]

F. Andreu-Vaillo, J. Mazón, J. D. Rossi and J. J. Toledo-Melero, Nonlocal Diffusion Problems, Mathematical Surveys and Monographs, 165. American Mathematical Society, Providence, RI, Real Sociedad Matemática Española, Madrid, 2010. doi: 10.1090/surv/165.

[2]

P. W. Bates, On some nonlocal evolution equations arising in materials science, Nonlinear Dynamics and Evolution Equations, Fields Inst. Commun., Amer. Math. Soc., Providence, RI, 48 (2006), 13-52. 

[3]

P. W. Bates and F. Chen, Spectral analysis and multidimensional stability of traveling waves for nonlocal Allen-Cahn equation, J. Math. Anal. Appl., 273 (2002), 45-57.  doi: 10.1016/S0022-247X(02)00205-6.

[4]

P. W. Bates and F. Chen, Spectral analysis of traveling waves for nonlocal evolution equations, SIAM J. Math. Anal., 38 (2006), 116-126.  doi: 10.1137/S0036141004443968.

[5]

P. W. BatesX. Chen and A. J. J. Chmaj, Heteroclinic solutions of a van der Waals model with indefinite nonlocal interactions, Calc. Var., 24 (2005), 261-281.  doi: 10.1007/s00526-005-0308-y.

[6]

P. W. BatesP. C. FifeX. Ren and X. Wang, Traveling waves in a convolution model for phase transitions, Arch. Ration. Mech. Anal., 138 (1997), 105-136.  doi: 10.1007/s002050050037.

[7]

J. A. CarrilloH. MurakawaM. SatoH. Togashi and O. Trush, A population dynamics model of cell-cell adhesion incorporating population pressure and density saturation, J. Theor. Biology, 474 (2019), 14-24.  doi: 10.1016/j.jtbi.2019.04.023.

[8]

F. Chen, Almost periodic traveling waves of nonlocal evolution equations, Nonlinear Anal., 50 (2002), 807-838.  doi: 10.1016/S0362-546X(01)00787-8.

[9]

X. Chen, Existence, uniqueness and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differential Equations, 2 (1997), 125-160. 

[10]

A. Chmaj and X. Ren, Homoclinic solutions of an integral equation: Existence and stability, J. Differential Equations, 155 (1999), 17-43.  doi: 10.1006/jdeq.1998.3571.

[11]

J. Coville and L. Dupaigne, On a non-local equation arising in population dynamics, Proc. R. Soc. Edinb. A, 137 (2007), 727-755.  doi: 10.1017/S0308210504000721.

[12]

A. DolemanR. A. Gardner and T. J. Kaper, Stability analysis of singular patterns in the 1-D Gray-Scott model: A matched asymptotics approach, Physica D, 122 (1998), 1-36.  doi: 10.1016/S0167-2789(98)00180-8.

[13]

S.-I. Ei, The motion of weakly interacting pulses in reaction-diffusion systems, J. Dynam. Diff. Eqns., 14 (2002), 85-137.  doi: 10.1023/A:1012980128575.

[14]

S.-I. Ei, J.-S. Guo, H. Ishii and C.-C. Wu, Existence of traveling waves solutions to a nonlocal scalar equation with sign-changing kernel, Journal of Mathematical Analysis and Applications, 487 (2020), 124007, 14 pp. doi: 10.1016/j.jmaa.2020.124007.

[15]

S.-I. Ei, H. Ishii, S. Kondo, T. Miura and Y. Tanaka, Effective nonlocal kernels on reaction-diffusion networks, Journal of Theoretical Biology, 509 (2021), 110496. doi: 10.1016/j.jtbi.2020.110496.

[16]

S.-I. Ei and H. Matsuzawa, The motion of a transition layer for a bistable reaction diffusion equation with heterogeneous environment, Discrete Contin. Dyn. Syst., 26 (2010), 901-921.  doi: 10.3934/dcds.2010.26.901.

[17]

P. C. Fife and J. B. Mcleod, The approach of solutions of nonlinear diffusion equations to traveling wave front solutions, Arch. Rat. Mech. Anal., 65 (1977), 335-361.  doi: 10.1007/BF00250432.

[18]

A. Gierer and H. Meinhardt, A theory of biological pattern formation, Kybernetik, 12 (1972), 30-39.  doi: 10.1007/BF00289234.

[19]

V. HutsonS. MartinezK. Mischaikow and G. T. Vickers, The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517.  doi: 10.1007/s00285-003-0210-1.

[20]

S. Ishihara, M. Otsuji and A. Mochizuki, Transient and steady state of mass conserved reaction-diffusion systems, Phys. Rev. E, 75 (2007), 015203. doi: 10.1103/PhysRevE.75.015203.

[21]

C. K. R. T. Jones, Stability of the traveling wave solution of the FitzHugh-Nagumo system, Trans. A. M. S., 286 (1984), 431-469.  doi: 10.1090/S0002-9947-1984-0760971-6.

[22]

S. Kondo, An updated kernel-based Turing model for studying the mechanisms of biological pattern formation, J. Theoretical Biology, 414 (2017), 120-127.  doi: 10.1016/j.jtbi.2016.11.003.

[23]

S. Kondo and T. Miura, Reaction-diffusion model as a framework for understanding biological pattern formation, Science, 329 (2010), 1616-1620.  doi: 10.1126/science.1179047.

[24]

M. Mimura and M. Nagayama, Nonannihilation dynamics in an exothermic reaction-diffusion system with mono-stable excitability, Chaos, 7 (1997), 817-826.  doi: 10.1063/1.166282.

[25]

J. D. Murray, Mathematical Biology. I. An Introduction, Third edition, Interdisciplinary Applied Mathematics, 17. Springer-Verlag, New York, 2002. doi: 10.1007/b98869.

[26]

Y. Nagashima, S. Tsugawa, A. Mochizuki, T. Sasaki, H. Fukuda and Y. Oda, A Rho-based reaction-diffusion system governs cell wall patterning in metaxylem vessels, Sci. Rep., 8 (2018), 11542. doi: 10.1038/s41598-018-29543-y.

[27]

A. NakamasuG. TakahashiA. Kanbe and S. Kondo, Interactions between zebrafish pigment cells responsible for the generation of Turing patterns, PNAS, 106 (2009), 8429-8434.  doi: 10.1073/pnas.0808622106.

[28]

H. NinomiyaY. Tanaka and H. Yamamoto, Reaction, diffusion and non-local interaction, J. Math. Biol., 75 (2017), 1203-1233.  doi: 10.1007/s00285-017-1113-x.

[29]

K. J. PainterJ. M. BloomfieldJ. A. Sherratt and A. Gerisch, A nonlocal model for contact attraction and repulsion in heterogeneous cell populations, Bulletin of Mathematical Biology, 77 (2015), 1132-1165.  doi: 10.1007/s11538-015-0080-x.

[30]

J. Siebert and E. Schöll, Front and turing patterns induced by mexican-hat-like nonlocal feedback, Europhys. Lett., 109 (2015), 40014. doi: 10.1209/0295-5075/109/40014.

[31]

T. SushidaS. KondoK. Sugihara and M. Mimura, A differential equation model of retinal processing for understanding lightness optical illusions, Japan Journal of Industrial and Applied Mathematics, 35 (2018), 117-156.  doi: 10.1007/s13160-017-0272-x.

[32]

A. M. Turing, The chemical basis of morphogenesis, Philos. Trans. R. Soc. Lond. Ser. B, 237 (1953), 37-72.  doi: 10.1098/rstb.1952.0012.

[33]

E. Yanagida, Stability of fast traveling pulse solutions of the FitzHugh-Nagumo equations, J. Math. Biol., 22 (1985), 81-104.  doi: 10.1007/BF00276548.

[34]

G. Zhao and S. Ruan, The decay rates of traveling waves and spectral analysis for a class of nonlocal evolution equations, Math. Model. Nat. Phenom., 10 (2015), 142-162.  doi: 10.1051/mmnp/20150610.

Figure 1.  The image of an integral kernel $ K $ with the Mexican hat profile on $ {\mathbb{R}} $
Figure 2.  The images of localized patterns. (a) Pulse solution when $ P^{+} = P^{-} = \mathit{\boldsymbol{0}} $. (b) Front solution when $ n = 1 $ and $ P^{+}>P^{-} $
Figure 3.  The image of $ P(z;\mathit{\boldsymbol{h}}) $ when $ N = 2 $
Figure 4.  The image of $ P(z;\mathit{\boldsymbol{h}}) $. (a) $ (N^+, N^-) = (1,1) $. (b) $ (N^+, N^-) = (2,1) $
Figure 5.  The image of the interaction of two standing fronts, when the kernel is a non-negative function
Figure 6.  (a) The graph of (30) when $ \varepsilon = 0.01,\ q_1 = 1.0,\ q_2 = 2.0 $. (b) The graph of $ G(\lambda) $ when $ d = 1.0 $, $ f'(1) = -1 $ and the integral kernel is same as Figure 6 (a)
Figure 7.  (a) The numerical solution of $ (2) $ on the interval $ (0,40) $ when $ t = 100.0 $, where $ f(u) = \frac{1}{2}u(1-u^2) $ and the other parameters are same as that in >Figure 6. (b) The graph of $ \log|u(t,x)-1| $ on the interval $ (20,35) $ when $ t = 100.0 $, where $ u(t,x) $ is the numerical solution of $ (2) $
[1]

Jong-Shenq Guo, Hirokazu Ninomiya, Chin-Chin Wu. Existence of a rotating wave pattern in a disk for a wave front interaction model. Communications on Pure and Applied Analysis, 2013, 12 (2) : 1049-1063. doi: 10.3934/cpaa.2013.12.1049

[2]

Kazuhiro Ishige, Tatsuki Kawakami, Kanako Kobayashi. Global solutions for a nonlinear integral equation with a generalized heat kernel. Discrete and Continuous Dynamical Systems - S, 2014, 7 (4) : 767-783. doi: 10.3934/dcdss.2014.7.767

[3]

Igor Kukavica, Amjad Tuffaha. Solutions to a fluid-structure interaction free boundary problem. Discrete and Continuous Dynamical Systems, 2012, 32 (4) : 1355-1389. doi: 10.3934/dcds.2012.32.1355

[4]

Gladis Torres-Espino, Claudio Vidal. Periodic solutions of a tumor-immune system interaction under a periodic immunotherapy. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4523-4547. doi: 10.3934/dcdsb.2020301

[5]

José A. Carrillo, Bertram Düring, Lisa Maria Kreusser, Carola-Bibiane Schönlieb. Equilibria of an anisotropic nonlocal interaction equation: Analysis and numerics. Discrete and Continuous Dynamical Systems, 2021, 41 (8) : 3985-4012. doi: 10.3934/dcds.2021025

[6]

Francesco S. Patacchini, Dejan Slepčev. The nonlocal-interaction equation near attracting manifolds. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 903-929. doi: 10.3934/dcds.2021142

[7]

Giuseppe Maria Coclite, Lorenzo di Ruvo. Discontinuous solutions for the generalized short pulse equation. Evolution Equations and Control Theory, 2019, 8 (4) : 737-753. doi: 10.3934/eect.2019036

[8]

Jiawei Dou, Lan-sun Chen, Kaitai Li. A monotone-iterative method for finding periodic solutions of an impulsive competition system on tumor-normal cell interaction. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 555-562. doi: 10.3934/dcdsb.2004.4.555

[9]

Zhitao Zhang, Haijun Luo. Symmetry and asymptotic behavior of ground state solutions for schrödinger systems with linear interaction. Communications on Pure and Applied Analysis, 2018, 17 (3) : 787-806. doi: 10.3934/cpaa.2018040

[10]

Ariane Piovezan Entringer, José Luiz Boldrini. A phase field $\alpha$-Navier-Stokes vesicle-fluid interaction model: Existence and uniqueness of solutions. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 397-422. doi: 10.3934/dcdsb.2015.20.397

[11]

Shijin Ding, Bingyuan Huang, Xiaoyan Hou. Strong solutions to a fluid-particle interaction model with magnetic field in $ \mathbb{R}^2 $. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 277-300. doi: 10.3934/dcdsb.2021042

[12]

Xu Liu, Jiashan Zheng. Convergence rates of solutions in apredator-preysystem withindirect pursuit-evasion interaction in domains of arbitrary dimension. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022168

[13]

Aijun Zhang. Traveling wave solutions of periodic nonlocal Fisher-KPP equations with non-compact asymmetric kernel. Discrete and Continuous Dynamical Systems - S, 2022, 15 (10) : 3079-3095. doi: 10.3934/dcdss.2022061

[14]

José A. Carrillo, Dejan Slepčev, Lijiang Wu. Nonlocal-interaction equations on uniformly prox-regular sets. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1209-1247. doi: 10.3934/dcds.2016.36.1209

[15]

Marco Di Francesco, Yahya Jaafra. Multiple large-time behavior of nonlocal interaction equations with quadratic diffusion. Kinetic and Related Models, 2019, 12 (2) : 303-322. doi: 10.3934/krm.2019013

[16]

Alexander Pankov. Traveling waves in Fermi-Pasta-Ulam chains with nonlocal interaction. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 2097-2113. doi: 10.3934/dcdss.2019135

[17]

Mohamed Karim Hamdani, Lamine Mbarki, Mostafa Allaoui, Omar Darhouche, Dušan D. Repovš. Existence and multiplicity of solutions involving the $ p(x) $-Laplacian equations: On the effect of two nonlocal terms. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022129

[18]

Bo Su and Martin Burger. Global weak solutions of non-isothermal front propagation problem. Electronic Research Announcements, 2007, 13: 46-52.

[19]

Peter Howard, Bongsuk Kwon. Spectral analysis for transition front solutions in Cahn-Hilliard systems. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 125-166. doi: 10.3934/dcds.2012.32.125

[20]

Nika Lazaryan, Hassan Sedaghat. Extinction and the Allee effect in an age structured Ricker population model with inter-stage interaction. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 731-747. doi: 10.3934/dcdsb.2018040

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (361)
  • HTML views (135)
  • Cited by (0)

Other articles
by authors

[Back to Top]