# American Institute of Mathematical Sciences

January  2021, 26(1): 173-190. doi: 10.3934/dcdsb.2020329

## The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect

 Department of Mathematics, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo, Hokkaido, 060-0810, Japan

* Corresponding author: Shin-Ichiro Ei

Received  March 2020 Revised  October 2020 Published  November 2020

In this paper, we analyze the interaction of localized patterns such as traveling wave solutions for reaction-diffusion systems with nonlocal effect in one space dimension. We consider the case that a nonlocal effect is given by the convolution with a suitable integral kernel. At first, we deduce the equation describing the movement of interacting localized patterns in a mathematically rigorous way, assuming that there exists a linearly stable localized solution for general reaction-diffusion systems with nonlocal effect. When the distances between localized patterns are sufficiently large, the motion of localized patterns can be reduced to the equation for the distances between them. Finally, using this equation, we analyze the interaction of front solutions to some nonlocal scalar equation. Under some assumptions, we can show that the front solutions are interacting attractively for a large class of integral kernels.

Citation: Shin-Ichiro Ei, Hiroshi Ishii. The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 173-190. doi: 10.3934/dcdsb.2020329
##### References:

show all references

##### References:
The image of an integral kernel $K$ with the Mexican hat profile on ${\mathbb{R}}$
The images of localized patterns. (a) Pulse solution when $P^{+} = P^{-} = \mathit{\boldsymbol{0}}$. (b) Front solution when $n = 1$ and $P^{+}>P^{-}$
The image of $P(z;\mathit{\boldsymbol{h}})$ when $N = 2$
The image of $P(z;\mathit{\boldsymbol{h}})$. (a) $(N^+, N^-) = (1,1)$. (b) $(N^+, N^-) = (2,1)$
The image of the interaction of two standing fronts, when the kernel is a non-negative function
(a) The graph of (30) when $\varepsilon = 0.01,\ q_1 = 1.0,\ q_2 = 2.0$. (b) The graph of $G(\lambda)$ when $d = 1.0$, $f'(1) = -1$ and the integral kernel is same as Figure 6 (a)
(a) The numerical solution of $(2)$ on the interval $(0,40)$ when $t = 100.0$, where $f(u) = \frac{1}{2}u(1-u^2)$ and the other parameters are same as that in >Figure 6. (b) The graph of $\log|u(t,x)-1|$ on the interval $(20,35)$ when $t = 100.0$, where $u(t,x)$ is the numerical solution of $(2)$
 [1] Chang-Yeol Jung, Roger Temam. Interaction of boundary layers and corner singularities. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 315-339. doi: 10.3934/dcds.2009.23.315 [2] Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253 [3] Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028 [4] Shigui Ruan. Nonlinear dynamics in tumor-immune system interaction models with delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 541-602. doi: 10.3934/dcdsb.2020282 [5] Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021011 [6] Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020109 [7] Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216 [8] Pavel Eichler, Radek Fučík, Robert Straka. Computational study of immersed boundary - lattice Boltzmann method for fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 819-833. doi: 10.3934/dcdss.2020349 [9] Yi-Ming Tai, Zhengyang Zhang. Relaxation oscillations in a spruce-budworm interaction model with Holling's type II functional response. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021027 [10] Fang-Di Dong, Wan-Tong Li, Shi-Liang Wu, Li Zhang. Entire solutions originating from monotone fronts for nonlocal dispersal equations with bistable nonlinearity. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1031-1060. doi: 10.3934/dcdsb.2020152 [11] Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136 [12] Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345 [13] Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272 [14] Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461 [15] Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291 [16] José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091 [17] Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045 [18] Palash Sarkar, Subhadip Singha. Verifying solutions to LWE with implications for concrete security. Advances in Mathematics of Communications, 2021, 15 (2) : 257-266. doi: 10.3934/amc.2020057 [19] Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439 [20] Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

2019 Impact Factor: 1.27

## Tools

Article outline

Figures and Tables