January  2021, 26(1): 173-190. doi: 10.3934/dcdsb.2020329

The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect

Department of Mathematics, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo, Hokkaido, 060-0810, Japan

* Corresponding author: Shin-Ichiro Ei

Received  March 2020 Revised  October 2020 Published  November 2020

In this paper, we analyze the interaction of localized patterns such as traveling wave solutions for reaction-diffusion systems with nonlocal effect in one space dimension. We consider the case that a nonlocal effect is given by the convolution with a suitable integral kernel. At first, we deduce the equation describing the movement of interacting localized patterns in a mathematically rigorous way, assuming that there exists a linearly stable localized solution for general reaction-diffusion systems with nonlocal effect. When the distances between localized patterns are sufficiently large, the motion of localized patterns can be reduced to the equation for the distances between them. Finally, using this equation, we analyze the interaction of front solutions to some nonlocal scalar equation. Under some assumptions, we can show that the front solutions are interacting attractively for a large class of integral kernels.

Citation: Shin-Ichiro Ei, Hiroshi Ishii. The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 173-190. doi: 10.3934/dcdsb.2020329
References:
[1]

F. Andreu-Vaillo, J. Mazón, J. D. Rossi and J. J. Toledo-Melero, Nonlocal Diffusion Problems, Mathematical Surveys and Monographs, 165. American Mathematical Society, Providence, RI, Real Sociedad Matemática Española, Madrid, 2010. doi: 10.1090/surv/165.  Google Scholar

[2]

P. W. Bates, On some nonlocal evolution equations arising in materials science, Nonlinear Dynamics and Evolution Equations, Fields Inst. Commun., Amer. Math. Soc., Providence, RI, 48 (2006), 13-52.   Google Scholar

[3]

P. W. Bates and F. Chen, Spectral analysis and multidimensional stability of traveling waves for nonlocal Allen-Cahn equation, J. Math. Anal. Appl., 273 (2002), 45-57.  doi: 10.1016/S0022-247X(02)00205-6.  Google Scholar

[4]

P. W. Bates and F. Chen, Spectral analysis of traveling waves for nonlocal evolution equations, SIAM J. Math. Anal., 38 (2006), 116-126.  doi: 10.1137/S0036141004443968.  Google Scholar

[5]

P. W. BatesX. Chen and A. J. J. Chmaj, Heteroclinic solutions of a van der Waals model with indefinite nonlocal interactions, Calc. Var., 24 (2005), 261-281.  doi: 10.1007/s00526-005-0308-y.  Google Scholar

[6]

P. W. BatesP. C. FifeX. Ren and X. Wang, Traveling waves in a convolution model for phase transitions, Arch. Ration. Mech. Anal., 138 (1997), 105-136.  doi: 10.1007/s002050050037.  Google Scholar

[7]

J. A. CarrilloH. MurakawaM. SatoH. Togashi and O. Trush, A population dynamics model of cell-cell adhesion incorporating population pressure and density saturation, J. Theor. Biology, 474 (2019), 14-24.  doi: 10.1016/j.jtbi.2019.04.023.  Google Scholar

[8]

F. Chen, Almost periodic traveling waves of nonlocal evolution equations, Nonlinear Anal., 50 (2002), 807-838.  doi: 10.1016/S0362-546X(01)00787-8.  Google Scholar

[9]

X. Chen, Existence, uniqueness and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differential Equations, 2 (1997), 125-160.   Google Scholar

[10]

A. Chmaj and X. Ren, Homoclinic solutions of an integral equation: Existence and stability, J. Differential Equations, 155 (1999), 17-43.  doi: 10.1006/jdeq.1998.3571.  Google Scholar

[11]

J. Coville and L. Dupaigne, On a non-local equation arising in population dynamics, Proc. R. Soc. Edinb. A, 137 (2007), 727-755.  doi: 10.1017/S0308210504000721.  Google Scholar

[12]

A. DolemanR. A. Gardner and T. J. Kaper, Stability analysis of singular patterns in the 1-D Gray-Scott model: A matched asymptotics approach, Physica D, 122 (1998), 1-36.  doi: 10.1016/S0167-2789(98)00180-8.  Google Scholar

[13]

S.-I. Ei, The motion of weakly interacting pulses in reaction-diffusion systems, J. Dynam. Diff. Eqns., 14 (2002), 85-137.  doi: 10.1023/A:1012980128575.  Google Scholar

[14]

S.-I. Ei, J.-S. Guo, H. Ishii and C.-C. Wu, Existence of traveling waves solutions to a nonlocal scalar equation with sign-changing kernel, Journal of Mathematical Analysis and Applications, 487 (2020), 124007, 14 pp. doi: 10.1016/j.jmaa.2020.124007.  Google Scholar

[15]

S.-I. Ei, H. Ishii, S. Kondo, T. Miura and Y. Tanaka, Effective nonlocal kernels on reaction-diffusion networks, Journal of Theoretical Biology, 509 (2021), 110496. doi: 10.1016/j.jtbi.2020.110496.  Google Scholar

[16]

S.-I. Ei and H. Matsuzawa, The motion of a transition layer for a bistable reaction diffusion equation with heterogeneous environment, Discrete Contin. Dyn. Syst., 26 (2010), 901-921.  doi: 10.3934/dcds.2010.26.901.  Google Scholar

[17]

P. C. Fife and J. B. Mcleod, The approach of solutions of nonlinear diffusion equations to traveling wave front solutions, Arch. Rat. Mech. Anal., 65 (1977), 335-361.  doi: 10.1007/BF00250432.  Google Scholar

[18]

A. Gierer and H. Meinhardt, A theory of biological pattern formation, Kybernetik, 12 (1972), 30-39.  doi: 10.1007/BF00289234.  Google Scholar

[19]

V. HutsonS. MartinezK. Mischaikow and G. T. Vickers, The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517.  doi: 10.1007/s00285-003-0210-1.  Google Scholar

[20]

S. Ishihara, M. Otsuji and A. Mochizuki, Transient and steady state of mass conserved reaction-diffusion systems, Phys. Rev. E, 75 (2007), 015203. doi: 10.1103/PhysRevE.75.015203.  Google Scholar

[21]

C. K. R. T. Jones, Stability of the traveling wave solution of the FitzHugh-Nagumo system, Trans. A. M. S., 286 (1984), 431-469.  doi: 10.1090/S0002-9947-1984-0760971-6.  Google Scholar

[22]

S. Kondo, An updated kernel-based Turing model for studying the mechanisms of biological pattern formation, J. Theoretical Biology, 414 (2017), 120-127.  doi: 10.1016/j.jtbi.2016.11.003.  Google Scholar

[23]

S. Kondo and T. Miura, Reaction-diffusion model as a framework for understanding biological pattern formation, Science, 329 (2010), 1616-1620.  doi: 10.1126/science.1179047.  Google Scholar

[24]

M. Mimura and M. Nagayama, Nonannihilation dynamics in an exothermic reaction-diffusion system with mono-stable excitability, Chaos, 7 (1997), 817-826.  doi: 10.1063/1.166282.  Google Scholar

[25]

J. D. Murray, Mathematical Biology. I. An Introduction, Third edition, Interdisciplinary Applied Mathematics, 17. Springer-Verlag, New York, 2002. doi: 10.1007/b98869.  Google Scholar

[26]

Y. Nagashima, S. Tsugawa, A. Mochizuki, T. Sasaki, H. Fukuda and Y. Oda, A Rho-based reaction-diffusion system governs cell wall patterning in metaxylem vessels, Sci. Rep., 8 (2018), 11542. doi: 10.1038/s41598-018-29543-y.  Google Scholar

[27]

A. NakamasuG. TakahashiA. Kanbe and S. Kondo, Interactions between zebrafish pigment cells responsible for the generation of Turing patterns, PNAS, 106 (2009), 8429-8434.  doi: 10.1073/pnas.0808622106.  Google Scholar

[28]

H. NinomiyaY. Tanaka and H. Yamamoto, Reaction, diffusion and non-local interaction, J. Math. Biol., 75 (2017), 1203-1233.  doi: 10.1007/s00285-017-1113-x.  Google Scholar

[29]

K. J. PainterJ. M. BloomfieldJ. A. Sherratt and A. Gerisch, A nonlocal model for contact attraction and repulsion in heterogeneous cell populations, Bulletin of Mathematical Biology, 77 (2015), 1132-1165.  doi: 10.1007/s11538-015-0080-x.  Google Scholar

[30]

J. Siebert and E. Schöll, Front and turing patterns induced by mexican-hat-like nonlocal feedback, Europhys. Lett., 109 (2015), 40014. doi: 10.1209/0295-5075/109/40014.  Google Scholar

[31]

T. SushidaS. KondoK. Sugihara and M. Mimura, A differential equation model of retinal processing for understanding lightness optical illusions, Japan Journal of Industrial and Applied Mathematics, 35 (2018), 117-156.  doi: 10.1007/s13160-017-0272-x.  Google Scholar

[32]

A. M. Turing, The chemical basis of morphogenesis, Philos. Trans. R. Soc. Lond. Ser. B, 237 (1953), 37-72.  doi: 10.1098/rstb.1952.0012.  Google Scholar

[33]

E. Yanagida, Stability of fast traveling pulse solutions of the FitzHugh-Nagumo equations, J. Math. Biol., 22 (1985), 81-104.  doi: 10.1007/BF00276548.  Google Scholar

[34]

G. Zhao and S. Ruan, The decay rates of traveling waves and spectral analysis for a class of nonlocal evolution equations, Math. Model. Nat. Phenom., 10 (2015), 142-162.  doi: 10.1051/mmnp/20150610.  Google Scholar

show all references

References:
[1]

F. Andreu-Vaillo, J. Mazón, J. D. Rossi and J. J. Toledo-Melero, Nonlocal Diffusion Problems, Mathematical Surveys and Monographs, 165. American Mathematical Society, Providence, RI, Real Sociedad Matemática Española, Madrid, 2010. doi: 10.1090/surv/165.  Google Scholar

[2]

P. W. Bates, On some nonlocal evolution equations arising in materials science, Nonlinear Dynamics and Evolution Equations, Fields Inst. Commun., Amer. Math. Soc., Providence, RI, 48 (2006), 13-52.   Google Scholar

[3]

P. W. Bates and F. Chen, Spectral analysis and multidimensional stability of traveling waves for nonlocal Allen-Cahn equation, J. Math. Anal. Appl., 273 (2002), 45-57.  doi: 10.1016/S0022-247X(02)00205-6.  Google Scholar

[4]

P. W. Bates and F. Chen, Spectral analysis of traveling waves for nonlocal evolution equations, SIAM J. Math. Anal., 38 (2006), 116-126.  doi: 10.1137/S0036141004443968.  Google Scholar

[5]

P. W. BatesX. Chen and A. J. J. Chmaj, Heteroclinic solutions of a van der Waals model with indefinite nonlocal interactions, Calc. Var., 24 (2005), 261-281.  doi: 10.1007/s00526-005-0308-y.  Google Scholar

[6]

P. W. BatesP. C. FifeX. Ren and X. Wang, Traveling waves in a convolution model for phase transitions, Arch. Ration. Mech. Anal., 138 (1997), 105-136.  doi: 10.1007/s002050050037.  Google Scholar

[7]

J. A. CarrilloH. MurakawaM. SatoH. Togashi and O. Trush, A population dynamics model of cell-cell adhesion incorporating population pressure and density saturation, J. Theor. Biology, 474 (2019), 14-24.  doi: 10.1016/j.jtbi.2019.04.023.  Google Scholar

[8]

F. Chen, Almost periodic traveling waves of nonlocal evolution equations, Nonlinear Anal., 50 (2002), 807-838.  doi: 10.1016/S0362-546X(01)00787-8.  Google Scholar

[9]

X. Chen, Existence, uniqueness and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differential Equations, 2 (1997), 125-160.   Google Scholar

[10]

A. Chmaj and X. Ren, Homoclinic solutions of an integral equation: Existence and stability, J. Differential Equations, 155 (1999), 17-43.  doi: 10.1006/jdeq.1998.3571.  Google Scholar

[11]

J. Coville and L. Dupaigne, On a non-local equation arising in population dynamics, Proc. R. Soc. Edinb. A, 137 (2007), 727-755.  doi: 10.1017/S0308210504000721.  Google Scholar

[12]

A. DolemanR. A. Gardner and T. J. Kaper, Stability analysis of singular patterns in the 1-D Gray-Scott model: A matched asymptotics approach, Physica D, 122 (1998), 1-36.  doi: 10.1016/S0167-2789(98)00180-8.  Google Scholar

[13]

S.-I. Ei, The motion of weakly interacting pulses in reaction-diffusion systems, J. Dynam. Diff. Eqns., 14 (2002), 85-137.  doi: 10.1023/A:1012980128575.  Google Scholar

[14]

S.-I. Ei, J.-S. Guo, H. Ishii and C.-C. Wu, Existence of traveling waves solutions to a nonlocal scalar equation with sign-changing kernel, Journal of Mathematical Analysis and Applications, 487 (2020), 124007, 14 pp. doi: 10.1016/j.jmaa.2020.124007.  Google Scholar

[15]

S.-I. Ei, H. Ishii, S. Kondo, T. Miura and Y. Tanaka, Effective nonlocal kernels on reaction-diffusion networks, Journal of Theoretical Biology, 509 (2021), 110496. doi: 10.1016/j.jtbi.2020.110496.  Google Scholar

[16]

S.-I. Ei and H. Matsuzawa, The motion of a transition layer for a bistable reaction diffusion equation with heterogeneous environment, Discrete Contin. Dyn. Syst., 26 (2010), 901-921.  doi: 10.3934/dcds.2010.26.901.  Google Scholar

[17]

P. C. Fife and J. B. Mcleod, The approach of solutions of nonlinear diffusion equations to traveling wave front solutions, Arch. Rat. Mech. Anal., 65 (1977), 335-361.  doi: 10.1007/BF00250432.  Google Scholar

[18]

A. Gierer and H. Meinhardt, A theory of biological pattern formation, Kybernetik, 12 (1972), 30-39.  doi: 10.1007/BF00289234.  Google Scholar

[19]

V. HutsonS. MartinezK. Mischaikow and G. T. Vickers, The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517.  doi: 10.1007/s00285-003-0210-1.  Google Scholar

[20]

S. Ishihara, M. Otsuji and A. Mochizuki, Transient and steady state of mass conserved reaction-diffusion systems, Phys. Rev. E, 75 (2007), 015203. doi: 10.1103/PhysRevE.75.015203.  Google Scholar

[21]

C. K. R. T. Jones, Stability of the traveling wave solution of the FitzHugh-Nagumo system, Trans. A. M. S., 286 (1984), 431-469.  doi: 10.1090/S0002-9947-1984-0760971-6.  Google Scholar

[22]

S. Kondo, An updated kernel-based Turing model for studying the mechanisms of biological pattern formation, J. Theoretical Biology, 414 (2017), 120-127.  doi: 10.1016/j.jtbi.2016.11.003.  Google Scholar

[23]

S. Kondo and T. Miura, Reaction-diffusion model as a framework for understanding biological pattern formation, Science, 329 (2010), 1616-1620.  doi: 10.1126/science.1179047.  Google Scholar

[24]

M. Mimura and M. Nagayama, Nonannihilation dynamics in an exothermic reaction-diffusion system with mono-stable excitability, Chaos, 7 (1997), 817-826.  doi: 10.1063/1.166282.  Google Scholar

[25]

J. D. Murray, Mathematical Biology. I. An Introduction, Third edition, Interdisciplinary Applied Mathematics, 17. Springer-Verlag, New York, 2002. doi: 10.1007/b98869.  Google Scholar

[26]

Y. Nagashima, S. Tsugawa, A. Mochizuki, T. Sasaki, H. Fukuda and Y. Oda, A Rho-based reaction-diffusion system governs cell wall patterning in metaxylem vessels, Sci. Rep., 8 (2018), 11542. doi: 10.1038/s41598-018-29543-y.  Google Scholar

[27]

A. NakamasuG. TakahashiA. Kanbe and S. Kondo, Interactions between zebrafish pigment cells responsible for the generation of Turing patterns, PNAS, 106 (2009), 8429-8434.  doi: 10.1073/pnas.0808622106.  Google Scholar

[28]

H. NinomiyaY. Tanaka and H. Yamamoto, Reaction, diffusion and non-local interaction, J. Math. Biol., 75 (2017), 1203-1233.  doi: 10.1007/s00285-017-1113-x.  Google Scholar

[29]

K. J. PainterJ. M. BloomfieldJ. A. Sherratt and A. Gerisch, A nonlocal model for contact attraction and repulsion in heterogeneous cell populations, Bulletin of Mathematical Biology, 77 (2015), 1132-1165.  doi: 10.1007/s11538-015-0080-x.  Google Scholar

[30]

J. Siebert and E. Schöll, Front and turing patterns induced by mexican-hat-like nonlocal feedback, Europhys. Lett., 109 (2015), 40014. doi: 10.1209/0295-5075/109/40014.  Google Scholar

[31]

T. SushidaS. KondoK. Sugihara and M. Mimura, A differential equation model of retinal processing for understanding lightness optical illusions, Japan Journal of Industrial and Applied Mathematics, 35 (2018), 117-156.  doi: 10.1007/s13160-017-0272-x.  Google Scholar

[32]

A. M. Turing, The chemical basis of morphogenesis, Philos. Trans. R. Soc. Lond. Ser. B, 237 (1953), 37-72.  doi: 10.1098/rstb.1952.0012.  Google Scholar

[33]

E. Yanagida, Stability of fast traveling pulse solutions of the FitzHugh-Nagumo equations, J. Math. Biol., 22 (1985), 81-104.  doi: 10.1007/BF00276548.  Google Scholar

[34]

G. Zhao and S. Ruan, The decay rates of traveling waves and spectral analysis for a class of nonlocal evolution equations, Math. Model. Nat. Phenom., 10 (2015), 142-162.  doi: 10.1051/mmnp/20150610.  Google Scholar

Figure 1.  The image of an integral kernel $ K $ with the Mexican hat profile on $ {\mathbb{R}} $
Figure 2.  The images of localized patterns. (a) Pulse solution when $ P^{+} = P^{-} = \mathit{\boldsymbol{0}} $. (b) Front solution when $ n = 1 $ and $ P^{+}>P^{-} $
Figure 3.  The image of $ P(z;\mathit{\boldsymbol{h}}) $ when $ N = 2 $
Figure 4.  The image of $ P(z;\mathit{\boldsymbol{h}}) $. (a) $ (N^+, N^-) = (1,1) $. (b) $ (N^+, N^-) = (2,1) $
Figure 5.  The image of the interaction of two standing fronts, when the kernel is a non-negative function
Figure 6.  (a) The graph of (30) when $ \varepsilon = 0.01,\ q_1 = 1.0,\ q_2 = 2.0 $. (b) The graph of $ G(\lambda) $ when $ d = 1.0 $, $ f'(1) = -1 $ and the integral kernel is same as Figure 6 (a)
Figure 7.  (a) The numerical solution of $ (2) $ on the interval $ (0,40) $ when $ t = 100.0 $, where $ f(u) = \frac{1}{2}u(1-u^2) $ and the other parameters are same as that in >Figure 6. (b) The graph of $ \log|u(t,x)-1| $ on the interval $ (20,35) $ when $ t = 100.0 $, where $ u(t,x) $ is the numerical solution of $ (2) $
[1]

Chang-Yeol Jung, Roger Temam. Interaction of boundary layers and corner singularities. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 315-339. doi: 10.3934/dcds.2009.23.315

[2]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[3]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028

[4]

Shigui Ruan. Nonlinear dynamics in tumor-immune system interaction models with delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 541-602. doi: 10.3934/dcdsb.2020282

[5]

Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021011

[6]

Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020109

[7]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[8]

Pavel Eichler, Radek Fučík, Robert Straka. Computational study of immersed boundary - lattice Boltzmann method for fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 819-833. doi: 10.3934/dcdss.2020349

[9]

Yi-Ming Tai, Zhengyang Zhang. Relaxation oscillations in a spruce-budworm interaction model with Holling's type II functional response. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021027

[10]

Fang-Di Dong, Wan-Tong Li, Shi-Liang Wu, Li Zhang. Entire solutions originating from monotone fronts for nonlocal dispersal equations with bistable nonlinearity. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1031-1060. doi: 10.3934/dcdsb.2020152

[11]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[12]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[13]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[14]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[15]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[16]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[17]

Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045

[18]

Palash Sarkar, Subhadip Singha. Verifying solutions to LWE with implications for concrete security. Advances in Mathematics of Communications, 2021, 15 (2) : 257-266. doi: 10.3934/amc.2020057

[19]

Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439

[20]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

2019 Impact Factor: 1.27

Article outline

Figures and Tables

[Back to Top]