
-
Previous Article
Global optimization-based dimer method for finding saddle points
- DCDS-B Home
- This Issue
-
Next Article
Random attractors for 2D stochastic micropolar fluid flows on unbounded domains
How to detect Wada basins
1. | Nonlinear Dynamics, Chaos and Complex Systems Group, Departamento de Física, Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles, Madrid, Spain |
2. | Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA |
3. | Department of Applied Informatics, Kaunas University of Technology, Studentu 50-415, Kaunas LT-51368, Lithuania |
We present a review of the different techniques available to study a special kind of fractal basins of attraction known as Wada basins, which have the intriguing property of having a single boundary separating three or more basins. We expose several approaches to identify this topological property that rely on different, but not exclusive, definitions of the Wada property.
References:
[1] |
J. Aguirre and M. A. F. Sanjuán,
Unpredictable behavior in the Duffing oscillator: Wada basins, Physica D, 171 (2002), 41-51.
doi: 10.1016/S0167-2789(02)00565-1. |
[2] |
J. Aguirre, J. C. Vallejo and M. A. F. Sanjuán, Wada basins and chaotic invariant sets in the Hénon-Heiles system, Phys. Rev. E, 64 (2001), 066208. Google Scholar |
[3] |
P. M. Battelino, C. Grebogi, E. Ott, J. A. Yorke and E. D. Yorke,
Multiple coexisting attractors, basin boundaries and basic sets, Physica D, 32 (1988), 296-305.
doi: 10.1016/0167-2789(88)90057-7. |
[4] |
X. Chen, T. Nishikawa and and A. E. Motter, Slim fractals: The geometry of doubly transient chaos, Phys. Rev. X, 7 (2017), 021040.
doi: 10.1103/PhysRevX.7.021040. |
[5] |
J. C. P. Coninck, S. R. Lopes, R. L. Viana and Ri cardo,
Basins of attraction of nonlinear wave–wave interactions, Chaos, Solitons & Fractals, 32 (2007), 711-724.
doi: 10.1016/j.chaos.2005.11.061. |
[6] |
A. Daza, J. O. Shipley, S. R. Dolan and M. A. F. Sanjuán, Wada structures in a binary black hole system, Phys. Rev. D, 98 (2018), 084050, 13 pp.
doi: 10.1103/physrevd.98.084050. |
[7] |
A. Daza, A. Wagemakers, B. Georgeot, D. Guéry-Odelin and M. A. F. Sanjuán, Basin entropy: A new tool to analyze uncertainty in dynamical systems, Sci. Rep., 6 (2016), 31416.
doi: 10.1038/srep31416. |
[8] |
A. Daza, A. Wagemakers and M. A. F. Sanjuán, Ascertaining when a basin is Wada: The merging method, Sci. Rep., 8 (2018), 9954.
doi: 10.1038/s41598-018-28119-0. |
[9] |
A. Daza, A. Wagemakers and M. A. F. Sanjuán,
Wada property in systems with delay, Commun. Nonlinear Sci. Numer. Simul., 43 (2017), 220-226.
doi: 10.1016/j.cnsns.2016.07.008. |
[10] |
A. Daza, A. Wagemakers, M. A. F. Sanjuán and J. A. Yorke, Testing for basins of Wada, Sci. Rep., 5 (2015), 16579.
doi: 10.1038/srep16579. |
[11] |
G. Edgar, Measure, Topology, and Fractal Geometry, Springer, New York, 2008.
doi: 10.1007/978-0-387-74749-1. |
[12] |
B. I. Epureanu and H. S. Greenside,
Fractal basins of attraction associated with a damped Newton's method, SIAM Rev., 40 (1998), 102-109.
doi: 10.1137/S0036144596310033. |
[13] |
J. H. Friedman, J. L. Bentley and R. A. Finkel,
An algorithm for finding best matches in logarithmic expected time, ACM Trans. Math. Softw., 3 (1977), 209-226.
doi: 10.1145/355744.355745. |
[14] |
M. Hansen, D. R. da Costa, I. L. Caldas and E. D. Leonel,
Statistical properties for an open oval billiard: An investigation of the escaping basins, Chaos Solitons Fractals, 106 (2018), 355-362.
doi: 10.1016/j.chaos.2017.11.036. |
[15] |
J. G. Hocking and G. S. Young, Topology, Dover, New York, 1988. |
[16] |
J. Kennedy and J. A. Yorke,
Basins of Wada, Physica D, 51 (1991), 213-225.
doi: 10.1016/0167-2789(91)90234-Z. |
[17] |
C. Kuratowski,
Sur les coupures irréductibles du plan, Fundamenta Mathematicae, 6 (1924), 130-145.
doi: 10.4064/fm-6-1-130-145. |
[18] |
G. Lu, M. Landauskas and M. Ragulskis, Control of divergence in an extended invertible logistic map, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 28 (2018), 1850129, 15 pp.
doi: 10.1142/S0218127418501298. |
[19] |
A. C. Mathias, R. L. Viana, T. Kroetz and I. L. Caldas,
Fractal structures in the chaotic motion of charged particles in a magnetized plasma under the influence of drift waves, Physica A, 469 (2017), 681-694.
doi: 10.1016/j.physa.2016.11.049. |
[20] |
H. E. Nusse, E. Ott and J. A. Yorke,
Saddle-Node Bifurcations on Fractal Basin Boundaries, Phys. Rev. Lett., 75 (1995), 2482-2485.
doi: 10.1103/PhysRevLett.75.2482. |
[21] |
H. E. Nusse and J. A. Yorke,
Wada basin boundaries and basin cells, Physica D, 90 (1996), 242-261.
doi: 10.1016/0167-2789(95)00249-9. |
[22] |
H. E. Nusse and J. A. Yorke, Dynamics: Numerical Explorations, Springer, New York, 2012. Google Scholar |
[23] |
H. E. Nusse and J. A. Yorke,
Fractal basin boundaries generated by basin cells and the geometry of mixing chaotic flows, Phys. Rev. Lett., 84 (2000), 626-629.
doi: 10.1103/PhysRevLett.84.626. |
[24] |
L. Poon, J. Campos, E. Ott and C. Grebogi,
Wada basin boundaries in chaotic scattering, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 6 (1996), 251-265.
doi: 10.1142/S0218127496000035. |
[25] |
M. A. F. Sanjuán, J. Kennedy, E. Ott and J. A. Yorke, Indecomposable continua and the characterization of strange sets in nonlinear dynamics, Phys. Rev. Lett., 78 (1997), 1892. Google Scholar |
[26] |
L. G. Shapiro and G. C. Stockman, Computer vision, Prentice Hall, Upper Saddle River, NJ, 2001. Google Scholar |
[27] |
T. Tél and M. Gruiz, Chaotic Dynamics: An Introduction based on Classical Mechanics, Cambridge University Press, Cambridge, 2006.
doi: 10.1017/CBO9780511803277.![]() ![]() |
[28] |
Z. Toroczkai, G. Károlyi, A. Péntek, T. Tél, C. Grebogi and J. A. Yorke, Wada dye boundaries in open hydrodynamical flows, Physica A, 239 (1997), 235-243. Google Scholar |
[29] |
J. Vandermeer, Wada basins and qualitative unpredictability in ecological models: a graphical interpretation, Ecol. Model., 176 (2004), 65-74. Google Scholar |
[30] |
A. Wagemakers, A. Daza and M. A. F. Sanjuán, The saddle-straddle method to test for Wada basins, Commun. Nonlinear Sci. Numer. Simul., 84 (2020), 105167, 8 pp.
doi: 10.1016/j.cnsns.2020.105167. |
[31] |
K. Yoneyama, Theory of continuous sets of points, Tokohu Math. J., 11 (1917), 43-158. Google Scholar |
[32] |
Y. Zhang and G. Luo,
Unpredictability of the Wada property in the parameter plane, Physics Letters A, 376 (2012), 3060-3066.
doi: 10.1016/j.physleta.2012.08.015. |
[33] |
Y. Zhang and G. Luo,
Wada bifurcations and partially Wada basin boundaries in a two-dimensional cubic map, Phys. Lett. A, 377 (2013), 1274-1281.
doi: 10.1016/j.physleta.2013.03.027. |
[34] |
Y. Zhang, G. Luo, Q. Cao and M. Lin,
Wada basin dynamics of a shallow arch oscillator with more than 20 coexisting low-period periodic attractors, International Journal of Non-Linear Mechanics, 58 (2014), 151-161.
doi: 10.1016/j.ijnonlinmec.2013.09.009. |
[35] |
P. Ziaukas and M. Ragulskis,
Fractal dimension and Wada measure revisited: no straightforward relationships in ndds, Nonlinear Dynamics, 88 (2017), 871-882.
doi: 10.1007/s11071-016-3281-4. |
show all references
References:
[1] |
J. Aguirre and M. A. F. Sanjuán,
Unpredictable behavior in the Duffing oscillator: Wada basins, Physica D, 171 (2002), 41-51.
doi: 10.1016/S0167-2789(02)00565-1. |
[2] |
J. Aguirre, J. C. Vallejo and M. A. F. Sanjuán, Wada basins and chaotic invariant sets in the Hénon-Heiles system, Phys. Rev. E, 64 (2001), 066208. Google Scholar |
[3] |
P. M. Battelino, C. Grebogi, E. Ott, J. A. Yorke and E. D. Yorke,
Multiple coexisting attractors, basin boundaries and basic sets, Physica D, 32 (1988), 296-305.
doi: 10.1016/0167-2789(88)90057-7. |
[4] |
X. Chen, T. Nishikawa and and A. E. Motter, Slim fractals: The geometry of doubly transient chaos, Phys. Rev. X, 7 (2017), 021040.
doi: 10.1103/PhysRevX.7.021040. |
[5] |
J. C. P. Coninck, S. R. Lopes, R. L. Viana and Ri cardo,
Basins of attraction of nonlinear wave–wave interactions, Chaos, Solitons & Fractals, 32 (2007), 711-724.
doi: 10.1016/j.chaos.2005.11.061. |
[6] |
A. Daza, J. O. Shipley, S. R. Dolan and M. A. F. Sanjuán, Wada structures in a binary black hole system, Phys. Rev. D, 98 (2018), 084050, 13 pp.
doi: 10.1103/physrevd.98.084050. |
[7] |
A. Daza, A. Wagemakers, B. Georgeot, D. Guéry-Odelin and M. A. F. Sanjuán, Basin entropy: A new tool to analyze uncertainty in dynamical systems, Sci. Rep., 6 (2016), 31416.
doi: 10.1038/srep31416. |
[8] |
A. Daza, A. Wagemakers and M. A. F. Sanjuán, Ascertaining when a basin is Wada: The merging method, Sci. Rep., 8 (2018), 9954.
doi: 10.1038/s41598-018-28119-0. |
[9] |
A. Daza, A. Wagemakers and M. A. F. Sanjuán,
Wada property in systems with delay, Commun. Nonlinear Sci. Numer. Simul., 43 (2017), 220-226.
doi: 10.1016/j.cnsns.2016.07.008. |
[10] |
A. Daza, A. Wagemakers, M. A. F. Sanjuán and J. A. Yorke, Testing for basins of Wada, Sci. Rep., 5 (2015), 16579.
doi: 10.1038/srep16579. |
[11] |
G. Edgar, Measure, Topology, and Fractal Geometry, Springer, New York, 2008.
doi: 10.1007/978-0-387-74749-1. |
[12] |
B. I. Epureanu and H. S. Greenside,
Fractal basins of attraction associated with a damped Newton's method, SIAM Rev., 40 (1998), 102-109.
doi: 10.1137/S0036144596310033. |
[13] |
J. H. Friedman, J. L. Bentley and R. A. Finkel,
An algorithm for finding best matches in logarithmic expected time, ACM Trans. Math. Softw., 3 (1977), 209-226.
doi: 10.1145/355744.355745. |
[14] |
M. Hansen, D. R. da Costa, I. L. Caldas and E. D. Leonel,
Statistical properties for an open oval billiard: An investigation of the escaping basins, Chaos Solitons Fractals, 106 (2018), 355-362.
doi: 10.1016/j.chaos.2017.11.036. |
[15] |
J. G. Hocking and G. S. Young, Topology, Dover, New York, 1988. |
[16] |
J. Kennedy and J. A. Yorke,
Basins of Wada, Physica D, 51 (1991), 213-225.
doi: 10.1016/0167-2789(91)90234-Z. |
[17] |
C. Kuratowski,
Sur les coupures irréductibles du plan, Fundamenta Mathematicae, 6 (1924), 130-145.
doi: 10.4064/fm-6-1-130-145. |
[18] |
G. Lu, M. Landauskas and M. Ragulskis, Control of divergence in an extended invertible logistic map, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 28 (2018), 1850129, 15 pp.
doi: 10.1142/S0218127418501298. |
[19] |
A. C. Mathias, R. L. Viana, T. Kroetz and I. L. Caldas,
Fractal structures in the chaotic motion of charged particles in a magnetized plasma under the influence of drift waves, Physica A, 469 (2017), 681-694.
doi: 10.1016/j.physa.2016.11.049. |
[20] |
H. E. Nusse, E. Ott and J. A. Yorke,
Saddle-Node Bifurcations on Fractal Basin Boundaries, Phys. Rev. Lett., 75 (1995), 2482-2485.
doi: 10.1103/PhysRevLett.75.2482. |
[21] |
H. E. Nusse and J. A. Yorke,
Wada basin boundaries and basin cells, Physica D, 90 (1996), 242-261.
doi: 10.1016/0167-2789(95)00249-9. |
[22] |
H. E. Nusse and J. A. Yorke, Dynamics: Numerical Explorations, Springer, New York, 2012. Google Scholar |
[23] |
H. E. Nusse and J. A. Yorke,
Fractal basin boundaries generated by basin cells and the geometry of mixing chaotic flows, Phys. Rev. Lett., 84 (2000), 626-629.
doi: 10.1103/PhysRevLett.84.626. |
[24] |
L. Poon, J. Campos, E. Ott and C. Grebogi,
Wada basin boundaries in chaotic scattering, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 6 (1996), 251-265.
doi: 10.1142/S0218127496000035. |
[25] |
M. A. F. Sanjuán, J. Kennedy, E. Ott and J. A. Yorke, Indecomposable continua and the characterization of strange sets in nonlinear dynamics, Phys. Rev. Lett., 78 (1997), 1892. Google Scholar |
[26] |
L. G. Shapiro and G. C. Stockman, Computer vision, Prentice Hall, Upper Saddle River, NJ, 2001. Google Scholar |
[27] |
T. Tél and M. Gruiz, Chaotic Dynamics: An Introduction based on Classical Mechanics, Cambridge University Press, Cambridge, 2006.
doi: 10.1017/CBO9780511803277.![]() ![]() |
[28] |
Z. Toroczkai, G. Károlyi, A. Péntek, T. Tél, C. Grebogi and J. A. Yorke, Wada dye boundaries in open hydrodynamical flows, Physica A, 239 (1997), 235-243. Google Scholar |
[29] |
J. Vandermeer, Wada basins and qualitative unpredictability in ecological models: a graphical interpretation, Ecol. Model., 176 (2004), 65-74. Google Scholar |
[30] |
A. Wagemakers, A. Daza and M. A. F. Sanjuán, The saddle-straddle method to test for Wada basins, Commun. Nonlinear Sci. Numer. Simul., 84 (2020), 105167, 8 pp.
doi: 10.1016/j.cnsns.2020.105167. |
[31] |
K. Yoneyama, Theory of continuous sets of points, Tokohu Math. J., 11 (1917), 43-158. Google Scholar |
[32] |
Y. Zhang and G. Luo,
Unpredictability of the Wada property in the parameter plane, Physics Letters A, 376 (2012), 3060-3066.
doi: 10.1016/j.physleta.2012.08.015. |
[33] |
Y. Zhang and G. Luo,
Wada bifurcations and partially Wada basin boundaries in a two-dimensional cubic map, Phys. Lett. A, 377 (2013), 1274-1281.
doi: 10.1016/j.physleta.2013.03.027. |
[34] |
Y. Zhang, G. Luo, Q. Cao and M. Lin,
Wada basin dynamics of a shallow arch oscillator with more than 20 coexisting low-period periodic attractors, International Journal of Non-Linear Mechanics, 58 (2014), 151-161.
doi: 10.1016/j.ijnonlinmec.2013.09.009. |
[35] |
P. Ziaukas and M. Ragulskis,
Fractal dimension and Wada measure revisited: no straightforward relationships in ndds, Nonlinear Dynamics, 88 (2017), 871-882.
doi: 10.1007/s11071-016-3281-4. |









Dynamical system | Wada? | |||
Forced pendulum |
0.0365 | 0.0219 | 0.667 | YES |
Forced pendulum |
0.368 | 0.0439 | 7.3826 | NO |
Forced pendulum |
0.3976 | 0.0655 | 5.0702 | NO |
Hénon-Heiles Hamiltonian |
0.0206 | 0.0168 | 0.2262 | YES |
Hénon-Heiles Hamiltonian |
0.0240 | 0.0236 | 0.0169 | YES |
Newton method |
0.0300 | 0.0240 | 0.2499 | YES |
Newton method |
0.0402 | 0.0350 | 0.1485 | YES |
Newton method |
0.0902 | 0.0420 | 1.1476 | YES |
Newton method |
0.0780 | 0.0566 | 0.3780 | YES |
Dynamical system | Wada? | |||
Forced pendulum |
0.0365 | 0.0219 | 0.667 | YES |
Forced pendulum |
0.368 | 0.0439 | 7.3826 | NO |
Forced pendulum |
0.3976 | 0.0655 | 5.0702 | NO |
Hénon-Heiles Hamiltonian |
0.0206 | 0.0168 | 0.2262 | YES |
Hénon-Heiles Hamiltonian |
0.0240 | 0.0236 | 0.0169 | YES |
Newton method |
0.0300 | 0.0240 | 0.2499 | YES |
Newton method |
0.0402 | 0.0350 | 0.1485 | YES |
Newton method |
0.0902 | 0.0420 | 1.1476 | YES |
Newton method |
0.0780 | 0.0566 | 0.3780 | YES |
Name | Type of system | Dim. | Computation | What we need |
time | ||||
Nusse-Yorke method [21] | ODEs Hamiltonians Maps | 2D | 1 |
It requires a detailed knowledge of the basin and the boundaries (accessible unstable periodic orbit embedded in the basin boundary). |
Grid method [10] | Any dynamical system | n-D | 100 | It requires the basins and the dynamical system to compute parts of the basin at a higher resolution. |
Merging method [8] | Any dynamical system | n-D | 0.01 | It needs to know the basins, but not the dynamical system. |
Saddle-straddle method [30] | ODEs Hamiltonians Maps | 2D | 1 | It needs to know the dynamical system, but not the basins. |
Name | Type of system | Dim. | Computation | What we need |
time | ||||
Nusse-Yorke method [21] | ODEs Hamiltonians Maps | 2D | 1 |
It requires a detailed knowledge of the basin and the boundaries (accessible unstable periodic orbit embedded in the basin boundary). |
Grid method [10] | Any dynamical system | n-D | 100 | It requires the basins and the dynamical system to compute parts of the basin at a higher resolution. |
Merging method [8] | Any dynamical system | n-D | 0.01 | It needs to know the basins, but not the dynamical system. |
Saddle-straddle method [30] | ODEs Hamiltonians Maps | 2D | 1 | It needs to know the dynamical system, but not the basins. |
[1] |
Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390 |
[2] |
Qiang Long, Xue Wu, Changzhi Wu. Non-dominated sorting methods for multi-objective optimization: Review and numerical comparison. Journal of Industrial & Management Optimization, 2021, 17 (2) : 1001-1023. doi: 10.3934/jimo.2020009 |
[3] |
Philippe G. Ciarlet, Liliana Gratie, Cristinel Mardare. Intrinsic methods in elasticity: a mathematical survey. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 133-164. doi: 10.3934/dcds.2009.23.133 |
[4] |
George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003 |
[5] |
Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115 |
[6] |
Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036 |
[7] |
Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354 |
[8] |
Michal Beneš, Pavel Eichler, Jakub Klinkovský, Miroslav Kolář, Jakub Solovský, Pavel Strachota, Alexandr Žák. Numerical simulation of fluidization for application in oxyfuel combustion. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 769-783. doi: 10.3934/dcdss.2020232 |
[9] |
Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079 |
[10] |
Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026 |
[11] |
Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020171 |
[12] |
Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096 |
[13] |
Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020126 |
[14] |
Baoli Yin, Yang Liu, Hong Li, Zhimin Zhang. Approximation methods for the distributed order calculus using the convolution quadrature. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1447-1468. doi: 10.3934/dcdsb.2020168 |
[15] |
Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078 |
[16] |
Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020449 |
[17] |
Manuel Friedrich, Martin Kružík, Jan Valdman. Numerical approximation of von Kármán viscoelastic plates. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 299-319. doi: 10.3934/dcdss.2020322 |
[18] |
Olivier Pironneau, Alexei Lozinski, Alain Perronnet, Frédéric Hecht. Numerical zoom for multiscale problems with an application to flows through porous media. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 265-280. doi: 10.3934/dcds.2009.23.265 |
[19] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033 |
[20] |
Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391 |
2019 Impact Factor: 1.27
Tools
Article outline
Figures and Tables
[Back to Top]