• Previous Article
    Global boundedness of classical solutions to a logistic chemotaxis system with singular sensitivity
  • DCDS-B Home
  • This Issue
  • Next Article
    Stochastic modelling and analysis of harvesting model: Application to "summer fishing moratorium" by intermittent control
September  2021, 26(9): 5067-5093. doi: 10.3934/dcdsb.2020333

Traveling wave solutions for a cancer stem cell invasion model

1. 

University of Michigan, 540 Thompson Street, Ann Arbor, MI 48104, USA

2. 

Department of Mathematics, Kennesaw State University, 850 Polytechnic Lane, Marietta, GA 30060, USA

*Corresponding author: E. Stachura

Received  December 2019 Revised  September 2020 Published  September 2021 Early access  November 2020

In this paper we analyze the dynamics of a cancer invasion model that incorporates the cancer stem cell hypothesis. In particular, we develop a model that includes a cancer stem cell subpopulation of tumor cells. Traveling wave analysis and Geometric Singular Perturbation Theory are used in order to determine existence and persistence of solutions for the model.

Citation: Caleb Mayer, Eric Stachura. Traveling wave solutions for a cancer stem cell invasion model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (9) : 5067-5093. doi: 10.3934/dcdsb.2020333
References:
[1]

H. BerestyckiG. NadinB. Perthame and L. Ryzhik, The non-local Fisher–KPP equation: Travelling waves and steady states, Nonlinearity, 22 (2009), 2813-2844.  doi: 10.1088/0951-7715/22/12/002.  Google Scholar

[2]

R. Courant and D. Hilbert, Methods of Mathematical Physics II, Interscience, 1962.  Google Scholar

[3]

P. DomschkeA. GerischM. A. J. Chaplain and D. Trucu, Structured models of cell migration incorporating molecular binding processes, Journal of Mathematical Biology, 75 (2017), 1517-1561.  doi: 10.1007/s00285-017-1120-y.  Google Scholar

[4]

A. FasanoA. Mancini and M. Primicerio, Tumours with cancer stem cells: A PDE model, Mathematical Biosciences, 272 (2016), 76-80.  doi: 10.1016/j.mbs.2015.12.003.  Google Scholar

[5]

N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, Journal of Differential Equations, 31 (1979), 53-98.  doi: 10.1016/0022-0396(79)90152-9.  Google Scholar

[6]

A. GhazaryanP. Gordon and C. K. R. T. Jones, Traveling waves in porous media combustion: Uniqueness of waves for small thermal diffusivity, Journal of Dynamics and Differential Equations, 19 (2007), 951-966.  doi: 10.1007/s10884-007-9079-9.  Google Scholar

[7]

K. HarleyP. van HeijsterR. MarangellG. J. Pettet and M. Wechselberger, Existence of traveling wave solutions for a model of tumor invasion, SIAM Journal on Applied Dynamical Systems, 13 (2014), 366-396.  doi: 10.1137/130923129.  Google Scholar

[8]

K. HarleyP. van Heijster and G. J. Pettet, A geometric construction of travelling wave solutions to the Keller–Segel model, ANZIAM Journal, 55 (2013), 399-415.   Google Scholar

[9]

G. Hek, Geometric singular perturbation theory in biological practice, Journal of Mathematical Biology, 60 (2010), 347-386.  doi: 10.1007/s00285-009-0266-7.  Google Scholar

[10]

F. IslamB. QiaoR. A. SmithV. Gopalan and A. K.-Y. Lam, Cancer stem cell: Fundamental experimental pathological concepts and updates, Experimental and Molecular Pathology, 98 (2015), 184-191.  doi: 10.1016/j.yexmp.2015.02.002.  Google Scholar

[11]

H. Jardón-Kojakhmetov, J. M. A. Scherpen and D. del Puerto-Flores, Stabilization of slow-fast systems at fold points, arXiv: 1704.05654. Google Scholar

[12]

C. K. R. T. Jones, Geometric singular perturbation theory, in Dynamical systems, Springer, 1995, 44–118. doi: 10.1007/BFb0095239.  Google Scholar

[13]

E. F. Keller and L. A. Segel, Model for chemotaxis, Journal of Theoretical Biology, 30 (1971), 225-234.  doi: 10.1016/0022-5193(71)90050-6.  Google Scholar

[14]

D. A. Larson, Transient bounds and time-asymptotic behavior of solutions to nonlinear equations of Fisher type, SIAM Journal on Applied Mathematics, 34 (1978), 93-103.  doi: 10.1137/0134008.  Google Scholar

[15]

J. D. Lathia and H. Liu, Overview of cancer stem cells and stemness for community oncologists, Targeted Oncology, 12 (2017), 387-399.  doi: 10.1007/s11523-017-0508-3.  Google Scholar

[16]

M.-R. Li, Y.-J. Lin and T.-H. Shieh, The space-jump model of the movement of tumor cells and healthy cells, in Abstract and Applied Analysis, 2014 (2014), 840891, 7pp. doi: 10.1155/2014/840891.  Google Scholar

[17]

L. Liotta, Tumor invasion and metastases–role of the extracellular matrix: Rhodes memorial award lecture, Cancer Research, 46 (1986), 1-7.   Google Scholar

[18]

H. P. McKean, Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov, Communications on Pure and Applied Mathematics, 28 (1975), 323-331.  doi: 10.1002/cpa.3160280302.  Google Scholar

[19]

R. NataliniM. Ribot and M. Twarogowska, A numerical comparison between degenerate parabolic and quasilinear hyperbolic models of cell movements under chemotaxis, Journal of Scientific Computing, 63 (2015), 654-677.  doi: 10.1007/s10915-014-9909-y.  Google Scholar

[20]

J. D. O'FlahertyM. BarrD. FennellD. RichardJ. ReynoldsJ. O'Leary and K. O'Byrne, The cancer stem-cell hypothesis: Its emerging role in lung cancer biology and its relevance for future therapy, Journal of Thoracic Oncology, 7 (2012), 1880-1890.  doi: 10.1097/JTO.0b013e31826bfbc6.  Google Scholar

[21]

K. J. Painter, Modelling cell migration strategies in the extracellular matrix, Journal of Mathematical Biology, 58 (2009), 511-543.  doi: 10.1007/s00285-008-0217-8.  Google Scholar

[22]

A. J. PerumpananiB. P. Marchant and J. Norbury, Traveling shock waves arising in a model of malignant invasion, SIAM Journal on Applied Mathematics, 60 (2000), 463-476.  doi: 10.1137/S0036139998328034.  Google Scholar

[23]

A. J. PerumpananiJ. A. SherrattJ. Norbury and H. M. Byrne, A two parameter family of travelling waves with a singular barrier arising from the modelling of extracellular matrix mediated cellular invasion, Physica D: Nonlinear Phenomena, 126 (1999), 145-159.  doi: 10.1016/S0167-2789(98)00272-3.  Google Scholar

[24]

R. J. PetrieA. D. Doyle and K. M. Yamada, Random versus directionally persistent cell migration, Nature Reviews Molecular Cell Biology, 10 (2009), 538-549.  doi: 10.1038/nrm2729.  Google Scholar

[25]

T. ReyaS. J. MorrisonM. F. Clarke and I. L. Weissman, Stem cells, cancer, and cancer stem cells, Nature, 414 (2001), 105-111.  doi: 10.1038/35102167.  Google Scholar

[26]

N. SfakianakisN. KolbeN. Hellmann and M. Lukávčová-Medvid'ová, A multiscale approach to the migration of cancer stem cells: Mathematical modelling and simulations, Bulletin of Mathematical Biology, 79 (2017), 209-235.  doi: 10.1007/s11538-016-0233-6.  Google Scholar

[27]

W. G. Stetler-StevensonS. Aznavoorian and L. A. Liotta, Tumor cell interactions with the extracellular matrix during invasion and metastasis, Annual Review of Cell Biology, 9 (1993), 541-573.  doi: 10.1146/annurev.cb.09.110193.002545.  Google Scholar

[28]

T. Stiehl, N. Baran, A. D. Ho and A. Marciniak-Czochra, Clonal selection and therapy resistance in acute leukaemias: Mathematical modelling explains different proliferation patterns at diagnosis and relapse, Journal of The Royal Society Interface, 11 (2014), 20140079. doi: 10.1098/rsif.2014.0079.  Google Scholar

[29]

T. Stiehl and A. Marciniak-Czochra, Stem cell self-renewal in regeneration and cancer: Insights from mathematical modeling, Current Opinion in Systems Biology, 5 (2017), 112-120.  doi: 10.1016/j.coisb.2017.09.006.  Google Scholar

[30]

P. Szmolyan, Transversal heteroclinic and homoclinic orbits in singular perturbation problems, Journal of Differential Equations, 92 (1991), 252-281.  doi: 10.1016/0022-0396(91)90049-F.  Google Scholar

[31]

P. Szmolyan and M. Wechselberger, Canards in $\mathbb R^3$, J. Differential Equations, 177 (2001), 419-453.  doi: 10.1006/jdeq.2001.4001.  Google Scholar

[32]

A. Toma, A. Mang, T. A. Schuetz, S. Becker and T. M. Buzug, A novel method for simulating the extracellular matrix in models of tumour growth, Computational and Mathematical Methods in Medicine, (2012), Art. ID 109019, 11 pp. doi: 10.1155/2012/109019.  Google Scholar

[33]

V. G. Vaidya and F. J. Alexandro Jr., Evaluation of some mathematical models for tumor growth, International Journal of Bio-Medical Computing, 13 (1982), 19-35.  doi: 10.1016/0020-7101(82)90048-4.  Google Scholar

[34]

L. WangC. MuX. Hu and Y. Tian, Boundedness in a quasilinear chemotaxis-haptotaxis system with logistic source, Mathematical Methods in the Applied Sciences, 40 (2017), 3000-3016.  doi: 10.1002/mma.4216.  Google Scholar

[35]

Z.-A. Wang, Mathematics of traveling waves in chemotaxis–review paper, Discrete and Continuous Dynamical Systems, Series B, 18 (2013), 601-641.  doi: 10.3934/dcdsb.2013.18.601.  Google Scholar

[36]

M. Wechselberger, Àpropos de canards (Apropos canards), Transactions of the American Mathematical Society, 364 (2012), 3289-3309.  doi: 10.1090/S0002-9947-2012-05575-9.  Google Scholar

[37]

M. Wechselberger and G. J. Pettet, Folds, canards and shocks in advection–reaction–diffusion models, Nonlinearity, 23 (2010), 1949-1969.  doi: 10.1088/0951-7715/23/8/008.  Google Scholar

[38]

A. ZagarisH. G. Kaper and T. J. Kaper, Fast and slow dynamics for the computational singular perturbation method, Multiscale Modeling & Simulation, 2 (2004), 613-638.  doi: 10.1137/040603577.  Google Scholar

[39]

A. Zhigun, C. Surulescu and A. Uatay, Global existence for a degenerate haptotaxis model of cancer invasion, Zeitschrift Für Angewandte Mathematik und Physik, 67 (2016), Art. 146, 29 pp. doi: 10.1007/s00033-016-0741-0.  Google Scholar

show all references

References:
[1]

H. BerestyckiG. NadinB. Perthame and L. Ryzhik, The non-local Fisher–KPP equation: Travelling waves and steady states, Nonlinearity, 22 (2009), 2813-2844.  doi: 10.1088/0951-7715/22/12/002.  Google Scholar

[2]

R. Courant and D. Hilbert, Methods of Mathematical Physics II, Interscience, 1962.  Google Scholar

[3]

P. DomschkeA. GerischM. A. J. Chaplain and D. Trucu, Structured models of cell migration incorporating molecular binding processes, Journal of Mathematical Biology, 75 (2017), 1517-1561.  doi: 10.1007/s00285-017-1120-y.  Google Scholar

[4]

A. FasanoA. Mancini and M. Primicerio, Tumours with cancer stem cells: A PDE model, Mathematical Biosciences, 272 (2016), 76-80.  doi: 10.1016/j.mbs.2015.12.003.  Google Scholar

[5]

N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, Journal of Differential Equations, 31 (1979), 53-98.  doi: 10.1016/0022-0396(79)90152-9.  Google Scholar

[6]

A. GhazaryanP. Gordon and C. K. R. T. Jones, Traveling waves in porous media combustion: Uniqueness of waves for small thermal diffusivity, Journal of Dynamics and Differential Equations, 19 (2007), 951-966.  doi: 10.1007/s10884-007-9079-9.  Google Scholar

[7]

K. HarleyP. van HeijsterR. MarangellG. J. Pettet and M. Wechselberger, Existence of traveling wave solutions for a model of tumor invasion, SIAM Journal on Applied Dynamical Systems, 13 (2014), 366-396.  doi: 10.1137/130923129.  Google Scholar

[8]

K. HarleyP. van Heijster and G. J. Pettet, A geometric construction of travelling wave solutions to the Keller–Segel model, ANZIAM Journal, 55 (2013), 399-415.   Google Scholar

[9]

G. Hek, Geometric singular perturbation theory in biological practice, Journal of Mathematical Biology, 60 (2010), 347-386.  doi: 10.1007/s00285-009-0266-7.  Google Scholar

[10]

F. IslamB. QiaoR. A. SmithV. Gopalan and A. K.-Y. Lam, Cancer stem cell: Fundamental experimental pathological concepts and updates, Experimental and Molecular Pathology, 98 (2015), 184-191.  doi: 10.1016/j.yexmp.2015.02.002.  Google Scholar

[11]

H. Jardón-Kojakhmetov, J. M. A. Scherpen and D. del Puerto-Flores, Stabilization of slow-fast systems at fold points, arXiv: 1704.05654. Google Scholar

[12]

C. K. R. T. Jones, Geometric singular perturbation theory, in Dynamical systems, Springer, 1995, 44–118. doi: 10.1007/BFb0095239.  Google Scholar

[13]

E. F. Keller and L. A. Segel, Model for chemotaxis, Journal of Theoretical Biology, 30 (1971), 225-234.  doi: 10.1016/0022-5193(71)90050-6.  Google Scholar

[14]

D. A. Larson, Transient bounds and time-asymptotic behavior of solutions to nonlinear equations of Fisher type, SIAM Journal on Applied Mathematics, 34 (1978), 93-103.  doi: 10.1137/0134008.  Google Scholar

[15]

J. D. Lathia and H. Liu, Overview of cancer stem cells and stemness for community oncologists, Targeted Oncology, 12 (2017), 387-399.  doi: 10.1007/s11523-017-0508-3.  Google Scholar

[16]

M.-R. Li, Y.-J. Lin and T.-H. Shieh, The space-jump model of the movement of tumor cells and healthy cells, in Abstract and Applied Analysis, 2014 (2014), 840891, 7pp. doi: 10.1155/2014/840891.  Google Scholar

[17]

L. Liotta, Tumor invasion and metastases–role of the extracellular matrix: Rhodes memorial award lecture, Cancer Research, 46 (1986), 1-7.   Google Scholar

[18]

H. P. McKean, Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov, Communications on Pure and Applied Mathematics, 28 (1975), 323-331.  doi: 10.1002/cpa.3160280302.  Google Scholar

[19]

R. NataliniM. Ribot and M. Twarogowska, A numerical comparison between degenerate parabolic and quasilinear hyperbolic models of cell movements under chemotaxis, Journal of Scientific Computing, 63 (2015), 654-677.  doi: 10.1007/s10915-014-9909-y.  Google Scholar

[20]

J. D. O'FlahertyM. BarrD. FennellD. RichardJ. ReynoldsJ. O'Leary and K. O'Byrne, The cancer stem-cell hypothesis: Its emerging role in lung cancer biology and its relevance for future therapy, Journal of Thoracic Oncology, 7 (2012), 1880-1890.  doi: 10.1097/JTO.0b013e31826bfbc6.  Google Scholar

[21]

K. J. Painter, Modelling cell migration strategies in the extracellular matrix, Journal of Mathematical Biology, 58 (2009), 511-543.  doi: 10.1007/s00285-008-0217-8.  Google Scholar

[22]

A. J. PerumpananiB. P. Marchant and J. Norbury, Traveling shock waves arising in a model of malignant invasion, SIAM Journal on Applied Mathematics, 60 (2000), 463-476.  doi: 10.1137/S0036139998328034.  Google Scholar

[23]

A. J. PerumpananiJ. A. SherrattJ. Norbury and H. M. Byrne, A two parameter family of travelling waves with a singular barrier arising from the modelling of extracellular matrix mediated cellular invasion, Physica D: Nonlinear Phenomena, 126 (1999), 145-159.  doi: 10.1016/S0167-2789(98)00272-3.  Google Scholar

[24]

R. J. PetrieA. D. Doyle and K. M. Yamada, Random versus directionally persistent cell migration, Nature Reviews Molecular Cell Biology, 10 (2009), 538-549.  doi: 10.1038/nrm2729.  Google Scholar

[25]

T. ReyaS. J. MorrisonM. F. Clarke and I. L. Weissman, Stem cells, cancer, and cancer stem cells, Nature, 414 (2001), 105-111.  doi: 10.1038/35102167.  Google Scholar

[26]

N. SfakianakisN. KolbeN. Hellmann and M. Lukávčová-Medvid'ová, A multiscale approach to the migration of cancer stem cells: Mathematical modelling and simulations, Bulletin of Mathematical Biology, 79 (2017), 209-235.  doi: 10.1007/s11538-016-0233-6.  Google Scholar

[27]

W. G. Stetler-StevensonS. Aznavoorian and L. A. Liotta, Tumor cell interactions with the extracellular matrix during invasion and metastasis, Annual Review of Cell Biology, 9 (1993), 541-573.  doi: 10.1146/annurev.cb.09.110193.002545.  Google Scholar

[28]

T. Stiehl, N. Baran, A. D. Ho and A. Marciniak-Czochra, Clonal selection and therapy resistance in acute leukaemias: Mathematical modelling explains different proliferation patterns at diagnosis and relapse, Journal of The Royal Society Interface, 11 (2014), 20140079. doi: 10.1098/rsif.2014.0079.  Google Scholar

[29]

T. Stiehl and A. Marciniak-Czochra, Stem cell self-renewal in regeneration and cancer: Insights from mathematical modeling, Current Opinion in Systems Biology, 5 (2017), 112-120.  doi: 10.1016/j.coisb.2017.09.006.  Google Scholar

[30]

P. Szmolyan, Transversal heteroclinic and homoclinic orbits in singular perturbation problems, Journal of Differential Equations, 92 (1991), 252-281.  doi: 10.1016/0022-0396(91)90049-F.  Google Scholar

[31]

P. Szmolyan and M. Wechselberger, Canards in $\mathbb R^3$, J. Differential Equations, 177 (2001), 419-453.  doi: 10.1006/jdeq.2001.4001.  Google Scholar

[32]

A. Toma, A. Mang, T. A. Schuetz, S. Becker and T. M. Buzug, A novel method for simulating the extracellular matrix in models of tumour growth, Computational and Mathematical Methods in Medicine, (2012), Art. ID 109019, 11 pp. doi: 10.1155/2012/109019.  Google Scholar

[33]

V. G. Vaidya and F. J. Alexandro Jr., Evaluation of some mathematical models for tumor growth, International Journal of Bio-Medical Computing, 13 (1982), 19-35.  doi: 10.1016/0020-7101(82)90048-4.  Google Scholar

[34]

L. WangC. MuX. Hu and Y. Tian, Boundedness in a quasilinear chemotaxis-haptotaxis system with logistic source, Mathematical Methods in the Applied Sciences, 40 (2017), 3000-3016.  doi: 10.1002/mma.4216.  Google Scholar

[35]

Z.-A. Wang, Mathematics of traveling waves in chemotaxis–review paper, Discrete and Continuous Dynamical Systems, Series B, 18 (2013), 601-641.  doi: 10.3934/dcdsb.2013.18.601.  Google Scholar

[36]

M. Wechselberger, Àpropos de canards (Apropos canards), Transactions of the American Mathematical Society, 364 (2012), 3289-3309.  doi: 10.1090/S0002-9947-2012-05575-9.  Google Scholar

[37]

M. Wechselberger and G. J. Pettet, Folds, canards and shocks in advection–reaction–diffusion models, Nonlinearity, 23 (2010), 1949-1969.  doi: 10.1088/0951-7715/23/8/008.  Google Scholar

[38]

A. ZagarisH. G. Kaper and T. J. Kaper, Fast and slow dynamics for the computational singular perturbation method, Multiscale Modeling & Simulation, 2 (2004), 613-638.  doi: 10.1137/040603577.  Google Scholar

[39]

A. Zhigun, C. Surulescu and A. Uatay, Global existence for a degenerate haptotaxis model of cancer invasion, Zeitschrift Für Angewandte Mathematik und Physik, 67 (2016), Art. 146, 29 pp. doi: 10.1007/s00033-016-0741-0.  Google Scholar

7] and [22] for only one invasive cell population, the latter reference taking $ \epsilon = 0 $ in their analysis">Figure 1.  Profile of traveling wave solution at $ t = 50 $. The qualitative behavior is similar to the results presented in [7] and [22] for only one invasive cell population, the latter reference taking $ \epsilon = 0 $ in their analysis
Figure 2.  Solution profile of (49)-(51) with wavespeed $ c = 1.5 $, $ u^* = 1 $, and $ w^* = 0.6 $
[1]

Manuel Delgado, Ítalo Bruno Mendes Duarte, Antonio Suárez Fernández. Nonlocal elliptic system arising from the growth of cancer stem cells. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1767-1795. doi: 10.3934/dcdsb.2018083

[2]

J. Ignacio Tello. On a mathematical model of tumor growth based on cancer stem cells. Mathematical Biosciences & Engineering, 2013, 10 (1) : 263-278. doi: 10.3934/mbe.2013.10.263

[3]

Gianluca D'Antonio, Paul Macklin, Luigi Preziosi. An agent-based model for elasto-plastic mechanical interactions between cells, basement membrane and extracellular matrix. Mathematical Biosciences & Engineering, 2013, 10 (1) : 75-101. doi: 10.3934/mbe.2013.10.75

[4]

Chengjun Guo, Chengxian Guo, Sameed Ahmed, Xinfeng Liu. Moment stability for nonlinear stochastic growth kinetics of breast cancer stem cells with time-delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2473-2489. doi: 10.3934/dcdsb.2016056

[5]

Ilona Gucwa, Peter Szmolyan. Geometric singular perturbation analysis of an autocatalator model. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 783-806. doi: 10.3934/dcdss.2009.2.783

[6]

Lijun Zhang, Yixia Shi, Maoan Han. Smooth and singular traveling wave solutions for the Serre-Green-Naghdi equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (10) : 2917-2926. doi: 10.3934/dcdss.2020217

[7]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[8]

A. Chauviere, L. Preziosi, T. Hillen. Modeling the motion of a cell population in the extracellular matrix. Conference Publications, 2007, 2007 (Special) : 250-259. doi: 10.3934/proc.2007.2007.250

[9]

Fabio Camilli, Annalisa Cesaroni. A note on singular perturbation problems via Aubry-Mather theory. Discrete & Continuous Dynamical Systems, 2007, 17 (4) : 807-819. doi: 10.3934/dcds.2007.17.807

[10]

Wei Wang, Yan Lv. Limit behavior of nonlinear stochastic wave equations with singular perturbation. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 175-193. doi: 10.3934/dcdsb.2010.13.175

[11]

Guo Lin, Wan-Tong Li. Traveling wave solutions of a competitive recursion. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 173-189. doi: 10.3934/dcdsb.2012.17.173

[12]

John M. Hong, Cheng-Hsiung Hsu, Bo-Chih Huang, Tzi-Sheng Yang. Geometric singular perturbation approach to the existence and instability of stationary waves for viscous traffic flow models. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1501-1526. doi: 10.3934/cpaa.2013.12.1501

[13]

Heinz Schättler, Urszula Ledzewicz. Perturbation feedback control: A geometric interpretation. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 631-654. doi: 10.3934/naco.2012.2.631

[14]

Stéphane Chrétien, Sébastien Darses, Christophe Guyeux, Paul Clarkson. On the pinning controllability of complex networks using perturbation theory of extreme singular values. application to synchronisation in power grids. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 289-299. doi: 10.3934/naco.2017019

[15]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

[16]

Guo Lin, Shuxia Pan. Periodic traveling wave solutions of periodic integrodifference systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (8) : 3005-3031. doi: 10.3934/dcdsb.2020049

[17]

Bingtuan Li. Some remarks on traveling wave solutions in competition models. Discrete & Continuous Dynamical Systems - B, 2009, 12 (2) : 389-399. doi: 10.3934/dcdsb.2009.12.389

[18]

Wei Ding, Wenzhang Huang, Siroj Kansakar. Traveling wave solutions for a diffusive sis epidemic model. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1291-1304. doi: 10.3934/dcdsb.2013.18.1291

[19]

Shi Jin, Dongsheng Yin. Computational high frequency wave diffraction by a corner via the Liouville equation and geometric theory of diffraction. Kinetic & Related Models, 2011, 4 (1) : 295-316. doi: 10.3934/krm.2011.4.295

[20]

Hirokazu Ninomiya. Entire solutions and traveling wave solutions of the Allen-Cahn-Nagumo equation. Discrete & Continuous Dynamical Systems, 2019, 39 (4) : 2001-2019. doi: 10.3934/dcds.2019084

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (215)
  • HTML views (271)
  • Cited by (0)

Other articles
by authors

[Back to Top]