We consider a chemotaxis system with singular sensitivity and logistic-type source: $ u_t = \Delta u-\chi\nabla\cdot(\frac{u}{v}\nabla v)+ru-\mu u^k $, $ v_t = \epsilon\Delta v-v+u $ in a smooth bounded domain $ \Omega\subset\mathbb{R}^n $ with $ \chi,r,\mu,\epsilon>0 $, $ k>1 $ and $ n\ge 2 $. It is proved that the system possesses a globally bounded classical solution when $ \epsilon+\chi<1 $. This shows that the diffusive coefficient $ \epsilon $ of the chemical substance $ v $ properly small benefits the global boundedness of solutions, without the restriction on the dampening exponent $ k>1 $ in logistic source.
Citation: |
[1] |
J. Ahn, Global well-posedness and asymptotic stabilization for chemotaxis system with singal-dependent sensitivity, J. Differential Equations, 266 (2019), 6866-6904.
doi: 10.1016/j.jde.2018.11.015.![]() ![]() |
[2] |
M. Aida, K. Osaka, T. Tsujikawa and A. Yagi, Chemotaxis and growth system with sigular sensitivity function, Nonlinear Anal. Real World Appl., 6 (2005), 323-336.
doi: 10.1016/j.nonrwa.2004.08.011.![]() ![]() |
[3] |
N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations, 4 (1979), 827-868.
doi: 10.1080/03605307908820113.![]() ![]() |
[4] |
J. W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems, Cambridge University Press, 2000.
![]() |
[5] |
M. Ding, W. Wang and S. Zhou, Global existence of solutions to a fully parabolic chemotaxis system with singular sensitivity and logistic source, Nonlinear Anal. Real World Appl., 49 (2019), 286-311.
doi: 10.1016/j.nonrwa.2019.03.009.![]() ![]() |
[6] |
K. Fujie, Boundedness in a fully parabolic chemotaxis system with singular sensitivity, J. Math. Anal. Appl., 424 (2015), 675-684.
doi: 10.1016/j.jmaa.2014.11.045.![]() ![]() |
[7] |
K. Fujie and T. Senba, Global existence and boundedness of radial solution to a two dimensional fully parabolic chemotaxis system with general sensitivity, Nonlinearity, 29 (2016), 2417-2450.
doi: 10.1088/0951-7715/29/8/2417.![]() ![]() |
[8] |
K. Fujie, M. Winkler and T. Yokota, Blow-up prevention by logistic sources in a parabolic-elliptic Keller-Segel system with singular sensitivity, Nonlinear Anal., 109 (2014), 56-71.
doi: 10.1016/j.na.2014.06.017.![]() ![]() |
[9] |
A. Friedman and J. I. Tello, Stability of solutions of chemotaxis equations in reinforced random walks, J. Math. Anal. Appl., 272 (2002), 138-163.
doi: 10.1016/S0022-247X(02)00147-6.![]() ![]() |
[10] |
E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5.![]() ![]() |
[11] |
J. Lankeit and M. Winkler, A generalized solution concept for the Keller-Segel system with logarithmic sensitivity: Global solvability for large nonradial data, NoDEA Nonlinear Differential Equations Appl., 24 (2017), 33pp.
![]() |
[12] |
J. Lankeit, A new approach toward boundedness in a two-dimensional parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci., 39 (2016), 394-404.
doi: 10.1002/mma.3489.![]() ![]() |
[13] |
K. Osaki and A. Yagi, Finite dimensional attractors for one-dimensional Keller-Segel equations, Funkcial Ekvac., 44 (2001), 441-469.
![]() |
[14] |
C. Stinner and M. Winkler, Global weak solutions in a chemotaxis system with large singular sensitivity, Nonlinear Anal. Real World Appl., 12 (2011), 3727-3740.
![]() |
[15] |
M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.
doi: 10.1016/j.jde.2010.02.008.![]() ![]() |
[16] |
X. D. Zhao and S. N. Zheng, Global boundedness to a chemotaxis system with singular sensitivity and logistic source, Z. Angew. Math. Phys., (2017), 68.
![]() |
[17] |
X. D. Zhao and S. Zheng, Global existence and boundedness of solutions to a chemotaxis system with singular sensitivity and logistic-type source, J. Differential Equations, 267 (2019), 826-865.
doi: 10.1016/j.jde.2019.01.026.![]() ![]() |
[18] |
X. D. Zhao and S. Zheng, Asymptotic behavior to a chemotaxis consumption system with singular sensitivity, Math. Methods. Appl. Sci., 41 (2018), 2615-2624.
doi: 10.1002/mma.4762.![]() ![]() |