# American Institute of Mathematical Sciences

## Input-to-state stability and Lyapunov functions with explicit domains for SIR model of infectious diseases

 Department of Intelligent and Control Systems, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka 820-8502, Japan

Received  May 2020 Revised  September 2020 Published  November 2020

Fund Project: The author is supported by JSPS KAKENHI Grant Number 20K04536

This paper demonstrates input-to-state stability (ISS) of the SIR model of infectious diseases with respect to the disease-free equilibrium and the endemic equilibrium. Lyapunov functions are constructed to verify that both equilibria are individually robust with respect to perturbation of newborn/immigration rate which determines the eventual state of populations in epidemics. The construction and analysis are geometric and global in the space of the populations. In addition to the establishment of ISS, this paper shows how explicitly the constructed level sets reflect the flow of trajectories. Essential obstacles and keys for the construction of Lyapunov functions are elucidated. The proposed Lyapunov functions which have strictly negative derivative allow us to not only establish ISS, but also get rid of the use of LaSalle's invariance principle and popular simplifying assumptions.

Citation: Hiroshi Ito. Input-to-state stability and Lyapunov functions with explicit domains for SIR model of infectious diseases. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020338
##### References:

show all references

##### References:
Level sets of the ISS Lyapunov function (22) for the disease-free equilibrium with $\hat{B} = 3$ (Dash lines); The arrows are segments of trajectories of (8) for $B(t) = \hat{B}$; The dotted line is $S = \hat{x}_1$
Level sets of the ISS Lyapunov function (37) for the endemic equilibrium with $\hat{B} = 17$ (Dash lines); The arrows are segments of trajectories of (8) for $B(t) = \hat{B}$; The dotted lines are $S = \hat{x}_1$, $I = \hat{x}_2$ and $SI = \hat{x}_1\hat{x}_2$; The lower left area along $S$-axis cannot be filled with sublevel sets of any Lyapunov functions
Obstacles in constructing a strict Lyapunov function in terms of level sets: The lines and the arrows are segments of level sets and trajectories, respectively
 [1] Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020  doi: 10.3934/jcd.2021006 [2] Peter Giesl, Sigurdur Hafstein. System specific triangulations for the construction of CPA Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020378 [3] Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331 [4] Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317 [5] Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 [6] Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050 [7] Divine Wanduku. Finite- and multi-dimensional state representations and some fundamental asymptotic properties of a family of nonlinear multi-population models for HIV/AIDS with ART treatment and distributed delays. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021005 [8] Eric Foxall. Boundary dynamics of the replicator equations for neutral models of cyclic dominance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1061-1082. doi: 10.3934/dcdsb.2020153 [9] Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110 [10] Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 [11] Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047 [12] Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321 [13] John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3789-3812. doi: 10.3934/dcds.2020044 [14] Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042 [15] Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324 [16] Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180 [17] Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450 [18] Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316 [19] Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021002 [20] Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $q$-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

2019 Impact Factor: 1.27

## Tools

Article outline

Figures and Tables