
-
Previous Article
On the semilinear fractional elliptic equations with singular weight functions
- DCDS-B Home
- This Issue
-
Next Article
Invariant measures of stochastic delay lattice systems
Input-to-state stability and Lyapunov functions with explicit domains for SIR model of infectious diseases
Department of Intelligent and Control Systems, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka 820-8502, Japan |
This paper demonstrates input-to-state stability (ISS) of the SIR model of infectious diseases with respect to the disease-free equilibrium and the endemic equilibrium. Lyapunov functions are constructed to verify that both equilibria are individually robust with respect to perturbation of newborn/immigration rate which determines the eventual state of populations in epidemics. The construction and analysis are geometric and global in the space of the populations. In addition to the establishment of ISS, this paper shows how explicitly the constructed level sets reflect the flow of trajectories. Essential obstacles and keys for the construction of Lyapunov functions are elucidated. The proposed Lyapunov functions which have strictly negative derivative allow us to not only establish ISS, but also get rid of the use of LaSalle's invariance principle and popular simplifying assumptions.
References:
[1] |
A. Bacciotti and L. Rosier, Liapunov Functions and Stability in Control Theory, 2nd ed., Springer, Berlin, 2005.
doi: 10.1007/b139028. |
[2] |
D. Bichara, A. Iggidr and G. Sallet,
Global analysis of multi-strains SIS, SIR and MSIR epidemic models, J. Appl. Math. Comput., 44 (2014), 273-292.
doi: 10.1007/s12190-013-0693-x. |
[3] |
A. Chaillet, D. Angeli and H. Ito,
Combining iISS and ISS with respect to small inputs: The Strong iISS property, IEEE Trans. Automat. Contr., 59 (2014), 2518-2524.
doi: 10.1109/TAC.2014.2304375. |
[4] |
Y. Chen, J. Yang and F. Zhang,
The global stability of an SIRS model with infection age, Math. Biosci. Eng., 11 (2014), 449-469.
doi: 10.3934/mbe.2014.11.449. |
[5] |
S. Dashkovskiy, H. Ito and F. Wirth,
On a small-gain theorem for ISS networks in dissipative Lyapunov form, European J. Contr., 17 (2011), 357-365.
doi: 10.3166/ejc.17.357-365. |
[6] |
K. Dietz,
Epidemics and Rumours: A survey, J. Roy. Stat. Soc. A, 130 (1976), 505-528.
doi: 10.2307/2982521. |
[7] |
G. Dirr, H. Ito, A. Rantzer and B. S. Rüffer,
Separable Lyapunov functions: Constructions and limitations, Discrete and Continuous Dynamical Systems - B, 20 (2015), 2497-2526.
doi: 10.3934/dcdsb.2015.20.2497. |
[8] |
Y. Enatsu, Y. Nakata and Y. Muroya,
Global stability of SIR epidemic models with a wide class of nonlinear incidence rates and distributed delays, Disc. Cont. Dynam. Sys. B, 15 (2011), 61-74.
doi: 10.3934/dcdsb.2011.15.61. |
[9] |
A. Fall, A. Iggidr, G. Sallet and J. J. Tewa,
Epidemiological models and Lyapunov functions, Math. Model. Nat. Phenom., 2 (2007), 55-73.
doi: 10.1051/mmnp:2008011. |
[10] |
R. A. Freeman and P. V. Kokotović, Robust Nonlinear Control Design: State-space and Lyapunov Techniques, Birkhäuser, Boston, 1996.
doi: 10.1007/978-0-8176-4759-9. |
[11] |
H. W. Hethcote,
The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599-653.
doi: 10.1137/S0036144500371907. |
[12] |
D. J. Hill and P. J. Moylan,
Stability results for nonlinear feedback systems, Automatica, 13 (1977), 377-382.
doi: 10.1016/0005-1098(77)90020-6. |
[13] |
H. Ito,
State-dependent scaling problems and stability of interconnected iISS and ISS systems, IEEE Trans. Autom. Control, 51 (2006), 1626-1643.
doi: 10.1109/TAC.2006.882930. |
[14] |
H. Ito, Interpreting models of infectious diseases in terms of integral input-to-state stability, submitted, a preprint is available at arXiv: 2004.02552. Google Scholar |
[15] |
Z. P. Jiang, I. Mareels and Y. Wang,
A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems, Automatica, 32 (1996), 1211-1215.
doi: 10.1016/0005-1098(96)00051-9. |
[16] |
M. J. Keeling and P. Rohani, Modeling Infectious Diseases in Humans and Animals, Princeton Univ. Press, Princeton, 2008.
![]() |
[17] |
W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics., Proc. R. Soc. Lond., A115 (1927), 700-721. Google Scholar |
[18] |
H. K. Khalil, Nonlinear Systems, 3rd edition, Prentice-Hall, Upper Saddle River, 2002. Google Scholar |
[19] |
A. Korobeinikov,
Lyapunov functions and global properties for SEIR and SEIS epidemic models, Math. Med. Biol., 21 (2004), 75-83.
doi: 10.1093/imammb/21.2.75. |
[20] |
A. Korobeinikov,
Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission, Bulletin Math. Biol., 68 (2006), 615-626.
doi: 10.1007/s11538-005-9037-9. |
[21] |
A. Korobeinikov and G. C. Wake,
Lyapunov functions and global stability for SIR, SIRS, and SIS epidemiological models, Appl. Math. Lett., 15 (2002), 955-960.
doi: 10.1016/S0893-9659(02)00069-1. |
[22] |
M. Y. Li and J. S. Muldowney,
Global stability for the SEIR model in epidemiology, Math. Biosci., 125 (1995), 155-164.
doi: 10.1016/0025-5564(95)92756-5. |
[23] |
M. Malisoff and F. Mazenc, Constructions of Strict Lyapunov Functions, Springer-Verlag, London, 2009.
doi: 10.1007/978-1-84882-535-2. |
[24] |
A. N. Michel,
On the status of stability of interconnected systems, IEEE Trans. Automat. Contr., 28 (1983), 639-653.
doi: 10.1109/TAC.1983.1103292. |
[25] |
A. Mironchenko and H. Ito,
Construction of Lyapunov functions for interconnected parabolic systems: An iISS approach, SIAM J. Control Optim., 53 (2015), 3364-3382.
doi: 10.1137/14097269X. |
[26] |
A. Mironchenko and H. Ito,
Characterizations of integral input-to-state stability for bilinear systems in infinite dimensions, Math. Control Relat. Fields, 6 (2016), 447-466.
doi: 10.3934/mcrf.2016011. |
[27] |
Y. Nakata, Y. Enatsu, H. Inaba, T. Kuniya, Y. Muroya and Y. Takeuchi,
Stability of epidemic models with waning immunity, SUT J. Mathematics, 50 (2014), 205-245.
|
[28] |
S. M. O'Regan, T. C. Kelly, A. Korobeinikov, M. J. A. O'Callaghan and A. V. Pokrovskii,
Lyapunov functions for SIR and SIRS epidemic models, Appl. Math. Lett., 23 (2010), 446-448.
doi: 10.1016/j.aml.2009.11.014. |
[29] |
Z. Shuai and P. van den Driessche,
Global stability of infectious disease models using Lyapunov functions, SIAM J. Appl. Math., 73 (2013), 1513-1532.
doi: 10.1137/120876642. |
[30] |
E. D. Sontag, Mathematical Control Theory: Deterministic Finite Dimensional Systems, 2nd edition, Springer, New York, 1998.
doi: 10.1007/978-1-4612-0577-7. |
[31] |
E. D. Sontag,
Smooth stabilization implies coprime factorization, IEEE Trans. Autom. Control, 34 (1989), 435-443.
doi: 10.1109/9.28018. |
[32] |
E. D. Sontag,
A 'universal' construction of Artstein's theorem on nonlinear stabilization, Systems Control Lett., 13 (1989), 117-123.
doi: 10.1016/0167-6911(89)90028-5. |
[33] |
E. D. Sontag,
Comments on integral variants of ISS, Syst. Control Lett., 34 (1998), 93-100.
doi: 10.1016/S0167-6911(98)00003-6. |
[34] |
E. D. Sontag and Y. Wang,
On characterizations of input-to-state stability property, Syst. Control Lett., 24 (1995), 351-359.
doi: 10.1016/0167-6911(94)00050-6. |
[35] |
C. Tian, Q. Zhang and L. Zhang, Global stability in a networked SIR epidemic model, Appl. Math. Lett., 107 (2020), 106444, 6 pp.
doi: 10.1016/j.aml.2020.106444. |
show all references
References:
[1] |
A. Bacciotti and L. Rosier, Liapunov Functions and Stability in Control Theory, 2nd ed., Springer, Berlin, 2005.
doi: 10.1007/b139028. |
[2] |
D. Bichara, A. Iggidr and G. Sallet,
Global analysis of multi-strains SIS, SIR and MSIR epidemic models, J. Appl. Math. Comput., 44 (2014), 273-292.
doi: 10.1007/s12190-013-0693-x. |
[3] |
A. Chaillet, D. Angeli and H. Ito,
Combining iISS and ISS with respect to small inputs: The Strong iISS property, IEEE Trans. Automat. Contr., 59 (2014), 2518-2524.
doi: 10.1109/TAC.2014.2304375. |
[4] |
Y. Chen, J. Yang and F. Zhang,
The global stability of an SIRS model with infection age, Math. Biosci. Eng., 11 (2014), 449-469.
doi: 10.3934/mbe.2014.11.449. |
[5] |
S. Dashkovskiy, H. Ito and F. Wirth,
On a small-gain theorem for ISS networks in dissipative Lyapunov form, European J. Contr., 17 (2011), 357-365.
doi: 10.3166/ejc.17.357-365. |
[6] |
K. Dietz,
Epidemics and Rumours: A survey, J. Roy. Stat. Soc. A, 130 (1976), 505-528.
doi: 10.2307/2982521. |
[7] |
G. Dirr, H. Ito, A. Rantzer and B. S. Rüffer,
Separable Lyapunov functions: Constructions and limitations, Discrete and Continuous Dynamical Systems - B, 20 (2015), 2497-2526.
doi: 10.3934/dcdsb.2015.20.2497. |
[8] |
Y. Enatsu, Y. Nakata and Y. Muroya,
Global stability of SIR epidemic models with a wide class of nonlinear incidence rates and distributed delays, Disc. Cont. Dynam. Sys. B, 15 (2011), 61-74.
doi: 10.3934/dcdsb.2011.15.61. |
[9] |
A. Fall, A. Iggidr, G. Sallet and J. J. Tewa,
Epidemiological models and Lyapunov functions, Math. Model. Nat. Phenom., 2 (2007), 55-73.
doi: 10.1051/mmnp:2008011. |
[10] |
R. A. Freeman and P. V. Kokotović, Robust Nonlinear Control Design: State-space and Lyapunov Techniques, Birkhäuser, Boston, 1996.
doi: 10.1007/978-0-8176-4759-9. |
[11] |
H. W. Hethcote,
The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599-653.
doi: 10.1137/S0036144500371907. |
[12] |
D. J. Hill and P. J. Moylan,
Stability results for nonlinear feedback systems, Automatica, 13 (1977), 377-382.
doi: 10.1016/0005-1098(77)90020-6. |
[13] |
H. Ito,
State-dependent scaling problems and stability of interconnected iISS and ISS systems, IEEE Trans. Autom. Control, 51 (2006), 1626-1643.
doi: 10.1109/TAC.2006.882930. |
[14] |
H. Ito, Interpreting models of infectious diseases in terms of integral input-to-state stability, submitted, a preprint is available at arXiv: 2004.02552. Google Scholar |
[15] |
Z. P. Jiang, I. Mareels and Y. Wang,
A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems, Automatica, 32 (1996), 1211-1215.
doi: 10.1016/0005-1098(96)00051-9. |
[16] |
M. J. Keeling and P. Rohani, Modeling Infectious Diseases in Humans and Animals, Princeton Univ. Press, Princeton, 2008.
![]() |
[17] |
W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics., Proc. R. Soc. Lond., A115 (1927), 700-721. Google Scholar |
[18] |
H. K. Khalil, Nonlinear Systems, 3rd edition, Prentice-Hall, Upper Saddle River, 2002. Google Scholar |
[19] |
A. Korobeinikov,
Lyapunov functions and global properties for SEIR and SEIS epidemic models, Math. Med. Biol., 21 (2004), 75-83.
doi: 10.1093/imammb/21.2.75. |
[20] |
A. Korobeinikov,
Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission, Bulletin Math. Biol., 68 (2006), 615-626.
doi: 10.1007/s11538-005-9037-9. |
[21] |
A. Korobeinikov and G. C. Wake,
Lyapunov functions and global stability for SIR, SIRS, and SIS epidemiological models, Appl. Math. Lett., 15 (2002), 955-960.
doi: 10.1016/S0893-9659(02)00069-1. |
[22] |
M. Y. Li and J. S. Muldowney,
Global stability for the SEIR model in epidemiology, Math. Biosci., 125 (1995), 155-164.
doi: 10.1016/0025-5564(95)92756-5. |
[23] |
M. Malisoff and F. Mazenc, Constructions of Strict Lyapunov Functions, Springer-Verlag, London, 2009.
doi: 10.1007/978-1-84882-535-2. |
[24] |
A. N. Michel,
On the status of stability of interconnected systems, IEEE Trans. Automat. Contr., 28 (1983), 639-653.
doi: 10.1109/TAC.1983.1103292. |
[25] |
A. Mironchenko and H. Ito,
Construction of Lyapunov functions for interconnected parabolic systems: An iISS approach, SIAM J. Control Optim., 53 (2015), 3364-3382.
doi: 10.1137/14097269X. |
[26] |
A. Mironchenko and H. Ito,
Characterizations of integral input-to-state stability for bilinear systems in infinite dimensions, Math. Control Relat. Fields, 6 (2016), 447-466.
doi: 10.3934/mcrf.2016011. |
[27] |
Y. Nakata, Y. Enatsu, H. Inaba, T. Kuniya, Y. Muroya and Y. Takeuchi,
Stability of epidemic models with waning immunity, SUT J. Mathematics, 50 (2014), 205-245.
|
[28] |
S. M. O'Regan, T. C. Kelly, A. Korobeinikov, M. J. A. O'Callaghan and A. V. Pokrovskii,
Lyapunov functions for SIR and SIRS epidemic models, Appl. Math. Lett., 23 (2010), 446-448.
doi: 10.1016/j.aml.2009.11.014. |
[29] |
Z. Shuai and P. van den Driessche,
Global stability of infectious disease models using Lyapunov functions, SIAM J. Appl. Math., 73 (2013), 1513-1532.
doi: 10.1137/120876642. |
[30] |
E. D. Sontag, Mathematical Control Theory: Deterministic Finite Dimensional Systems, 2nd edition, Springer, New York, 1998.
doi: 10.1007/978-1-4612-0577-7. |
[31] |
E. D. Sontag,
Smooth stabilization implies coprime factorization, IEEE Trans. Autom. Control, 34 (1989), 435-443.
doi: 10.1109/9.28018. |
[32] |
E. D. Sontag,
A 'universal' construction of Artstein's theorem on nonlinear stabilization, Systems Control Lett., 13 (1989), 117-123.
doi: 10.1016/0167-6911(89)90028-5. |
[33] |
E. D. Sontag,
Comments on integral variants of ISS, Syst. Control Lett., 34 (1998), 93-100.
doi: 10.1016/S0167-6911(98)00003-6. |
[34] |
E. D. Sontag and Y. Wang,
On characterizations of input-to-state stability property, Syst. Control Lett., 24 (1995), 351-359.
doi: 10.1016/0167-6911(94)00050-6. |
[35] |
C. Tian, Q. Zhang and L. Zhang, Global stability in a networked SIR epidemic model, Appl. Math. Lett., 107 (2020), 106444, 6 pp.
doi: 10.1016/j.aml.2020.106444. |



[1] |
Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020 doi: 10.3934/jcd.2021006 |
[2] |
Peter Giesl, Sigurdur Hafstein. System specific triangulations for the construction of CPA Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020378 |
[3] |
Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331 |
[4] |
Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020317 |
[5] |
Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 |
[6] |
Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050 |
[7] |
Divine Wanduku. Finite- and multi-dimensional state representations and some fundamental asymptotic properties of a family of nonlinear multi-population models for HIV/AIDS with ART treatment and distributed delays. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021005 |
[8] |
Eric Foxall. Boundary dynamics of the replicator equations for neutral models of cyclic dominance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1061-1082. doi: 10.3934/dcdsb.2020153 |
[9] |
Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020110 |
[10] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
[11] |
Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020047 |
[12] |
Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321 |
[13] |
John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3789-3812. doi: 10.3934/dcds.2020044 |
[14] |
Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042 |
[15] |
Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324 |
[16] |
Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180 |
[17] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020450 |
[18] |
Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316 |
[19] |
Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021002 |
[20] |
Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020440 |
2019 Impact Factor: 1.27
Tools
Article outline
Figures and Tables
[Back to Top]